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Johann von Neumann, the father of Hilbert space quantum mechanics,
wrote to Birkhoff in a letter dated November 13, presumably 1935: “I would
like to make a confession that may seem immoral: I do not believe abso-
lutely in Hilbert space anymore” (Birkhoff 1961). With this statement, von
Neumann indicated a shift in emphasis from states in a Hilbert space to the
lattice of all linear closed subspaces of this Hilbert space. In the mid 1930s
he and Birkhoff introduced lattice theoretical ideas into quantum theory,
thus laying the foundations for the field of quantum logic (Birkhoff and von
Neumann 1936).

There is another way, though, to look at von Neumann’s statement,
even if this might not have been his original intention. Since quite a num-
ber of basic problems is encountered when one tries to enforce a rigorous
mathematical formulation of quantum mechanics in the usual Hilbert space
representation, it is an interesting option to explore the possibility of repre-
senting states of a system not by rays in Hilbert space but by distributions
in generalized spaces.

Dirac’s formulation of quantum theory in terms of bras and kets (Dirac
1930) leads to one such difficulty: the é-functions required in Dirac’s ap-
proach are undefined in Hilbert space. A first step to meet this problem
was done when Schwartz (1950) developed his theory of distributions with
d-functions as singular limiting cases. A special class of distribution spaces
was introduced somewhat later by the Russian mathematician Gel'fand and
his collaborators (Gel’fand and Vilenkin 1964): the so-called rigged Hilbert
spaces. At about the same time, both J.E. Roberts and A. Bohm utilized
rigged Hilbert spaces to make Dirac’s formalism mathematically rigorous.
By the end of the 1970s, it turned out that some basic physical problems
of Hilbert space quantum mechanics, notably in the context of decaying
states or resonances, could be clarified in terms of rigged Hilbert spaces.
|For more details see Bohm and Gadella (1989).
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More recently, the rigged Hilbert space approach has been used quite
extensively by the Brussels-Austin-group of Prigogine and collaborators.
Their special interest in rigged Hilbert spaces was due to the fact that
this formalism provides a natural way to derive two semigroups from the
basic unitary time evolution of both classical and quantum systems under
certain conditions (Antoniou and Prigogine 1993). One of these semigroups
describes an evolution toward the future, the other toward the past. Hence
It Is clear that the rigged Hilbert space formulation does not dispense us
from the need of (ad hoe) selecting the proper semigroup. In addition to
the rigged Hilbert space approach, other extensions are possible such as,
e.g., the Liouville extension (Petrosky and Prigogine 1997).

Sudarshan’s contribution describes yet another way to generalize quan-
tum theory in arder to cover situations for which the usual Hilbert space
approach is insufficient. It his formulation, the states of dynamical systems
are identified with distributions which assign numerical values to all dy-
namical variables. The notion of dynamics is then generalized to mappings
(which could include irreversible mappings) of the convex set of states onto
themselves. Stochastic quantum dynamics is studied with regard to both
the convex set of dynamical maps of density matrices and their generic
construction as contractions of extended systems. The analytic continua-
tion of this dynamics to dual analytic spaces is carried out and the dominant
metastable modes are identified. The various generalized spaces, often used
indiscriminately in the literature, are defined and distinguished. The con-
cept of the age of a decaying system obeying a semigroup is introduced and
ilustrated.
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1. Introduction

The simplest dynamical system is the point particle characterized by its
mass. Its state is specified by its position and momentum. The dynamical
law is the description of how these quantities change in time. For a free
particle, the momentum remains constant while the position increases in
the direction of the momentum. The increase is directly proportional to the
elapsed time and inversely proportional to the mass. When such a particle
is subjected to a force, the momentum also changes proportional to the
force. The instantaneous state may be represented as a point in phase
space which moves along a trajectory. For complicated interactions, the
trajectories may form an intricate pattern but they do not intersect, and
the generic dynamical evolution may be viewed as a mapping of the phase
space onto itself.

What happens when the forces acting on the particle are randomly fuc-
tuating? The evolved phase point would also fluctuate; and the only way
to specify the final state is to describe the probability for various points in
phase space (Bachelier 1900, Einstein 1905). In any particular realization
of the motion there would be a final specific phase point but there is no
way to predict it; rather the predictable quantity is the probability distri-
bution. This is the quantity that evolves according to a definite law. Since
now the final state is a probability distribution in phase space, can we con-
sider a probability distribution over phase space as the generic state (Segal
1947, Haag and Kastler 1964)? The canonical transformations that bring
about Hamiltonian time evolution would now be viewed as the evolution
of the probability distribution. For a canonical evolution, the probability
distribution over the phase space variables behaves as a scalar field:

f

w=uw; p=p p() =pWw). (1.1)
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The case of a fluctuating force acting on the system is more complicated;
it depends on the statistical distribution of the interactions. In particular,
a “pure” initial state which is concentrated on a phase point can become
a smooth distribution corresponding to a “mixed” statistical state. For
a Hamiltonian evolution, the mappings of phase point to phase point as
well as of the density distribution are invertible — there is no irreversibility.
This way of viewing statistical states of a classical dynamical system (Segal
1947, Haag and Kastler 1964) is in contrast to the popular view that the
probability distribution reflects our ignorance of the phase point and that
any particle will have a definite position and a definite momentum. While
every realization can be a pure state, these pure states do not have a definite
evolution. Realizations are pure but the distributions are the entities which
evolve according to a well-defined law.

