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Abstract
In this paper we give an explicit parametrization for all two-qubit density
matrices. This is important for calculations involving entanglement and many
other types of quantum information processing. To accomplish this we
present a generalized Euler angle parametrization for SU(4) and all possible
two-qubit density matrices. The important group-theoretical properties of
such a description are then manifest. We thus obtain the correct Haar
(Hurwitz) measure and volume element for SU(4) which follows from this
parametrization. In addition, we study the role of this parametrization
in the Peres–Horodecki criteria for separability and its corresponding
usefulness in calculating entangled two-qubit states as represented through
the parametrization.

PACS numbers: 03.67.−a, 02.20.−a, 03.65.Ud

1. Introduction

In quantum mechanics the appropriate description of mixed states is by density matrices.
For example, their compact notation makes them useful for describing entanglement and
decoherence properties of multi-particle quantum systems. In particular, two two-state density
matrices, also known as two-qubit density matrices, are important for their role in explaining
quantum teleportation, dense coding, computation theorems and other issues pertinent to
quantum information theory.

Although the ideas behind extending classical computation and communication theories
into the quantum realm have been around for some decades now, the first reference to calling
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any generic two-state system a qubit comes from Schumacher [1] in 1995. By calling a two-
state system a qubit, he quantified the relationship between classical and quantum information
theory: a qubit can behave like a classical bit, but because of the quantum properties of
superposition and entanglement, it has a much larger information storage capacity. It is this
capacity to invoke quantum effects to increase information storage and processing, which
gives qubits such a central role in quantum information theory.

Now, a qubit is just a state in a two-dimensional Hilbert space [2]. If H ∼ C
2 in the vector

space, the unit vectors

|ψ〉 = a |0〉 + b |1〉 (1)

with a and b being complex numbers satisfying

|a|2 + |b|2 = 1 (2)

define, up to a phase, the pure quantum states. In the quantum information theory, the
orthonormal basis {|0〉 , |1〉} is used to represent the bit states 0 (off ) and 1 (on). As pointed
out by Brown [3], the physical representation of these two bit states depends on the ‘hardware’
being discussed; the basis states may be polarization states of light, atomic or electronic spin
states, or the ground and first excited states of a quantum dot.

If the qubit represents a mixed state, which is quite often the case, one should use a
two-dimensional density matrix, which was introduced independently by Landau and von
Neumann in the 1920s (see, for example, the discussion in [4]), for its representation. The
formalism of density matrices allows one to exploit simple matrix algebra mechanisms to
evaluate the expectation value of any physical quantity of the system. More recently, it has
been pointed out by several people (see [2, 5–7], and references within) that the density matrix
representation of quantum states is also a very natural representation to use with regard to
quantum information calculations.

Following this we therefore express one qubit as

ρ = 1
2 (112 + σ · n) (3)

i.e. as a general 2 by 2 Hermitian matrix with unit trace and the positivity condition Tr[ρ] � 0
implying n · n � 1 or ρ2 � ρ. Therefore, these density matrices are the disc D3, whose
boundary ∂D3 = S2 = CP 1 represents the pure states (ρ2 = ρ, or n · n = 1), and which
can thus be characterized by the two angles 0 � θ � π (the latitude) and 0 � φ � 2π (the
longitude) of the sphere S2.

Now, two-state density matrices live in a 3 by 3 Hermitian-matrix space, with CP 2 =
SU(3)/U(2) as a subspace of pure states. Much is already known about these two- and three-
state density matrices, especially when one uses, for example, Euler angle parametrizations
(see [6] for more information). But what is not well known is how the density matrices of larger-
dimensional Hilbert spaces, and thus of multiple qubits, look under such a parametrization.
This paper will make a great deal of progress in remedying this situation by giving an explicit
parametrization of the density matrix of two qubits that is not redundant in the representation
of the corresponding four-dimensional Hilbert space, and at the same time offers the natural
(Bures) volume measure on the set of all two-qubit density matrices. This will be achieved
by starting with a diagonal density matrix ρd , which represents our two-qubit system in some
particular basis, and then performing a unitary (U−1 = U †), unimodular (Det[U ] = 1)

transformation

ρd → UρdU
† (4)

for some U ∈ SU(4), thus describing ρ in an arbitrary basis [6, 8–10]. We should point
out that progress in this direction has also been made in a recent publication by Schlienz and
Mahler [11].
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2. Euler angle parametrization for SU (4)

We begin by giving the Euler angle parametrization for SU(4). Define U ∈ SU(4). Using
the Gell–Mann basis for the elements of the algebra (found in appendix A), the Euler angle
parametrization is then given by

U = eiλ3α1 eiλ2α2 eiλ3α3 eiλ5α4 eiλ3α5 eiλ10α6 eiλ3α7 eiλ2α8 eiλ3α9 eiλ5α10

× eiλ3α11 eiλ2α12 eiλ3α13 eiλ8α14 eiλ15α15 . (5)

The derivation of this result is as follows. We begin by following the work of Biedenharn [12]
and Hermann [13] in order to generate a Cartan decomposition of SU(4). First, we look at the
4 by 4, Hermitian, traceless, Gell–Mann matrices λi . This set is linearly independent and is
the lowest-dimensional faithful representation of the SU(4) Lie algebra. From these matrices
we can then calculate their commutation relations, and by observation of the corresponding
structure constants fijk we can see the relationship in the algebra that can help generate the
Cartan decomposition of SU(4) (shown in detail in appendix A).

We now establish two subspaces of the SU(4) group manifold, hereafter known as K and
P. From these subspaces, there correspond two subsets of the Lie algebra of SU(4), L(K) and
L(P), such that for k1, k2 ∈ L(K) and p1, p2 ∈ L(P),

[k1, k2] ∈ L(K) [p1, p2] ∈ L(K) [k1, p2] ∈ L(P). (6)

For SU(4), L(K) = {λ1, . . . , λ8, λ15} and L(P) = {λ9, . . . , λ14}. Given that we can
decompose the SU(4) algebra into a semi-direct sum [14]

L(SU(4)) = L(K) ⊕ L(P) (7)

we therefore have a decomposition of the group,

U = K · P. (8)

From [15] we know that L(K) contains the generators of the SU(3) subalgebra of SU(4),
thus K will be the U(3) subgroup obtained by exponentiating the subalgebra {λ1, . . . , λ8}
combined with λ15 and thus can be written as (see [8, 9] for details)

K = eiλ3α eiλ2β eiλ3γ eiλ5θ eiλ3a eiλ2b eiλ3c eiλ8χ eiλ15φ. (9)

Now, as for P, of the six elements in L(P) we chose the λ2 analogue, λ10, for SU(4) and write
any element of P as

P = K ′eiλ10ψK ′′ (10)

where K ′ and K ′′ are copies of K.
Unfortunately, at this point in our derivation, we have a U with 28 elements, not the

requisite 15

U = KK ′ eiλ10ψK ′′. (11)

But, if we recall that U is a product of operators in SU(4), we can ‘remove the redundancies’,
i.e. the first K ′ component as well as the three Cartan subalgebra elements of SU(4) in the
original K component, to arrive at the following product [8, 9]:

U = eiλ3α1 eiλ2α2 eiλ3α3 eiλ5α4 eiλ3α5 eiλ2η eiλ10ψ eiλ3α eiλ2β eiλ3γ eiλ5θ eiλ3a eiλ2b eiλ3c eiλ8χ eiλ15φ.

