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Time Reversal for Systems with Internal Symmetry
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Wigner time reversal implemented by antiunitary transformations on the
wavefunctions is to be refined if we are to deal with systems with internal
symmetry. The necessary refinements are formulated. Application to a number of
physical problems is made with some unexpected revelations about some popular
models.

1. INTRODUCTION

In quantum mechanics and in quantum field theory the discrete transfor-
mation of space inversion can be implemented in a geometric fashion by a
suitable unitary transformation.'” One can then construct eigenstates of
“parity” with eigenvalues +1 since we could always define parity to be
involutary. When we consider composite systems or particle creation and
destruction we could have in addition to the orbital parity an intrinsic
parity which could also be chosen'” without loss of generality to be +1.
Under parity the quantum commutation relations are unaltered, as befits a
unitary transformation. All these considerations hold whether parity is con-
served or not provided that for realizations of the Poincaré group with zero
mass we should include equal and opposite helicities. When particles occur
in multiplets of internal (or composite) symmetries like SU(6) symmetry,
parity does not affect the internal symmetry labels.

But time reversal is on quite a different footing. Any dynamical theory,
whether it consists of particles or otherwise, must have a time reversal
transformation defined. But this cannot be a geometric transformation
since the second law of thermodynamics requires that the energy should
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remain bounded from below and cannot thercfore reverse itself. Wigner
showed in Ref. 3 how to implement time reversal with “reversal of motion”
(Bewegungsumkehr) by choosing an antiunitary transformation. Wigner’s
work was originally defined for quantum mechanics in the Schrédinger
formulation but was soon extended’ to relativistic quantum mechanics,
quantum field theory, and even classical mechanics. For each choice of the
origin of time we define time reversal according to

V(1) = ¥ (—1)=Ty(1) (L.1)
Then the dynamical variables transform according to
q(t) = g(—1)
plt) = —pl—1) (1.2)
H(q(1), p(2), 1) = H(q(—1), —p(—1), —1)
If the time origin is shifted by 7, the time reversal is changed:
T - ey (1.3)

Since the transformation is antiunitary, any phase factor in 4 could be
absorbed into a redefinition of the common phase of all the states. Under
time reversal both orbital and intrinsic spin angular momenta reverse

Loseadl;  Seapesf (1.4)

This would come about if, in the usual J; diagonal basis, time reversal is
defined by’

Y(r) — e™2y*(—1) (1.5)

What about time reversal transformations in a system with internal
symmetries? The wavefunctions are spanned by a basis—that is, products
of space-time functions and internal symmetry functions—with (complex)
coeflicients:

V=Y €.2%, (16)
v

We cannot apply Wigner time reversal to the complete wavefunction since
x* will in general belong to a different multiplet of the internal symmetry
from y. Even when it is not so, the quantum numbers may change sign. As
an instructive case, let us consider iospin-SU(2), say for the nucleon
doublet or the pion triplet: we would like the time reversal of a proton to
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be a proton, and of a neutron to be a neutron; for the pions, they go into
themselves with their charges unchanged. So we cannot adopt the transfor-
mation as for the spin-SU(2):

Y1) »e™ Y chyX(—1) xF(—1) (1.7)
hHe
Instead we would like to define
Y- 2 £ (=1 2~ 1) | (18)

We may formulate this by asserting that while space-time basis functions
and complex coeflicients undergo complex conjugation (followed by the
unitary transformation exp(izJ/,}) the internal symmetry basis functions are
inert (unchanged).

Since an antiunitary operator depends on the basis, this assertion that

2(t) = x(—1) (1.9)

is basis dependent. In the Cartan-Weyl basis®’ which diagonalizes the
commuting set of {H,} the transformation is as defined. For pions the
transformation is

zE(t) > nE(—1), ao(t) = 7% —1) (1.10)
But if we worked in terms of the Hermitian fields «,, 7,, 7; we would have
() = my(—1), mo(t) = — @ —1), n3(t) = ma(—1) (L.11)

This transformation is in accordance with our understanding that the
electric change is unchanged by time reversal.

Essentially similar considerations apply to higher symmetry groups.
For SU(3)flavor or SU(3)-color, in the Cartan-Weyl basis'®’ the
commuting set of generators {H,} and the residual set {E,} with root
vectors {y(a)} are invariant under time reversal. An SU(3) triplet octet or
decuplet go into themselves under time reversal, no! into their conjugates.

When symmetry is broken, we may still have time reversal invariance.
The question of CP violation (or time reversal violation) is therefore unam-
biguous in a situation with internal symmetry, in particular the treatment
of neutral kaon decay.’®” The Kobayashi~-Maskawa mass matrix‘®’ in the
Cartan-Weyl basis diagonalizing the observable quantum numbers needs
to be real (after the adjustable phases are suitably chosen) if time reversal
is to be obeyed.'”
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Even when one is dealing with irreversible processes like decays of par-
ticles, one can meaningfully talk about their being time reversal invariant.
We have already mentioned neutral kaon decay. More generally, when one
is deriving semigroup laws"'"” for decay of metastable excitations one must
specify whether they are time reversal invariant. In classical kinetic theory
of gases we compute dissipation coefficients like thermal conductivity and
viscosity from a time reversal invariant theory.

These considerations alert us to the possibility of time reversal viola-
tion for hybrid symmetries. We may recall the phenomenological SU(3) for
nuclear rotational motion,"'"’ the nonrelativistic spin-isospin SU(6),'"*
and the collective motion SL(3, R)."'*’ We need to ask if these symmetries
allow their irreducible representations to go into themselves under time
reversal. If the quadrupole generators in nuclear-SU(3) are chosen to trans-
form as mass quadrupoles,''" these generators will have the “wrong” time
reversal property. For SU(6) the question really is about the assignment of
the mesons to the 35-dimensional adjoint representation. For the SL(3, R)
collective motion the noncompact generators are identified with the time
derivative of the mass quadrupole'’®’ and thus will have the “correct” time
reversal property. Similar questions are relevant in making the correct
identification of the variables in topological models like the Skyrmion.'*

Questions of the same kind can be raised in the quantum
hydrodynamics of ideal fluids.""® Under time reversal the density and
velocity transform:

p(r, 1) = p(r, —1)

1.12
Ir, 1)— —=3(r, —1) ( )

In terms of the Clebsch potentials the velocity field may be realized as
r, 1) = —Vo(r, 1) —afr, 1) VA(r, 1) (1.13)

Then (p, ¢) and (e, ff) form canonical pairs of fields. Time reversal is then
(1.14)

The phonons (and rotons) of this set of coupled fields will then have
standard time reversal properties.

Our discussion in this brief note has used explicit bases for states,
and it is convenient to do so for computational purposes. But the use of
explicit bases obscures the deeper mathematical structure in terms of
automorphisms. This can be carried out in a systematic way and will be
published elsewhere.''®’
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