We must also recognize that even the best measurements provide small
patches of phase space, and even with a Hamiltonian evolution such a phase
patch can spread into a long-tentacled octopus shape. So “almost pure”
states can become pretty much mixed up. On the other hand, the prob-
ability distributions have a well-defined evolution law, no matter whether
the evolution is Hamiltonian or not. Such a description can incorporate
irreversible evolutions (Prigogine 1997).

Probability distributions are non-negative measures on phase space and
form a convex set (Segal 1947, Haag and Kastler 1964). The distribution

p(w) = p1(w) cos? © + py(w) sin? © (1.2)

is an admissible distribution provided p;(w) and p;(w) are admissible dis-
tributions. The extremal states are the states whose distributions are con-
centrated on individual phase points.

Recall that phase space has a symplectic geometry and that, therefore,
there is no intrinsic notion of “distance” between two distinct phase space
points (Sudarshan et al. 1961, Sudarshan and Mukunda 1974). But there
are no guarantees that “nearby” states evolve into “nearby” states, however
the notion of “nearness” is defined. The octopus-like phase distribution
evolving from a phase patch is evidence of this behavior. But this is not
an irreversible evolution, since retracing the final distribution to the initial
regular patch is a Hamiltonian evolution, and if we go back further the
regular patch would be seen to have evolved from an octopus-like irregular
patch. Of course, this does only apply for a reversible Hamiltonian evolution
and not for stochastic evolutions.

Though we have commented on Hamiltonian classical systems so far,
the concept of distributions applies equally for dynamical systems in a
generic sense. For example, if we have a finite set of phase points, only the
generic state is a probability vector whose elements sum up to unity. The
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evolution maps are now stochastic matrices (Ramakrishnan 1959), and the
only reversible evolutions are permutations. Hence, there are no continu-
ous reversible evolutions in time for such systems. The generic stochastic
evolution is a contraction map with limit states toward which the map
converges. Even “pure” states which are concentrated on a specific phase
point converge to “mixed” states. Given a generic state of such a system,
we could retrace its evolution for a finite time. At that time the inverse
image is a statistical state which cannot be traced back any further unless
the non-negativity of the elements of the probability vector is violated.
The dynamical evolutions form a convex set. If the map is

p(w) = A{p(w)}

then
A =cos? @A +sin? O A, ;

that is,
A{p(w)} = cos? O A; {p(w)} + sin? © 4, {p(w)}

is also an admissible stochastic evolution. For stochastic matrices this im-
plies that the conditions

Ajr >0 ZAj_k =1

are preserved by such convex combinations. The possibility of a measure-
ment of all dynamical variables to arbitrary accuracy enables us to view
the extremal states as probability distributions concentrated on a point in
phase space. If this is not true, i.e., if the algebra of dynamical variables
is non-Abelian, then the states can no longer be such concentrations (Se-
gal 1947, Haag and Kastler 1964), nor need the distributions be pointwise
positive over the phase space. For a canonical quantum system, the Wigner-
Moyal distribution (Wigner 1932, Moyal 1949) and the diagonal coherent
state distribution (Sudarshan 1963, Mehta and Sudarshan 1965) are not
non-negative, nor are the extremal distributions always concentrated at
phase points.
For quantum systems with a discrete set of states, the kinematic charac-
terization of a state is given by a non-negative matrix of unit trace. These
- characterizations form a convex set, the extremal states being projections
, of rank one. The dynamical evolution must map the corresponding matrix
. into a matrix of the same set. We can now have reversible non-trivial evolu-
3 | tions corresponding to unitary transformations of this matrix. In addition,
t l there are also the stochastic evolutions, which are irreversible.
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2. Quantum Kinematics, Convex Sets of States

The generic state of a quantum system is specified by its density distribution
which may be viewed as a linear non-negative normalized number-valued
linear functional (Segal 1947, Haag and Kastler 1964; singular linear func-
tionals are used in Sudarshan (1963) and in Mehta and Sudarshan (1965))
on the operators. In a more restrictive form, in which a state is identified
as a trace class operator (von Neumann 1955) in the Hilbert space, it has
the canonical decomposition

00 - (s
P = chﬂ)n?ﬂ’n; cn >0 ch =1 (21)
1 1

with :
b=, (2.2)

The set of density distributions can be enlarged provided the dynamical
variables for which expectation values are sought are restricted. Conversely,
if the set of density distributions is restricted a wider set of dynamical
variables may be constructed.

The conditions of positivity and normalization still allow us to form
normalized convex combinations:

p = p cos® 0 + p, sin?6 . (2.3)

They do not form a vector space. For several purposes including that of the
stochastic dynamics of density distributions, it is advantageous to consider
the vector space generated by the density distributions. The additional
distributions so obtained may not satisfy either positivity or normalization,
or both. We will see that metastable (decaying) “states” are realized by such
pseudodensity distributions.