(12)

By insisting that our parametrization must truthfully reproduce known vector and tensor
transformations under SU(4), we can remove the last ‘redundancy’, eiλ2η, and, after rewriting
the parameters, generate equation (5),

U = eiλ3α1 eiλ2α2 eiλ3α3 eiλ5α4 eiλ3α5 eiλ10α6 eiλ3α7 eiλ2α8 eiλ3α9 eiλ5α10 eiλ3α11

× eiλ2α12 eiλ3α13 eiλ8α14 eiλ15α15 . (13)
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For our purposes it is enough to note that this parametrization is special unitary by construction
and can be shown to cover the group by modifying the ranges that follow and substituting
them into the whole group matrix, or into the parametrization of the characters [16].

3. Derivation of the Haar measure and calculation of the group volume for SU (4)

Taking the Euler angle parametrization given by equation (5) we now wish to develop the
differential volume element, also known as the Haar measure, for the group SU(4). We
initially proceed by extending the method used in [8, 9] for the calculation of the Haar
measure for SU(3); take a generic U ∈ SU(4) and find the matrix

U−1 · dU = U−1 ∂U

∂αk

dαk (14)

of left invariant 1-forms, then wedge the 15 linearly independent forms together4. But due
to the 15 independent parameters needed for SU(4), this method is unfortunately quite time
consuming and thus prohibitive. An easier way, initially given in [17], is to calculate the 4 by
4 matrices, ∂U/∂αk (for k = {1, . . . , 15}), and take the determinant of the coefficient matrix
generated by their subsequent expansion in terms of the Gell–Mann basis.

To begin with, we take the transpose of equation (5) to generate

u = UT = eiλT
15α15 eiλT

8 α14 eiλT
3 α13 eiλT

2 α12 eiλT
3 α11 eiλT

5 α10 eiλT
3 α9 eiλT

2 α8

× eiλT
3 α7 eiλT

10α6 eiλT
3 α5 eiλT

5 α4 eiλT
3 α3 eiλT

2 α2 eiλT
3 α1 . (15)

An observation of the components of our Lie algebra subset (λ2, λ3, λ5, λ8, λ10, λ15) shows
that the transpose operation is equivalent to making the substitutions

λT
2 → −λ2 λT

3 → λ3

λT
5 → −λ5 λT

8 → λ8 (16)

λT
10 → −λ10 λT

15 → λ15

in equation (15) generating

u = eiλ15α15 eiλ8α14 eiλ3α13 e−iλ2α12 eiλ3α11 e−iλ5α10 eiλ3α9 e−iλ2α8

× eiλ3α7 e−iλ10α6 eiλ3α5 e−iλ5α4 eiλ3α3 e−iλ2α2 eiλ3α1 . (17)

Whichever form is used though, we then take the partial derivative of u with respect to each
of the 15 parameters. In general, the differentiation will have the form

∂u

∂αk

= eiλT
15α15 eiλT

8 α14 eiλT
3 α13 eiλT

2 α12 · · · eiλT
mαk+1 iλT

n eiλT
n αk eiλT

p αk−1 · · · eiλT
3 α1

= eiλT
15α15 eiλT

8 α14 eiλT
3 α13 eiλT

2 α12 · · · eiλT
mαk+1 iλT

n e−iλT
mαk+1 · · · e−iλT

2 α12

× e−iλT
3 α13 e−iλT

8 α14 e−iλT
15α15u (18)

which, if we make the following definitions:

C(αk) ∈ i ∗ {
λT

2 , λT
3 , λT

5 , λT
8 , λT

10, λ
T
15

}
(19)

and

EL = eC(α15)α15 · · · eC(αk+1)αk+1 E−L = e−C(αk+1)αk+1 · · · e−C(α15)α15 (20)

4 Similarly, one can wedge together the 15 right invariant 1-forms which also yield the Haar measure in question.
This is due to the fact that a compact simply-connected real Lie group has a bi-invariant measure, unique up to a
constant factor. Such a group is usually referred to as ‘unimodular’ [15].
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can be expressed, in a ‘shorthanded’ notation as
∂u

∂αk

= ELC(αk)E
−Lu. (21)

By using these equations and the Baker–Campbell–Hausdorff relation,

eXY e−X = Y + [X,Y ] + 1
2 [X, [X,Y ]] + · · · (22)

we are able to consecutively solve equation (18) for k = {15, . . . , 1}, giving us a set of 4 by
4 matrices which can be expanded in terms of the 15 transposed elements of the SU(4) Lie
algebra with expansion coefficients given by trigonometric functions of the group parameters
αi :

Mk ≡ ∂u

∂αk

u−1 = ELC(αk)E
−L =

∑
15�j�1

ckjλ
T
j . (23)

At this stage, we should illustrate the connection between the Mk and the 15 left invariant
1-forms that we could have used. To begin with we note that

du · u−1 = d(UT ) · (UT )−1 = (dU)T · (U−1)T = (U−1 · dU)T . (24)

Thus the following relationship between equations (14) and (23) holds:(
∂u

∂αk

dαk

)
u−1 =

∑
15�j�1

ckjλ
T
j dαk =

(
U−1 ∂U

∂αk

dαk

)T

. (25)

Therefore we can conclude

U−1 ∂U

∂αk

dαk =
∑

1�j�15

ckjλj dαk (26)

for k = {1, . . . , 15}. So even though we are calculating the right invariant 1-forms for u, we
are really calculating the left invariant 1-forms for U. The important thing to note is that the
ckj do not change5.

Now, the expansion coefficients ckj are the elements of the determinant in question. They
are found in the following manner

ckj = −i

2
Tr

[
λT

j · Mk

]
(27)

where the trace is done over all 15 transposed Gell–Mann matrices [18]. The index k
corresponds to the specific α parameter and the j corresponds to the specific element of the
algebra. Both the k and j indices run from 15 to 1. The determinant of this 15 by 15 matrix
yields the differential volume element, also known as the Haar measure for the group, dVSU(4)

that, when integrated over the correct values for the ranges of the parameters and multiplied
by a derivable normalization constant, yields the volume for the group.