Given the convex set of density distributions, we could seek the bound-
ary elements and, more specifically, the generating extremal elements. The
latter are those density distributions whose (normalized) convex combina-
tions generate all density distributions but which themselves have no non-
trivial decomposition. Trace class operators in Hilbert space are a compact
set under the Hilbert-Schmidt norm and the extremals are one-dimensional
projections. For more general definitions of the density distributions, it is
necessary to investigate the situation case by case.

If the dynamical variables undergo a unitary transformation, their ex-
pectation values change. This is equivalent to a linear transformation on
the density distributions:

pu(A) = p(UAU) . (2.4)

L Y
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If the unitary transformations concerned form a group, then the linear
transformations

o= pu (2.5)

furnish a realization of the same group. On the other hand, if we consider the
linear transformations on the density distribution we have new possibilities.
This is particularly the case for time evolutions. For simple Hamiltonian
systems there is a one-parameter group of transformations on the density
distributions, but we have the more general possibility of non-invertible
dissipative transformations. Whenever such a dissipation is involved the
inverse transformations cannot act on all density distributions. Instead of a
time translation group the best we can obtain is a semigroup of dissipative
evolutions. In either case we refer to the generator of the group or the
semigroup as the Liouvillean. :

The generic time evolution is a subject of stochastic dynamics (Sudar-
shan et al. 1961) and has been systematically studied for decades (Davies
1969, 1970, 1971). The special case of the relaxation of spin systems in an
external magnetic field was studied in terms of the Bloch equations half
a century ago (Lindblad 1975, Gorini et al. 1976, Gorini et al. 1978). But
the convex set of dynamical maps has an intricate structure even for 2 x 2
density matrices.

One way of arriving at stochastic dynamics is by considering the system
as being embedded in a larger system with a time translation group and
then contracting out the extraneous degrees of freedom. When one does
this one arrives at a subclass of stochastic dynamical maps, namely those
of the completely positive type. Conversely, given a completely positive
dynamical map we can realize it constructively in terms of the contraction
of an extended Hamiltonian time translation (Bloch 1946).

Stochastic dynamics thus involves a sense of time and thus a breaking of
time symmeiry. In the contraction procedure the time symmetry breaking is
explicit. It has been of continuing interest for more than a century whether
the breaking can occur spontaneously, without any explicitly asymmetric
procedure and without any restriction on the initial states. On the other
hand, if the dynamical laws are time symmetric it is to be expected that
the time reversed sequence of states corresponds to a time reversed semi-
group. What, then, selects the forward semigroup for time evolution? In
other words: what is the ingredient implicit in the dynamics or involved
in the choice of physical states that assures the time symmetry breaking
second law of thermodynamics? With the increasing recognition of the role

' of deterministic chaos and the relevance of the Poincaré catastrophe for
I large Poincaré systems the simple objections of Loschmidt and Zermelo to
I Boltzmann’s H-theorem appear to be less compelling.
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This paper is an attempt to clarify this issue by a careful characteriza-
tion of the various families of states, of the varieties of dual pairs of states
and dynamical variables. It appears from this analysis that states exhibit-
ing dissipation and hence breaking time symmetry are to be selected from
an extended set of states. There are the time reversed states which ex-
hibit negative dissipation and, hence, are not acceptable as physical states
obeying the second law of thermodynamics.

3. Stochastic Quantum Dynamics

For a finite dimensional system, the density distributions are non-negative
density matrices of unit trace:

p#0; Trp=1; dimp=N. (3.1)

The extremal generating elements of the convex set of density matrices are
projections of rank one:

p=Ty=yp; b=y (32)

There is an infinite number of such extremal elements. For a time-indepen-
dent (Hermitian) Hamiltonian H, the time evolutions are given by a unitary
one-parameter group:

p(t) = exp (—iLt)p = g e PeuH- (3.3)

Here, L is the Liouville superoperator

Lp=Hp—pH. (3.4)
A much more general evolution is given by a parametrized map:
= A(t)p; Pra(t} = zAra.r"a’(t) Prigt - (35)
s *

Since the properties of a density matrix must be preserved by the mapping,
we have
Z Arr.r‘s’ = Opfg'y Asr,s’r’ = A:s,r‘s’ v {36)
r
If we define the new N2 x N2 matrix B with elements
Brr",aa" v Ars.r’a’ 3 (37)
then the properties of A may be used to deduce

Butar =Blyraws Y Braze =8py . (3.8)
T

.
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If the matrix B is non-negative, we say that the dynamical map p — 4p
is strictly positive. Not all maps need be strictly positive (Sudarshan 1985):
the simplest not strictly positive map is the map

p—rp*. (3.9)

In all cases, since B is Hermitian and finite-dimensional it can be diago-
nalized. For strictly positive maps all eigenvalues are non-negative. In this
case we obtain

p= 3 V(wpViu) Y viwvie =1, (3.10)

n

where the sum over 4 in general runs from 1 to N2, The dynamical maps
themselves form a convex set since

B = By cos? ¢ + By sin® ¢ (3.11)

is an acceptable map if By and Bj are. If both By and B, are strictly
positive, so is B. The question naturally arises how to find all generating
extremal elements of (i) all dynamical maps and of (ii) all strictly positive
dynamical maps. The first problem is very complicated and has been done
completely only for N = 2 (Choi 1972, 1974). For NV > 2 we know many
extremal maps like unitary, antiunitary, and “pin” maps but a complete
characterization is still missing.

For strictly positive maps, such a complete characterization is available.
The extremal cases may be separated into families of rank R, where1 < R <
N. The case R = 1 corresponds to unitary maps while R = N corresponds
to the “pin” maps. Moreover, we have a simple construction algorithm for
finding all the extremal maps.

The strictly positive maps are obtained by a unitary evolution of an
extended system — consisting of the N-dimensional system of interest and
an auxiliary R-dimensional system — which is then contracted by taking
the partial trace with respect to the auxiliary system. Moreover, it can be
shown that any strictly positive map may be displayed as a contraction of
a rank one map of an extended system.

In this context we note that these maps can be multiplied by performing
them in sequence. The result is again a dynamical map. The dynamical
maps therefore form a forward semigroup. In particular, the strictly positive
dynamical maps form a forward semigroup. However, these maps are in
‘general not invertible to form a group: they take the set of density matrices
‘into indefinite matrices (of unit trace!).

' Given a unitary map we can consider it being generated by a Liouvillean
|derived from a Hamiltonian. We can then speak of a continuous group with
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a generator £ and ask for a continuous parameter semigroup for the generic
semigroup of completely positive maps. In view of the fact that any such
map can be obtained by contraction of a unitary map, we may look for
clues to the structure of the generator of a dissipative semigroup (Petrosky
and Prigogine 1993, 1988) in such a procedure. By expanding the unitary
matrix to second order (where dissipation starts to play a role) we get
. (it) 2

p—p—itlH,pl + 5 [H([H ]+ (3.12)

Applying it to the extended system and then taking the partial trace, we -

obtain
p— p—it[H, p] + it [La, [Lg,p]] , (3.13)

It is possible to show that this is the generic generator of a completely
positive semigroup. It is noteworthy that for a finite-dimensional system
there is no self-adjoint Hamiltonian which could lead to dissipation for an
isolated system and for which the Liouvillean eigenvalues are the differences
of the Hamiltonian eigenvalues. But if it is coupled to an auxiliary finite-
dimensional system the contraction map can exhibit dissipation (Sudarshan
1985). In order to obtain the time evolution as a continuous one-parameter
semigroup we may have to take limiting cases of weak coupling and scaling
of time (Gorini et al. 1976, 1978).

When the number of dimensions of the vector space becomes denumer-
ably infinite but the Hamiltonian has still a discrete spectrum the situation
is not changed dramatically. The only essential change is that there are dy-
namical maps of arbitrarily high rank which cannot only be obtained from
unitary but also from isometric operators in the extended space.

4. Liouville Dynamics with Continuous Spectrum

The Liouvillean dynamics of a system with a continuous spectrum furnishes
richer possibilities. If v is a point in the continuous spectrum, 0 < v < oo,
then the density matrix may be parametrized by vy, vo:

Hp(n,r) = npn, ),
p(vi, n)H = wyp(1n, 17). (4.1)
Then
Lp(v,v2) = (11 — v2) p (11, 1) , (4.2)

and we can relabel the density matrix in the form

p(v;E}Ep(E—{-%u,E-—%u); 2E<v<2E. (43
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The unitary time evolution is

e (1 E) = e (v E). (4.4)

The trace is invariant under this evolution,

T (v ) = [ dE p(0; ), (4.5)
and the positivity is preserved:

PWiE) 20 — e p(; B) 2 0. (4.6)

This is equivalent to the statement

o0 ifoa . 1 1
/ B S (E+ iv) f (E—- §u) dEdv>0. (47)
For any energy F or any finite range of energies 0 < E < Ej the time
dependent density matrix is an entire function of ¢ and always obeys a
group rather than a semigroup. But under suitable conditions, the survival
probability

P(t)

I

e (06p) = [ [ pl-vi B)e™ plv; E) dw dE

f f ot (v E)e™ p(v; E) dv dE (4.8)

may exhibit appropriate exponential behavior. Clearly, P(t) is real and
bounded by unity.
Since the density distribution p may be expressed in the form

p(v1, v2) = D ratha(i1)¥h(v2) (4.9)
[+3
with 0 € vy, 1p and 0 < ry < 1, it follows that

(e—iﬁtp) () = 3 rae T g ()t (1)

Il

T Palvn) e 2t (gba(vz)e‘i“”)T = (4;30)

[+3

Hence, the survival probability has the decomposition

2
, @I

P(t) =S arlBy(t); Palt) = 1 [T wwr e pav)
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so that Py(t) are the absolute values squared of functions of ¢ analytic in
the lower half plane. Then, we have by the Paley-Wiener theorem:

|[ log P, (t)

el ' <oo. ' (4.12)

This is not possible if the convex sum of those functions decreases expo-
nentially with ¢ for ¢ > 0. This is a slight generalization of a result derived
four decades ago by Khalfin (1958).