The full 15 by 15 determinant Det[ckj ], k, j ∈ {15, . . . , 1}, can be done, or one can note
that the determinant can be written as

CSU(4) =

∥∥∥∥∥∥∥∥

c15,14 c15,13 · · · c15,1 c15,15

c14,14 c14,13 · · · c14,1 c14,15

· · · · · · · · · · · · · · ·
c1,14 c1,13 · · · c1,1 c1,15

∥∥∥∥∥∥∥∥
(28)

5 The transpose operation on the Gell–Mann matrices only gives an overall sign difference to some of the matrices{
λT

1 , λT
2 , λT

3 , λT
4 , λT

5 , λT
6 , λT

7 , λT
8 , λT

9 , λT
10, λ

T
11, λ

T
12, λ

T
13, λ

T
14, λ

T
15

}
→ {λ1,−λ2, λ3, λ4,−λ5, λ6,−λ7, λ8, λ9,−λ10, λ11,−λ12, λ13,−λ14, λ15}

but these sign changes are augmented by the inversion in the sum over k and therefore cancel out in the final
construction of the determinant that we need. The transpose operation in equation (5) is done only to simplify the
initial evaluation of the expansion coefficients ckj .
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which differs only by an overall sign from Det[ckj ] above, but which also yields a quasi-block
form that generates

CSU(4) =
∥∥∥∥O D

A B

∥∥∥∥ (29)

where D corresponds to the 9 by 9 matrix whose determinant is equivalent to dVSU(3) · dα15

[8], B is a complicated 6 by 9 matrix, and O is a 9 by 6 matrix whose elements are all zero.
Now the interchange of two columns of an N by N matrix yields a change in sign of the

corresponding determinant, but by moving six columns at once the sign of the determinant
does not change and one may therefore generate a new matrix

C′
SU(4) =

∥∥∥∥∥∥∥∥

c15,8 c15,7 · · · c15,1 c15,15 c15,14 c15,13 · · · c15,9

c14,8 c14,7 · · · c14,1 c14,15 c14,14 c14,13 · · · c14,9

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
c1,8 c1,7 · · · c1,1 c1,15 c1,14 c1,13 · · · c1,9

∥∥∥∥∥∥∥∥
(30)

which is now block diagonal

C′
SU(4) =

∥∥∥∥D O

B A

∥∥∥∥ (31)

and which yields the same determinant asCSU(4). Thus, with this new form, the full determinant
is just equal to the determinant of the diagonal blocks, one of which is already known6. So
only the determinant of the 6 by 6 sub-matrix A which is equal to

A =

∥∥∥∥∥∥∥∥

c6,14 c6,13 · · · c6,10 c6,9

c5,14 c5,13 · · · c5,10 c5,9

· · · · · · · · · · · · · · ·
c1,14 c1,13 · · · c1,10 c1,9

∥∥∥∥∥∥∥∥
(32)

is needed. Therefore the differential volume element for SU(4) is nothing more than

dVSU(4) = Det[ckj ]

= −Det[A] ∗ Det[D] dα15 . . . dα1

= −Det[A] ∗ dVSU(3) dα15 dα6 . . . dα1 (33)

which when calculated yields the Haar measure

dVSU(4) = cos(α4)
3 cos(α6) cos(α10) sin(2α2) sin(α4) sin(α6)

5

× sin(2α8) sin(α10)
3 sin(2α12)dα15 . . . dα1. (34)

This is determined up to normalization (explained in detail in appendix B). Integration over
the 15-parameter space gives the group volume

∫
· · ·
V

∫
dVSU(4) = (192)

∫
· · ·
V ′

∫
dVSU(4) VSU(4) =

√
2π9

3
(35)

which is in agreement with the volume obtained by Marinov [19].

6 The general determinant formula for this type of block matrix is given, without proof, by Tucci in Preprint
quant-ph/0103040.
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4. Two-qubit density matrix parametrization

Using this Euler angle parametrization, any two-qubit density matrix can now be represented
by following the convention derived by Boya et al [5]. As stated by Boya et al, any N-
dimensional pure state can be written as a diagonal matrix with one element equal to 1 and the
rest zero. Different classes of pure states have a different ordering of the zero and non-zero
diagonal elements. Therefore, if one wants to write a mixture of these different pure states,
one must take the following convex sum,

ρd =
∑

i

aiρi (36)

where ρd is now the mixed state, ρi (i running from 1 to N) are the pure state matrices
satisfying Tr[ρiρj ] = 2δij and ai are constants that satisfy

∑
i a

i = 1 and 0 � ai � 1
[5]. Now ai are just the eigenvalues of the density matrix ρd and can thus be parametrized
by the squared components within the (N − 1)-sphere, SN−1. If we now want the most
general mixed-state density matrix in some arbitrary basis, one only has to perform a unitary,
unimodular transformation upon ρd , a transformation that will be an element of SU(N). So
for our two-qubit density matrix ρ we write

ρ = UρdU
† (37)

where ρd is the diagonalized density matrix which corresponds to the eigenvalues of the
3-sphere, S3 [5, 6, 10]

ρd =




sin2(θ1) sin2(θ2) sin2(θ3) 0 0 0
0 cos2(θ1) sin2(θ2) sin2(θ3) 0 0
0 0 cos2(θ2) sin2(θ3) 0
0 0 0 cos2(θ3)




(38)

and U, now an element of SU(4), is from equation (5).
It is instructive to rewrite equation (38) as the exponentiated product of generators of the

Cartan subalgebra that we are using in our parametrization of SU(4); eλ3∗a, eλ8∗b and eλ15∗c.
Unfortunately, indeterminacies with the logarithm of the elements of ρd do not allow for such
a rewrite, so ρd will be expressed in terms of the following sum:∑

1�j�15

wjλj + w0114. (39)

We begin by redefining ρd in the following way,

ρd =




w2x2y2 0 0 0
0 (1 − w2)x2y2 0 0
0 0 (1 − x2)y2 0
0 0 0 1 − y2


 (40)

where w2 = sin2(θ1), x
2 = sin2(θ2) and y2 = sin2(θ3). Now we calculate the decomposition

of equation (40) in terms of the elements of the full Lie algebra. This is accomplished by
taking the trace of 1

2ρd · λj over all 15 Gell–Mann matrices. Evaluation of these 15 trace
operations yields the following decomposition of equation (40),

ρd = 1
4 114 + 1

2 (−1 + 2w2)x2y2 ∗ λ3 + 1
2
√

3
(−2 + 3x2)y2 ∗ λ8 + 1

2
√

6
(−3 + 4y2) ∗ λ15 (41)

where the one-quarter 114 keeps the trace of ρd in this form still unity.
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With equations (37) and (41) we can write ρ completely in terms of the Lie algebra
subset of the parametrization. First, U †, the transpose of the conjugate of equation (5), is
expressed as

U † = e−iλ15α15 e−iλ8α14 e−iλ3α13 e−iλ2α12 e−iλ3α11 e−iλ5α10 e−iλ3α9 e−iλ2α8

× e−iλ3α7 e−iλ10α6 e−iλ3α5 e−iλ5α4 e−iλ3α3 e−iλ2α2 e−iλ3α1 . (42)

Thus equation (37) is equal to

ρ = eiλ3α1 eiλ2α2 eiλ3α3 eiλ5α4 eiλ3α5 eiλ10α6 eiλ3α7 eiλ2α8

× eiλ3α9 eiλ5α10 eiλ3α11 eiλ2α12 eiλ3α13 eiλ8α14 eiλ15α15

×
(

1
4 114 + 1

2 (−1 + 2w2)x2y2 ∗ λ3

+ 1
2
√

3
(−2 + 3x2)y2 ∗ λ8 + 1

2
√

6
(−3 + 4y2) ∗ λ15

)

× e−iλ15α15 e−iλ8α14 e−iλ3α13 e−iλ2α12 e−iλ3α11 e−iλ5α10 e−iλ3α9 e−iλ2α8

× e−iλ3α7 e−iλ10α6 e−iλ3α5 e−iλ5α4 e−iλ3α3 e−iλ2α2 e−iλ3α1 (43)

which, because 114, λ3, λ8 and λ15 all commute with each other, has the following
simplification:

ρ = · · · eiλ3α13 eiλ8α14 eiλ15α15
(

1
4 114 + 1

2 (−1 + 2w2)x2y2 ∗ λ3

+ 1
2
√

3
(−2 + 3x2)y2 ∗ λ8 + 1

2
√

6
(−3 + 4y2) ∗ λ15

)
e−iλ15α15 e−iλ8α14 e−iλ3α13 · · ·

= · · ·
(

1
4 114 + 1

2 (−1 + 2w2)x2y2 ∗ λ3 + 1
2
√

3
(−2 + 3x2)y2 ∗ λ8

+ 1
2
√

6
(−3 + 4y2) ∗ λ15

)
· · · . (44)

Therefore, all density matrices in SU(4) have the following form7,

ρ = eiλ3α1 eiλ2α2 eiλ3α3 eiλ5α4 eiλ3α5 eiλ10α6 eiλ3α7 eiλ2α8 eiλ3α9 eiλ5α10 eiλ3α11 eiλ2α12

×
(

1
4 114 + 1

2 (−1 + 2w2)x2y2 ∗ λ3 + 1
2
√

3
(−2 + 3x2)y2 ∗ λ8

+ 1
2
√

6
(−3 + 4y2) ∗ λ15

)
e−iλ2α12 e−iλ3α11 e−iλ5α10 e−iλ3α9 e−iλ2α8

× e−iλ3α7 e−iλ10α6 e−iλ3α5 e−iλ5α4 e−iλ3α3 e−iλ2α2 e−iλ3α1 (45)

where

w2 = sin2(θ1) x2 = sin2(θ2) y2 = sin2(θ3) (46)

with the ranges for the 12 α parameters and the three θ parameters given by

0 � α1, α3, α5, α7, α9, α11 � π

0 � α2, α4, α6, α8, α10, α12 � π

2
(47)

π

4
� θ1 � π

2
cos−1

(
1√
3

)
� θ2 � π

2

π

3
� θ3 � π

2
.

where the α are determined from calculating the volume for the group (explained in
appendix B) and the θ from generalizing the work contained in [6].

In this manner all two-particle bipartite systems can be described by a ρ that is
parametrized using 12 Euler angles, and three spatial rotations, and which by [20] majorizes
7 One should be able to write only 12 matrices in the parametrization of U since the little group of ρd is generated
by λ3, λ8 and λ15.
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all other density matrices of SU(4)8. Exploitations of this property, related to Birkhoff
theorem concerning doubly stochastic matrices and convex sets [20], allow us to use this
parametrization to find the subset of ranges that generate entangled density matrices and thus
parametrize the convex polygon that describes the set of entangled two-qubit systems in terms
of Euler angles and spatial rotations. In order to do this, we need to look at the partial transpose
of equation (45)9.

5. Reformulated partial transpose condition

To begin with, one could say that a particular operation provides some entanglement if the
following condition holds. Let ρ be a density matrix composed of two pure separable qubit
states. Then the following matrix will represent the two-qubit subsystems A and B,

ρ = ρA ⊗ ρB. (48)

Let U ∈ SU(4) be a matrix transformation on two qubits. Therefore, if

ρ ′ = UρU † (49)

is an entangled state then the operation is capable of producing entanglement [23, 24]. One
way in which we can tell that the matrix ρ ′ is entangled, is to take the partial transpose of the
matrix and see if it is positive (this is the Peres–Horodecki criterion [25, 26]). In other words
we wish to see if

(ρ ′)TA � 0 or (ρ ′)TB � 0. (50)

These relations imply that each of the partial transposes, TA and TB , leaves ρ non-negative. If
either of these conditions is met then there is entanglement.

As an example of this we look at the situation where ρd = ρ and U is given by
equation (5). By taking the partial transpose of ρ ′ and finding the subset of the given ranges
of ρd and U such that ρ ′ satisfies the above conditions for entanglement we will be able to
derive the set of all matrices which describes the entanglement of two qubits. To do this, we
look at the eigenvalues of the partial transpose of ρ ′.

Using the Euler angle parametrization previously given, a numerical calculation of the
eigenvalues of the partial transpose of ρ ′ has been attempted. Under the standard Peres–
Horodecki criterion, if any of the eigenvalues of the partial transpose of ρ ′ is negative then
we have an entangled ρ ′, otherwise the state ρ ′ is separable. As we have mentioned, we
would like to derive a subset of the ranges of the Euler angle parameters involved that would
yield such a situation, thus dividing the 15-parameter space into entangled and separable
subsets. Unfortunately, due to the complicated nature of the parametrization, both numerical
and symbolic calculations of the eigenvalues of the partial transpose of ρ ′ have become
computationally intractable using standard mathematical software. Therefore, only a limited
number of searches over the 15-parameter space of those parameter values that satisfy the
Peres–Horodecki criterion have been attempted. These initial calculations, though, have
shown that all possible combinations of the minimum and maximum values for the 12 α and
three θ parameters do not yield entangled density matrices. Numerical work has also shown
that with this parametrization, one, and only one, eigenvalue will be negative when the values
8 The eigenvalues of the given ρ always satisfy ν1 � (ν2, ν3, ν4) with an additional ordering between the ν2, ν3 and
ν4 eigenvalues. Therefore, one can always find an ordering of the νi that satisfies the majorization condition.
9 It is worth noting that Englert and Metwally [21, 22] have shown that for certain purposes, nine parameters extracted
from the density matrix are enough to describe certain important characteristics of the local and nonlocal properties
of the density matrix. In such cases, one should use the density matrix representation discussed in section 6 which
more clearly expresses their ideas.
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of the parameters give entangled density matrices. This is a verification of Sanpera et al and
Verstraete et al who have shown that the partial transpose of an entangled two-qubit state is
always of full rank and has at most one negative eigenvalue [27, 28]. This result is important,
for it allows us to move away from using the standard Peres–Horodecki criterion and substitute
it with an expression that only depends on the sign of a determinant.

To begin with, the eigenvalue equation for a 4 by 4 matrix is of the form

(λ − µ1)(λ − µ2)(λ − µ3)(λ − µ4) (51)

which generates

λ4 + aλ3 + bλ2 + cλ + d = 0 (52)

where
a = −(µ1 + µ2 + µ3 + µ4)

b = µ1µ2 + µ1µ3 + µ1µ4 + µ2µ3 + µ2µ4 + µ3µ4

c = −(µ1µ2(µ3 + µ4) + (µ1 + µ2)µ3µ4)

d = µ1µ2µ3µ4.

(53)

Now, since the µi are eigenvalues, there sum must be equal to 1. Thus coefficient a in
equation (52) is −1. Therefore, the characteristic equation we must solve is given by

λ4 − λ3 + bλ2 + cλ + d = 0 (54)

which can be simplified by making the substitution τ = λ − 1/4 which yields

τ 4 + pτ 2 + qτ + r = 0

p = b − 3
8

q = b

2
− c − 1

8

r = b

16
− c

4
+ d − 3

256
.

(55)

The behaviour of the solutions of this equation depends on the cubic resolvent

γ 3 + 2pγ 2 + (p2 − 4r)γ − q2 = 0 (56)

which has γ1γ2γ3 = q2 [29]. Recalling that the solution of a cubic equation can be obtained
by using Cardano’s formula [29] we can immediately write the roots for equation (56)

γ1 = −2p

3
− 2

1
3 (−p2 − 12r)

3(2p3 + 27q2 − 72pr +
√

4(−p2 − 12r)3 + (2p3 + 27q2 − 72pr)2)
1
3

+
(2p3 + 27q2 − 72pr +

√
4(−p2 − 12r)3 + (2p3 + 27q2 − 72pr)2)

1
3

32
1
3

γ2 = −2p

3
+

(1 + i
√

3)(−p2 − 12r)

32
2
3 (2p3 + 27q2 − 72pr +

√
4(−p2 − 12r)3 + (2p3 + 27q2 − 72pr)2)

1
3

− (1 − i
√

3)(2p3 + 27q2 − 72pr +
√

4(−p2 − 12r)3 + (2p3 + 27q2 − 72pr)2)
1
3

62
1
3

γ3 = −2p

3
+

(1 − i
√

3)(−p2 − 12r)

32
2
3 (2p3 + 27q2 − 72pr +

√
4(−p2 − 12r)3 + (2p3 + 27q2 − 72pr)2)

1
3

− (1 + i
√

3)(2p3 + 27q2 − 72pr +
√

4(−p2 − 12r)3 + (2p3 + 27q2 − 72pr)2)
1
3

62
1
3

.

(57)
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In terms of our original parameters b, c and d, we have for equation (56)

γ 3 + 2
(−3

8 − b
)
γ 2 +

(
3

16 − b + b2 + c − 4d
)
γ − 1

64 (1 − 4b + 8c)2 (58)

and therefore for its roots

γ1 = −12(−1 + 8b)(−3 + 16b(1 + b) − 16c + 64d) + [−54(1 − 8b)2(1 − 4b + 8c)2 + 6
√

3

×
√

27(1 − 8b)4(1 − 4b + 8c)4 + 16(−1 + 8b)3(−3 + 16b(1 + b) − 16c + 64d)3]
2
3

× (12(−1 + 8b)[−54(1 − 8b)2(1 − 4b + 8c)2 + 6
√

3

×
√

27(1 − 8b)4(1 − 4b + 8c)4 + 16(−1 + 8b)3(−3 + 16b(1 + b) − 16c + 64d)3]
1
3 )−1

γ2 = 6(1 + i
√

3)(−1 + 8b)(−3 + 16b(1 + b) − 16c + 64d)

+ (−3)
2
3 [−18(1 − 8b)2(1 − 4b + 8c)2 + 2

√
3

×
√

27(1 − 8b)4(1 − 4b + 8c)4 + 16(−1 + 8b)3(−3 + 16b(1 + b) − 16c + 64d)3]
2
3

× (12(−1 + 8b)[−54(1 − 8b)2(1 − 4b + 8c)2 + 6
√

3

×
√

27(1 − 8b)4(1 − 4b + 8c)4 + 16(−1 + 8b)3(−3 + 16b(1 + b) − 16c + 64d)3]
1
3 )−1

γ3 = 12(1 − i
√

3)(−1 + 8b)(−3 + 16b(1 + b) − 16c + 64d)

− 3
1
6 (−3i +

√
3)[−18(1 − 8b)2(1 − 4b + 8c)2 + 2

√
3

×
√

27(1 − 8b)4(1 − 4b + 8c)4 + 16(−1 + 8b)3(−3 + 16b(1 + b) − 16c + 64d)3]
2
3

× (24(−1 + 8b)[−54(1 − 8b)2(1 − 4b + 8c)2 + 6
√

3

×
√

27(1 − 8b)4(1 − 4b + 8c)4 + 16(−1 + 8b)3(−3 + 16b(1 + b) − 16c + 64d)3]
1
3 )−1.

(59)

Now, if all three γ solutions are real and positive, the quartic equation (55) has the
following solutions:

τ1 =
√

γ1 +
√

γ2 +
√

γ3

2
τ2 =

√
γ1 − √

γ2 − √
γ3

2 (60)

τ3 = −√
γ1 +

√
γ2 − √

γ3

2
τ4 = −√

γ1 − √
γ2 +

√
γ3

2
.

Substitution of the γ values given in equation (59) into equation (60) creates the four eigenvalue
equations that the standard Peres–Horodecki criterion would force us to evaluate. These are
quite difficult and time consuming, especially when b, c and d are written in terms of the
twelve α and three θ parameters, and can become computationally intractable even for modern
mathematical software. But, from the previous discussion, it is obvious that with only one
eigenvalue that changes sign, the only parameter that needs to be analysed is d. Therefore,
instead of looking at solutions of (60) one may instead look at when d from equation (53)
changes sign10.

Now, the d parameter is the zeroth-order λ coefficient from the following equation:

Det(ρpt − 114 ∗ λ) (61)
10 Wang has proposed a general solution of the eigenvalue problem for the partial transpose of two qubits (see, for
example, [30], equation (22)) in which he states that only one equation need be evaluated to determine entanglement.
Unfortunately, in order to evaluate that one equation ([30], equation (22)), six other equations must first be evaluated
([30], equations (23)–(28)). In terms of the 15 parameters needed to represent the Hilbert space of a two-qubit density
matrix, it is far easier to evaluate the zeroth order λ coefficient d given in equation (54) than to evaluate seven total
equations. Even if one where to substitute and simplify, achieving one equation, its representation in terms of the
15 parameters needed to accurately describe the most general density matrix would still be more complicated to
numerically and symbolically evaluate than the d parameter.
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where ρpt is the partial transpose of equation (45). This is just the standard characteristic
equation that yields the fourth-order polynomial from which the eigenvalues of the partial
transpose of equation (45) are to be evaluated, and which equations (52) and (53) are generated
from. Computationally, from the standpoint of our parametrization, it is easier to take this
determinant than to explicitly solve for the roots of a fourth-order polynomial (as we have
given above). The solution of equation (61) yields an expression for d in terms of the 12 α

and three θ parameters that can be numerically evaluated by standard mathematical software
packages with much greater efficiency than the full Peres–Horodecki criterion11.

6. Conclusions

The aim of this paper has been to show an explicit Euler angle parametrization for the Hilbert
space of all two-qubit density matrices. As we have stated, such a parametrization should
be very useful for many calculations, especially numerical, concerning entanglement. This
parametrization also allows for an in-depth analysis of the convex sets, subsets, and overall set
boundaries of separable and entangled two-qubit systems without having to make any initial
restrictions as to the type of parametrization and density matrix in question. We have also been
able to use this parametrization as an independent verification to Marinov’s SU(4) volume
calculation. The role of the parametrization in simplifying the Peres–Horodecki criteria for
two-qubit systems has also been indicated.

Although one may generate or use other parametrizations of SU(4) and two-qubit density
matrices (see, for example, [31–34]), our parametrization does have the advantage of not
naively overcounting the group, as well as generating an easily integrable Haar measure and
having a form suited for generalization. Such a parametrization should also assist in providing
a Bures distance for the space of two-qubits. Also, although previous work has been done
on evaluating the eigenvalues of the partial transpose of the two-qubit density matrix (for
example, the work done by Wang in [30]), our representation allows the user to effect both a
reduction in the number of equations to be analysed for entanglement onset from 4 to 1 while
still retaining the ability to analyse the little group and orbit space of the density matrix as
well (see, for example, the work contained in [5]). We also believe that this research yields
the following possibilities:

1. The partial transpose condition could be used to find the set of separable and entangled
states by finding the ranges of the angles for which the density matrix is positive semi-
definite.