At this stage it will be useful to classify the kinds of density distribu-
tions that we may consider, their analytic continuations, and the extension
of the set of density distributions. Before going into this, we note that, given
any set of dynamical variables, we may consider the density distributions
as their duals. If we consider too large a class of distributions we restrict
the set of observables and vice versa. Finally, if we consider analytic con-
tinuations of the dynamical variables, the density distributions themselves
should be analytically continued initially (Kapur and Peierls 1938, Hu 1948,
Sudarshan et al. 1978, Parravicini et al. 1980). The dual correspondence
should be maintained.

5. Varieties of Statistical State Spaces

Given the density distribution p(v; E), the time evolution can be displayed
as

(e71%%p) (v B) = e~ p(v; E) , (5.1)

and the survival probability can be written in the form

P(t) = / dE [ "0 (1, ) p(v; E) . (5.2)

The integration over the finite segment —2F < v < 2F may be deformed
to run along some path in the complex plane provided the function p(v; E)
is analytic in v in a suitable domain in which the new open contour C from
—2F to 2F lies:

P) = f dE P(,E) ,
P(t,E) = f p* (2", B) e *p(z,E) dz . (5.3)
c
We can now define various spaces associated with density distributions
p(z, E). Let us start with noting that the density distributions constitute

a convex set, not a vector space. We can, however, relax the positivity
condition and define the vector space spanned by the density distributions.

REIBE PR
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We distinguish the following spaces:

1. the space B of integrable distributions where the v integration extends
over the bounded range —2F < v < 2E;

2. the space C of square integrable (and integrable) distributions (this is
the analog of the classical Koopman phase space densities);

3. the space D of distributions which are boundary values of functions
analytic in a domain providing the analytic continuations for complex
contours in the variables v and E (where the E integration extends
from 0 to oo);

4. the space £ of distributions where the variable E extends from —co to
+00;

5. the space F of distributions analytic in a half plane for v (except for an
essential singularity at infinity) and suitably analytic in the variable
E, so that we can develop a forward semigroup in time;

6. the space A of distributions analytic in a half plane for v and suitably
analytic in the variable F.

It is clear that these spaces are different. The space C contains the space B3,
the space .4 is contained in the space F, and the space B is contained in the
space £. As sets, D and B are dense in each other but there are elements
in B which have no counterpart in D.

For an isolated system the total energy E is bounded from below, but
Jor a system which is open to dynamical interaction with other systems this
may not be an essential requirement. It is only under this provision that
the spaces £, F, and A are relevant.

A piecewise analytic function or any general measure which belongs
to the space can be arbitrarily closely approximated by boundary values
of analytic functions. Similarly a distribution along a complex contour in
C can be approximated arbitrarily closely by functions in B though there
is no one-to-one correspondence between the vectors (Sudarshan 1992). A
specially interesting case is the complex delta distribution which assigns,
to a function representing a vector in the dual space which is analytic in a
domain containing the particular complex point, the value of the function
at the complex point. There is no wector in B or in € which corresponds
to this vector, but in & there is such a vector. This vector in & would
be appropriate for describing the simplest metastable excitations (see next
section).

If we take a physical state in D and analytically continue it, we can
consider it as a function along a complex contour together with one or more
'isolated poles (or, more generally, branch cuts). The pole terms control the
‘behavior of the survival probability but they are always accompanied by
'a background integral. This background integral is essential: it reproduces
|the correct behavior at short (Zeno) times and long (Khalfin) times. An
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isolated pole by itself would not have a corresponding state in the space D
of physical states.

In the space F the situation is quite different. There exist states in
F which correspond precisely to a discrete complex point (or points). For
a single complex point these are the familiar Gamow-Breit-Wigner states
with a unique exponential dependence of the survival probability. These
correspond to unique vectors in F. The correspondence between F and its
analytic continuation is a correspondence of complete spaces, not merely
dense sets.

A special subset of these functions is analytic in an entire half plane.
Such functions constitute the Hardy class functions with many interesting
properties and are often taken to represent nascent metastable states. But
the Hardy class property is not preserved by time evolution since

o(v; E) = e p(v; E) (5.4)

has an essential (ezponential) singularity at infinity. So after any finite time
has elapsed, a nascent state evolves into a non-Hardy class function. These
non-Hardy class functions are labeled by the index of exponential growth
at infinity.

6. Need for Extended Space: Breaking of Time Symmetry

If the states having a purely exponential survival probability are to be
included as natural (“physical”) states, the spectrum of energies E has to
be extended from 0 < E < co to —oco < E < oo. This leads to the spaces
£ and F of functions which are the boundary values of analytic functions,
analytic in a half plane except, perhaps, for an exponential type singularity
at infinity. The extension of the energy spectrum from 0 < E < 00 to
—oo < E < oo is equivalent to lifting the restriction

-2E<v<2E (6.1)

and allowing the v integration to run from —oo to +oc0. So if the survival
amplitude

PO = [ [ pwiBye ot (vi B) dvaE (6:2)

is calculated for positive and negative times, we will get two distinct func-
tions. For t > 0, e™*¢ is a convergence factor for the lower half plane and
an exponential increase for the upper half plane. Hence,

P(t) = [_:dE f_c:o dv e""*p(v; E) p* (v*; E) (6.3)
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can be considered as a closed contour integration where the integration in
the lower half plane is closed by an infinite semicircle whose contribution
vanishes. The result is, then, :

Pt) = /_ng-zm S p(a B E) e, (6.4)

Residues in the
upper half plane

while for ¢ < 0:
PU)=[ dE-ami Y (nB) (LB (65)

Residues in the
upper half plane

In particular, if there are no poles in the upper half plane then
Plj=X ape ™, 4L0; ‘ (6.6)

For the density functions in the extended space JF, with no poles in the
lower half plane but poles in the upper half plane, P({) is exponentially
decreasing with |t| for the past (¢ < 0).

These two classes of functions are disjoint except for the constant func-
tion, but functions constant in » lead to an unphysical survival “probabil-

-4 n

1ty

P(ty=14§(t). (6.7)
In the extended space F there are thus two disjoint sets of states. The
forward evolving states with

1> P(t) ="Tx (p(t)p(0)) >0, t>0, (6.8)

are the states consistent with the second law of thermodynarmics. The sec-
ond set is a time reversed set of backward regressing states with

1> P()>0, t<0. (6.9)

These states are not suitable for a system that obeys the second law. The
choice of physical states as forward evolving is the breaking of time symme-
try. It is not dependent upon objective information or the act of isolated
measurements but it is a property of thermodynamically adapted states
and is picked automatically and universally. Open systems must have this
time symmetry breaking if the second law of thermodynamics is regarded
to be generally valid. :

We now consider in detail the correspondence between the states of
.open systems in the space 7 and the states of closed systems in the spaces
IC and D. Given any element of F, we can restrict it to the domain

! —2E<v<2E, 0<E<o0, (6.10)
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and this yields an element of D. However, given an element of D, we cannot
automatically extend it to 7 since analytic continuation to the negative real
axis may not be possible.

Despite this there is a natural splitting of any vector in C or in D into
two vectors in F with ditferent domains of analytic continuation. Given
the function f(v; E) for a vectar in C which vanishes outside the range
—2F < v < 2E, E > 0, we define (Sudarshan 1992)

sy b 2B o TR
o E) = — fww av L2 (6.11)
This integral, if it exists, defines a function for all values of v and is analytic
in the lower half plane. Hence, it is a suitable member of F appropriate for
describing an open system with forward (dissipative) evolution. A compan-
ion state with backward (dissipative) evolution is given by

2E '
B = = f S0 (6.12)
m Jop VvV —v—ie
Clearly,
9(v; B) + h(v; B) = f(v; E) (6.13)
and hence
hMv, E) = —g(v; E) for |v]>2E. (6.14)

The functions g(v; E) obtained here belong to the space A of functions
analytic in the upper half plane, more restrictive than the space 7 admitting
essential singularities of exponential type at infinity. This class of functions
are the Hardy class functions. They are sometimes used to describe the
carresponding states (Rosenblum and Rovyak 1985, Bohm and Gadella
1989).

If f(v; E) behaves like exp(—ivt) at infinity for £ > 0, the definition of
g(v; E) remains unaltered, except that it will also behave like exp(—ivt) at
infinity. These types of behavior are therefore quite appropriate to describe
forward dissipative evolution. The corresponding functions are not in the
Hardy space A but in the space F discussed above.

The behavior of the density distribution is automatic with temporal
evolution. Given p(v; E) at time t = 0, the density distribution function at
time ¢ becomes ‘

pe(v; E) = po(v; E) et (6.15)

which belongs to the space F but not to the Hardy space A. FEach such state
is labeled by a parameter 7 characterizing the rate of exponential growth at
infinity (see next section for more details). This parameter increases linearly
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with time evolution and may therefore be called the age of the state. The
nascent states introduced before correspond to states of age zero.

7. Dynamical Processes and Dissipative Evolution

Our discussion has been focussed on generic systems so far. We have not
yet talked about interactions, scattering, and explicit dissipative evolutions.
Let us now address a generic system with a “total Hamiltonian” H which
may be written

H=Hc+V, (7.1)

where H¢ is isospectral with H and is a simple structure, say a collection
of “free Hamiltonians”. If the states |E,r) are a set of (ideal) eigenstates of
He with degeneracy label r, and if the states |E,r)) are a corresponding
set of (ideal) eigenstates of H, then there would be, by definition of the
isospectral property of H and Hg, a one-to-one correspondence of states
with the same degeneracies. Apart from normalization this correspondence
may be written as:

Z7'E)) = |E)+ (E-Hc+ie) ' V|E))
= [1-(E-He+i97V] |B), (7.2)

where Z is the wavefunction renormalization constant (Sudarshan et al.
1994). We shall omit this factor in what follows. Equation (7.2) can be
formally expanded in a perturbation series

|E)) = |E) +3_{Gc(E)V}" |E); Gg(B)=(E—-He+ie)™ . (7.3)
1

This corresponds to the “in” state appropriate for the initial state of a
scattering process. Choosing the energy denominators with —ie furnishes
the “out” states. Both the solution and the perturbation expansion can
be extended from the Hilbert spaces to the analytically continued spaces
(Sudarshan et al. 1994). No substantial change is needed if the spectrum
condition is relaxed to include arbitrarily large negative energy continua.
Rather than discussing the problem of the correspondence between the
(ideal) eigenstates of H and H¢ we could do the same in terms of (ideal)
density distributions in relation to the Liouville operators £ and Le¢:

LR(v;E)
Lc Re(v; E)

vR(v; E),
vRo(v; E) . (7.4)
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Here, R(v; E) and Rg(v; F) are the (ideal) density distributions

R.(vE) = |E+ %u, ) (({FE — %L’,Sl ,
1
R, (E) = |E+ ur) (E-2vs. (7.5)

2 2

They are related by

@y
R, E) = {I—GC(E+%U+‘!:E)V} X
: -1
X RC{U;E){lﬁGL(E—%U*He)V} .
¥, aE -1
Rout(U;E) = {1—Gc E+§U—IG)V} x
-1
X RC{U;E}{I—GL (E—-;-v—'is) V} . (7.6)

The scattering probability for ideal states is
Pscatt =Tr {Rlutrs(b’: EJ Rinrrs: (Vli E!)} =

1 1 . 1 . 1
= ((E - 5 Y s,out | B — iv", s',in)) ({(E' + Eu", r,in| E + W™ out)) .

(7.7)
But
! 1 : S 1
(8= gsout| B~ v's,in) =6 (B B/~ v+ qv) 8 (5= 5v)
(7.8)
is the scattering matrix. So the scattering probability is given by
1 1
Pscau. = 6(-8 = E;) §{V - U"} Sr3 (E - E L’) 5:,3; (E -+ 5 V) . (79)

With the proper understanding of the adjoints and duals, these consid-
erations do not only apply to the real spectrum representations but also
to analytic continuations. Of course, as long as one deals with the real
spectrum representation, no metastabilities per se occur in the scattering
probabilities. Rather, the resonances manifest themselves by characteristic
“resonant shapes” of the probability distributions. If we want to consider
the role of metastable states and the scattering of metastable excitations
we should consider the analytic continuations which would uncover the
resonant states as members of complete sets of states,

E LS R S S
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The (unnormalized) states |E}) can be normalized by suitable state
sensitive multiplicative changes. When this is done we denote

|E,in)) = Qi [E);  |E,rin)) = QnrslE, s) (7.10)

with Qi,rs as a unitary operator. Then, if F is any invariant for the
Hamiltonian He,

[Fc,Hel =0, (7.11)
then there is an invariant of H given by
F=QFQ!, [FH =0, (7.12)
by virtue of
H = QHcQL. : (7.13)

But there is no guarantee that, if the matrix elements of F are smoaoth
non-singular functions of F, the matrix elements of F' are non-singular
functions. In cases of non-trivial scattering the matrix elements of F will
definitely be singular functions. F and Fg are unitarily equivalent and are
constants of motion for H and H¢, respectively. If H and H share some
symmetry properties, the corresponding operators are regular constants of
motion for both He and H; this is analogous to the traditional constants
of motion for the total Hamiltonian in classical dynamics. But there are
additional constants of motion.

Let us now consider the time evolution. For the Hilbert space, the time
evolution is the exponential of an imaginary multiple of a Hermitian Hamil-
tonian and, as such, it is unitary (norm preserving) no matter whether the
energy spectrum is bounded from below or not. When we generalize to dual
spaces, there is no longer a norm for the state. We must rather consider
the invariance of the scalar product bilinear in the vector of the two dual
spaces. If 1, ¢ are such vectors, we have :

Y — $(t) (1) = pete Mty = gy (7.14)

If H has complex eigenvalues for 1, there are ¢ with the same complex
eigenvalues, and therefore the product of the two remains constant (Sudar-
shan et al. 1978, Sudarshan and Chiu 1993). But it is no longer true that
¥(t) has the same “length” as 1(0): the “length” of a vector is not defined
in dual spaces. But if there were complex eigenvalues of H, then it is clear
that 1(t) can be a complex multiple of 4(0). But ¢(¢) would be the inverse
' multiple of ¢(0).

Similar considerations apply for the spaces spanned by density distribu-
tions. In this case, there is always an invariant state with normalized trace,
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and all the other states are pseudodensities with trace zero. The evolution
is “unitary”, that is, it preserves scalar products between duals.
A measure of this scale change is provided by the survival amplitude

A(t) = $(0) $(t) = ge ' Hhyp . (7.15)

As 1 changes, so does A(t). In particular, if the state 1 is dominated by a
complex pole at z, then the survival amplitude has the dependence

A(t) = A(0) et (7.16)
Whenever Im 2z < 0 for £ > 0, then we have:
[A@®) < |A(0)] . (7.17)

Thus, in this sense, the complex energy state is a decaying state.
From the vectors ¥, ¢ in the dual spaces we can construct pseudodensity
distributions

p=h, o=, (7.18)

which generate dual spaces (Segal 1947, Haag and Kastler 1964). With
these we can calculate the survival probability

P(t) = Tr(op(t)) =Tx (0 e~iHt, eim)
= ((5 e-th,"b) (Ipfeth&f)
=A@ S

Therefore, if we know the survival amplitude, the survival probability can
be computed.