2. The SU(4) parametrization enables the calculation of the distance measure between
density matrices and then uses the minimum distance to a completely separable matrix
as a measure of separability. Applications to other measures of entanglement [35] are
straightforward.

3. One could use ranges of the angles that correspond to entangled states to find the ranges
of the parameters in the parametrization in terms of the Pauli basis states by using the
following parametrization for the density matrix:

ρ = 1
4 (114 + aiσi ⊗ 112 + 112 ⊗ bjτj + cklσk ⊗ τl). (62)

For more on this parametrization, see [21, 22] and references within.
11 This greater efficiency is based on the observation that the kernel of the mathematical software package
MATHEMATICA ver. 4.0 rel. 3, running on an optimized 1.5 GHz Pentium 4 Linux box with 1 gigabyte of 333 MHz
DDR, was unable to express equation (60) in terms of the 12 α and three θ parameters in a format suitable for encoding
into a C++ program. On the other hand, it was quite easy to obtain all the coefficients of equation (54) in terms of
our Euler parameters, simplify them and encode them into a C++ program for numerical evaluation. Also, since only
one eigenvalue ever goes negative, we have reduced the number of equations to solve from 4 to 1 which is a definite
improvement in calculatory efficiency.
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4. Related to this last question is the question of the boundary between the convex set
of entangled and separable states of the density matrices. For example, one could use
the explicit parametrization to calculate specific measures of entanglement such as the
entanglement of formation for different density matrices in different regions of the set
of density matrices and see which regions of the convex set correspond to the greatest
entanglement of formation. Another possibility is that given the boundary in the σ, τ

form, we could recreate it in terms of the Euler angles.

There are obviously more, but for now, it is these areas that we believe offer the most
interest to those wishing to develop a deeper understanding of bipartite entanglement. Also,
since the methods here are quite general and rely primarily on the group-theoretical techniques
developed here, we anticipate generalizations to higher-dimensional state spaces will be, in
principle, straightforward.
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Appendix A. Commutation relations for SU (4)

We first note that the Gell–Mann-type basis for the Lie algebra of SU(4) is given by the
following set of matrices [18]:

λ1 =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 λ2 =




0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0


 λ3 =




1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0




λ4 =




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 λ5 =




0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0


 λ6 =




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0




λ7 =




0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


 λ8 = 1√

3




1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0


 λ9 =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0




λ10 =




0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0


 λ11 =




0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0


 λ12 =




0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0




λ13 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0


 λ14 =




0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0


 λ15 = 1√

6




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3


.

(A.1)
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Table A1. [k1, k2] ∈ L(K).

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ15

λ1 0 2iλ3 −2iλ2 iλ7 −iλ6 iλ5 −iλ4 0 0
λ2 −2iλ3 0 2iλ1 iλ6 iλ7 −iλ4 −iλ5 0 0
λ3 2iλ2 −2iλ1 0 iλ5 −iλ4 −iλ7 iλ6 0 0

λ4 −iλ7 −iλ6 −iλ5 0 i(λ3 +
√

3λ8) iλ2 iλ1 −i
√

3λ5 0

λ5 iλ6 −iλ7 iλ4 −i(λ3 +
√

3λ8) 0 −iλ1 iλ2 i
√

3λ4 0

λ6 −iλ5 iλ4 iλ7 −iλ2 iλ1 0 i(−λ3 +
√

3λ8) −i
√

3λ7 0

λ7 iλ4 iλ5 −iλ6 −iλ1 −iλ2 i(λ3 − √
3λ8) 0 i

√
3λ6 0

λ8 0 0 0 i
√

3λ5 −i
√

3λ4 i
√

3λ7 −i
√

3λ6 0 0
λ15 0 0 0 0 0 0 0 0 0

Table A2. [p1, p2] ∈ L(K).

λ9 λ10 λ11 λ12 λ13 λ14

λ9 0 i
(
λ3 + 1√

3
λ8 iλ2 iλ1 iλ5 iλ4

+ 2
√

2
3 λ15

)

λ10 −i
(
λ3 + 1√

3
λ8 0 −iλ1 iλ2 −iλ4 iλ5

+ 2
√

2
3 λ15

)

λ11 −iλ2 iλ1 0 i
(
−λ3 + 1√

3
λ8 iλ7 iλ6

+ 2
√

2
3 λ15

)

λ12 −iλ1 −iλ2 i
(
λ3 − 1√

3
λ8 0 −iλ6 iλ7

− 2
√

2
3 λ15

)

λ13 −iλ5 iλ4 −iλ7 iλ6 0 2i
(

− 1√
3
λ8

+
√

2
3 λ15

)

λ14 −iλ4 −iλ5 −iλ6 −iλ7 2i
(

1√
3
λ8 0

−
√

2
3 λ15

)

In order to develop the Cartan decomposition of SU(4) it is helpful to look at the
commutator relationships between the 15 elements of its Lie algebra. In tables A1–A3 we list
the commutator solutions of the corresponding ith row and jth column Gell–Mann matrices
corresponding to the following definitions:

[λi, λj ] = 2ifijkλk fijk = 1

4i
Tr[[λi, λj ] · λk].

Table A1 corresponds to the L(K) subset of SU(4), {λ1, . . . , λ8, λ15} and shows that for
k1, k2 ∈ L(K), [k1, k2] ∈ L(K). Table A2 corresponds to the L(P) subset of SU(4),
{λ9, . . . , λ14} and shows that for p1, p2 ∈ L(P), [p1, p2] ∈ L(K). Table A3 corresponds to
the commutator solutions for the situation when k1 ∈ L(K) and p2 ∈ L(P), [k1, p2] ∈ L(P).

Appendix B. Invariant volume element normalization calculations

Before integrating dVSU(4) we need some group theory. We begin with a digression concerning
the centre of a group [36, 37]. If S is a subset of a group G, then the centralizer CG(S) of S in
G is defined by

C(S) ≡ CG(S) = {x ∈ G | if s ∈ S then xs = sx}. (B1)
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Table A3. [k1, p2] ∈ L(P ).

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12 λ13 λ14 λ15

λ1 iλ12 −iλ11 iλ10 −iλ9 0 0
λ2 iλ11 iλ12 −iλ9 −iλ10 0 0
λ3 iλ10 −iλ9 −iλ12 iλ11 0 0
λ4 iλ14 −iλ13 0 0 iλ10 −iλ9

λ5 iλ13 iλ14 0 0 −iλ9 −iλ10

λ6 0 0 iλ14 −iλ13 iλ12 −iλ11

λ7 0 0 iλ13 iλ14 −iλ11 −iλ12

λ8
i√
3
λ10 − i√

3
λ9

i√
3
λ12 − i√

3
λ11 − i√

3
λ14

i√
3
λ13

λ9 −iλ12 −iλ11 −iλ10 −iλ14 −iλ13 0 0 − i√
3
λ10 −i

√
8
3 λ10

λ10 iλ11 −iλ12 iλ9 iλ13 −iλ14 0 0 i√
3
λ9 i

√
8
3 λ9

λ11 −iλ10 iλ9 iλ12 0 0 −iλ14 −iλ13 − i√
3
λ12 −i

√
8
3 λ12

λ12 iλ9 iλ10 −iλ11 0 0 iλ13 −iλ14
i√
3
λ11 i

√
8
3 λ11

λ13 0 0 0 −iλ10 iλ9 −iλ12 iλ11
i√
3
λ14 −i

√
8
3 λ14

λ14 0 0 0 iλ9 iλ10 iλ11 iλ12 − i√
3
λ13 i

√
8
3 λ13

λ15 i
√

8
3 λ10 −i

√
8
3 λ9 i

√
8
3 λ12 −i

√
8
3 λ11 i

√
8
3 λ14 −i

√
8
3 λ13 0
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For example, if S = {y}, C(y) will be used instead of C({y}). Next, the centralizer of G in G
is called the centre of G and is denoted by Z(G) or Z.

Z(G) ≡ Z = {z ∈ G | zx = xz for all x ∈ G} = CG(G). (B2)

Another way of writing this is

Z(G) = ∩{C(x) | x ∈ G} = {z | if x ∈ G then z ∈ C(x)}. (B3)

In other words, the centre is the set of all elements z that commutes with all other elements in
the group. Finally, the commutator [x, y] of two elements x and y of a group G is given by the
equation

[x, y] = x−1y−1xy. (B4)

Now what we want to find is the number of elements at the centre of SU(N) for N = 2, 3
and 4. Begin by defining the following

Zn = cyclic group of order n ∼= Zn
∼= Z(SU(N)). (B5)

Therefore, the set of all matrices which comprise the centre of SU(N),Z(SU(N)), is
congruent to ZN since we know that if G is a finite linear group over a field F, then the
set of matrices of the form �cgg, where g ∈ G and cg ∈ F , forms an algebra (in fact, a ring)
[37, 15]. For example, for SU(2) we would have

Z2 = {x ∈ SU(2) | [x, y] ∈ Z1 for all y ∈ SU(2)}
[x, y] = ω112 Z1 = {112}.

(B6)

This would be the set of all 2 by 2 matrix elements such that the commutator relationship
would yield the identity matrix multiplied by some non-zero coefficient. In general, this can
be written as

ZN = {x ∈ SU(N) | [x, y] ∈ Z1 for all y ∈ SU(N)} Z1 = {11N }. (B7)

This is similar to the result from [36], which shows that the centre of the general linear group
of real matrices, GLN(�) is the group of scalar matrices, that is, those of the from ωI, where
I is the identity element of the group and ω is some multiplicative constant. For SU(N), ωI

is an N th root of unity.
To begin our actual search for the normalization constant for our invariant volume element,

we first again look at the group SU(2). For this group, every element can be written as(
a b

−b̄ ā

)
(B8)

where |a|2 + |b|2 = 1. Again, following [36] we can make the following parametrization:

a = y1 − iy2 b = y3 − iy4 1 = y2
1 + y2

2 + y2
3 + y2

4 . (B9)

The elements (1, 0, 0, 0) and (−1, 0, 0, 0) are anti-podal points, or polar points if one pictures
the group as a three-dimensional unit sphere in a four-dimensional space parameterized by
y, and thus comprise the elements for the centre group of SU(2) (i.e. ±112). Therefore, the
centre for SU(2) is comprised of two elements.

In our parametrization, the general SU(2) elements are given by

D(µ, ν, ξ) = eiλ3µ eiλ2ν eiλ3ξ dVSU(2) = sin(2ν) dµ dν dξ (B10)

with corresponding ranges

0 � µ, ξ � π 0 � ν � π

2
. (B11)
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Integrating over the volume element dVSU(2) with the above ranges yields the volume of the
group SU(2)/Z2. In other words, the SU(2) group with its two centre elements identified. In
order to get the full volume of the SU(2) group, all one needs to do is multiply the volume of
SU(2)/Z2 by the number of removed centre elements, in this case 2.

This process can be extended to the SU(3) and SU(4) parametrizations. For SU(3)

[6, 8–10] (here recast as a component of the SU(4) parametrization)

SU(3) = eiλ3α7 eiλ2α8 eiλ3α9 eiλ5α10D(α11, α12, α13) eiλ8α14 . (B12)

Now, we get an initial factor of two from the D(α11, α12, α13) component. We shall now prove
that we get another factor of two from the eiλ3α9 eiλ5α10 component as well.

From the commutation relations of the elements of the Lie algebra of SU(3) (see [8], for
details) we see that {λ3, λ4, λ5, λ8} form a closed subalgebra SU(2) × U(1).12

[λ3, λ4] = iλ5 [λ3, λ5] = −iλ4 [λ3, λ8] = 0

[λ4, λ5] = i(λ3 +
√

3λ8) [λ4, λ8] = −i
√

3λ5 [λ5, λ8] = i
√

3λ4.
(B13)

Observation of the four λ matrices with respect to the Pauli spin matrices of SU(2) shows that
λ4 is the SU(3) analogue of σ1, λ5 is the SU(3) analogue of σ2 and both λ3 and λ8 are the
SU(3) analogues of σ3

σ1 =
(

0 1
1 0

)

⇒ λ4 =


0 0 1

0 0 0
1 0 0




σ2 =
(

0 −i
i 0

)

⇒ λ5 =


0 0 −i

0 0 0
i 0 0




σ3 =
(

1 0
0 −1

)

⇒ λ3 =


1 0 0

0 −1 0
0 0 0


 and λ8 = 1√

3


1 0 0

0 1 0
0 0 −2


 .

(B14)

Thus one may use either {λ3, λ5} or {λ3, λ5, λ8} to generate an SU(2) subgroup of SU(3). The
volume of this SU(2) subgroup of SU(3) must be equal to the volume of the general SU(2)

group, 2π2. If we demand that any element of the SU(2) subgroup of SU(3) has similar
ranges as its SU(2) analogue13, then a multiplicative factor of 2 is required for the eiλ3α9 eiλ5α10

component14.
Finally, SU(3) has a Z3 whose elements have the generic form


η1 0 0

0 η2 0
0 0 η−1

1 η−1
2


 (B15)

where

η3
1 = η3

2 = 1. (B16)

12 Georgi [38] has stated that λ2, λ5 and λ7 generate an SU(2) subalgebra of SU(3). This fact can be seen in the
commutator relationships between these three λ matrices contained in [8] or in appendix A.
13 This requires a normalization factor of 1√

3
on the maximal range of λ8 that is explained by the removal of the Z3

elements of SU(3).
14 When calculating this volume element, it is important to remember that the closed subalgebra being used is
SU(2) × U(1) and therefore the integrated kernel, be it derived either from eiλ3α eiλ5β eiλ3γ or from eiλ3α eiλ5β eiλ8γ ,
will require contributions from both the SU(2) and U(1) elements.
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Solving for η1 and η2 yields the following elements for Z3
1 0 0

0 1 0
0 0 1


 −




(−1)
1
3 0 0

0 (−1)
1
3 0

0 0 (−1)
1
3







(−1)
2
3 0 0

0 (−1)
2
3 0

0 0 (−1)
2
3


 (B17)

which are the three cube roots of unity. Combining these SU(3) centre elements, a total of
three, with the 2 factors of 2 from the previous discussion, yields a total multiplication factor
of 12. The volume of SU(3) is then

VSU(3) = 2 × 2 × 3 × V (SU(3)/Z3) =
√

3π5 (B18)

using the ranges given above for the general SU(2) elements, combined with 0 � α14 � π√
3
.