When the states contain a superposition of eigenvectors of H, the be-
havior is given by:

2 (2 - ; 2
P0) = [T beve o — | [ $EW(E) o iBaE . (120

As long as ¥(E) and (IJ(E) are boundary values of functions analytic in the
lower half plane except for poles (or “short” branch cuts), we can evaluate
the integral over E by closing the contour with an infinite semicircle in
the lower half plane (for ¢ > 0). If there is only one pole in the lower half
plane, the entire survival amplitude A is as if there were only one complex
“energy” point eigenvalue contributing to the integral. More generally, A
will be the superposition of several such “energies” and possibly an integral
over them.
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Let us consider the single complex eigenvalue in detail, even though the
discrete complex eigenvalue must be accompanled by associated branch
cuts. The state vector !

zZ —Z

E) = Ny (E = 2)~ 2= 0
Wo(B) = No(B -2 NG=ZF, (7.21)
and its dual .

$o(E) = Ny (E — z*)7! (7.22)
give the survival amplitude for ¢ > O

Al)) = [ do(B) ¢ po(B)IE

i —LEt

B N”/ o

. —2mi 2 —izt __ _—izt

S Nge =g, (7.23)

In this case, the analytic continuation of the wave function vanishes as z~!

at infinity. For £ < 0 we get similarly:
Ap(t) = &t (7.24)

The survival amplitude as a function of ¢ is therefore the join of two distinct
analytic functions, one for ¢ > 0 and another one for ¢ < 0.
Now consider the state
¢:(E) = No(E-z)"le '™
¢:(BE) = No(E—z")"le7'" (7.25)
obtained by a multiplicative transformation. Then the survival amplitude
is
4(t) = N3 [(E-2)" (B - z7)7 e omistap
-9 .
= N} i (7.26)
z—zF
which may be written
Ar(t) = Ag(t+ 1) . ' (7.27)

In other words: the state v, may be thought of as having been created at

" time t = 7. If 7 is positive, we extrapolate, for these stales, the semigroup

for negative values of ¢ such that

gk >0, (7.28)
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This quantity 7 may be called the “age” of the state in the extended space
(Ramakrishnan 1959, Sudarshan 1992).

Having defined the age and the survival amplitude for the states we can
define the age and survival probability for density distributions. Analytic
density distributions in the space F can be chosen so that we can define
the forward semigroup on them. But after the time evolution for any finite
time is considered, the states are no longer in F but are in £. If we denote
a state in F at 7 = 0 by p,(v; E), then

pr(v; E) = e py(v; E) (7.29)

is not in the space F but remains in the space £. For them, the forward
semigroup can be extrapolated to negative values of ¢ such that ¢t 4+ 7 > 0.
These are the metastable states with age 7.

In the preceding discussions we have labeled the density distribution
p(v; E) with the labels appropriate for the total energy and total Liouvil-
lean. In many cases, however, we have a comparison Hamiltonian Hg and
an interaction ¥ such that H is isospectral with H and

H=Hc+V. (7.30)

Then we could have an alternative labeling of the states by ve, Ec appro-
priate to

Il

1
Hep (Ec+ '2*1-’0)»0:

(Ec - % vc) p. (7.31)

pHc

To avoid confusion we use the symbol R for the density distribution labeled
by v, Ec so that
R(ve; Ec) = p(v; E), - (7.32)

with v¢ having the same range as v and E¢ the same range as E. Then

-1
R(v; E) = (1 s (E+ %u) V) Ro ((1 il (E— %u) v)')
(7.33)
It may be that the creation of the state is most simply described in
the comparison Hamiltonian representation Rc. Then the dependence on
the variables v, F is governed by the wave matrix factors preceding and
following R¢. In the special case of the Dirac-Friedrichs-Lee model of a
discrete (metastable) state coupled to a continuum, the resonant complex
pole plus background dependence is immediately realized if the initial state

-1
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is the discrete state of the comparison Hamiltonian with the discrete energy
level chosen to prevent instability, and then by continuing in the “mass”
parameter of the model. The time dependence of the survival amplitude and
survival probability have been studied extensively in the literature (see, e.g.,
Chiu et al. 1997, Chiu and Sudarshan 1990, Sudarshan et al. 1978).

More generally, the wave matrix

QUE)=(1-GE)V)! (7.34)

has an analytic dependence on E. As a consequence, if Ro(v; E) is a simple
function of E and v, then R(v; E) will be analytic in both v and E. The
singularities of the wave matrix in the complex variable of energy reap-
pears in the survival probability. While both the scattering amplitude and
wave matrix depend on both the total Hamiltonian H and the comparison
Hamiltonian He, it is known that only the singularities of the wave matrix
appear in the survival amplitude. The redundant poles of the scattering am-
plitude, if there are any, do not contribute. Anyway, the survival amplitude
depends on both the total Hamiltonian H and the comparison Hamiltonian
He.

Another point to be noted is that when we consider the time evolution,
despite the fact that the (norm)? of the state is not defined directly, we
still can talk of affine scale; that is, whether the state gets multiplied by a
number e'*, Such states do not exist in C but they exist in the extended
space £. They may be realized along the real axis but could equally well
be identified as complex discrete energy states. As a consequence, while
the product of a state and its dual is invariant under time evolution, the
survival amplitude depends on time. For the special state corresponding to
a discrete complex pole, the dependence is purely exponential.
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