Explicitly,

0 � α7, α9, α11, α13 � π 0 � α8, α10, α12 � π

2
0 � α14 � π√

3
. (B19)

These are modifications of [6, 8–10, 39] and take into account the updated Marinov group
volume values [19].

For SU(4) the process is similar to that used for SU(3),but now with two SU(2) subgroups
to worry about. For SU(4),

U = eiλ3α1 eiλ2α2 eiλ3α3 eiλ5α4 eiλ3α5 eiλ10α6 [SU(3)] eiλ15α15 . (B20)

Here, the two SU(2) subalgebras in SU(4) that we are concerned with are {λ3, λ4, λ5, λ8, λ15}
and {λ3, λ9, λ10, λ8, λ15}. Both of these SU(2) × U(1) × U(1) subalgebras are represented in
the parametrization of SU(4) as SU(2) subgroup elements, eiλ3α3 eiλ5α4 and eiλ3α5 eiλ10α6 . We
can see that λ10 is the SU(4) analogue of σ2

15 and λ15 is the SU(4) analogue to σ3.16 The
demand that all SU(2) subgroups of SU(4) must have a volume equal to 2π2 is equivalent
to having the parameters of the associated elements of the SU(2) subgroup run through
similar ranges as their SU(2) analogues17. As with SU(3), this restriction yields an overall
multiplicative factor of 4 from these two elements18. Recalling that the SU(3) element yields a
multiplicative factor of 12, all that remains is to determine the multiplicative factor equivalent
to the identification of the SU(4) centre, Z4.

The elements of the centre of SU(4) are similar in form to the ones from SU(3);


η1 0 0 0
0 η2 0 0
0 0 η3 0
0 0 0 η−1

1 η−1
2 η−1

3


 (B21)

where

η4
1 = η4

2 = η4
3 = 1. (B22)

15 We have already discussed λ5 in the previous section on SU(3).
16 It is the SU(4) Cartan subalgebra element.
17 This requires a normalization factor of 1√

6
on the maximal range of λ15 that is explained by the removal of the Z4

elements of SU(4).
18 When calculating these volume elements, it is important to remember that the closed subalgebra being used is
SU(2) × U(1) × U(1) and therefore, as in the SU(3) case, the integrated kernels will require contributions from
appropriate Cartan subalgebra elements. For example, the eiλ3α3 eiλ5α4 component is an SU(2) sub-element of the
parametrization of SU(4), but in creating its corresponding SU(2) subgroup volume kernel (see the SU(3) discussion),
one must remember that it is a SU(2) ⊂ SU(3) ⊂ SU(4) and therefore the kernel only requires contributions from
the λ3 and λ8 components. On the other hand, the eiλ3α5 eiλ10α6 element corresponds to a SU(2) ⊂ SU(4) and
therefore, the volume kernel will require contributions from all three Cartan subalgebra elements of SU(4).
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Solving yields the four roots of unity: ±114 and ± i114, where 114 is the 4 × 4 identity matrix.
So we can see that Z4 gives another factor of 4, which, when combined with the factor of 4
from the two SU(2) subgroups, and the factor of 12 from the SU(3) elements, gives a total
multiplicative factor of 192. Integration of the volume element given in equation (34) with
the following ranges

0 � α1, α3, α5, α7, α9, α11, α13 � π 0 � α2, α4, α6, α8, α10, α12 � π

2
0 � α14 � π√

3
0 � α15 � π√

6

(B23)

gives

VSU(4) = 2 × 2 × 2 × 2 × 3 × 4 × V (SU(4)/Z4) =
√

2π9

3
. (B24)

This calculated volume for SU(4) agrees with that from Marinov [19].

Appendix C. Modified parameter ranges for group covering

In order to be complete, we list the modifications to the ranges given in appendix B that affect
a covering of SU(2), SU(3) and SU(4) without jeopardizing the calculated group volumes.

To begin with, in our parametrization, the general SU(2) elements are given by

D(µ, ν, ξ) = eiλ3µ eiλ2ν eiλ3ξ dVSU(2) = sin(2ν) dµ dν dξ (C1)

with the corresponding ranges for the volume of SU(2)/Z2 given as

0 � µ, ξ � π 0 � ν � π

2
. (C2)

In order to generate a covering of SU(2), the ξ parameter must be modified to take into account
the uniqueness of the two central group elements, ±112, under spinor transformations19. This
modification is straightforward enough; ξ range is multiplied by the number of central group
elements in SU(2). The new ranges are thus

0 � µ � π 0 � ν � π

2
0 � ξ � 2π. (C3)

These ranges yield both a covering of SU(2), as well as the correct group volume for SU(2).20

For SU(3), here given as a component of the SU(4) parametrization, we know we have
two SU(2) components (from appendix B),

SU(3) = eiλ3α7 eiλ2α8 eiλ3α9 eiλ5α10D(α11, α12, α13) eiλ8α14 . (C4)

Therefore, the ranges of α9 and α13 should be modified just as ξ was done in the previous
discussion for SU(2). Remembering the discussion in appendix B concerning the central
group of SU(3), we can deduce that α14 ranges should be multiplied by a factor of 3. This
yields the following, corrected, ranges for SU(3)21

0 � α7, α11 � π 0 � α8, α10, α12 � π

2
0 � α9, α13 � 2π 0 � α14 �

√
3π.

(C5)
19 For specific examples of this, see either [12] or [40].
20 One may interchange µ and ξ ranges without altering either the volume calculation, or the final orientation of
a two-vector under operation by D. This interchange is beneficial when looking at Euler parametrizations beyond
SU(2).
21 Earlier representations of these ranges for SU(3), for example in [6, 8–10, 16, 39], were incorrect in that they
failed to take into account the updated SU(N) volume formula in [19].
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These ranges yield both a covering of SU(3), as well as the correct group volume for SU(3).
For SU(4), we have two SU(2) subgroup components

SU(4) = eiλ3α1 eiλ2α2 eiλ3α3 eiλ5α4 eiλ3α5 eiλ10α6 [SU(3)] eiλ15α15 . (C6)

As with the SU(2) subgroup ranges in SU(3), the ranges for α3 and α5 each get multiplied
by 2 and α15 ranges get multiplied by 4 (the number of SU(4) central group elements). The
remaining ranges are either held the same, or modified in the case of the SU(3) element;

0 � α1, α7, α11 � π 0 � α2, α4, α6, α8, α10, α12 � π

2

0 � α3, α5, α9, α13 � 2π 0 � α14 �
√

3π 0 � α15 � 2

√
2

3
π.

(C7)

These ranges yield both a covering of SU(4), as well as the correct group volume for SU(4).
In general, we can see that by looking at SU(N)/ZN not only can we arrive at a

parametrization of SU(N) with a logically derivable set of ranges that gives the correct
group volume, but we can also show how those ranges can be logically modified to cover the
entire group as well without any arbitrariness in assigning values to the parameters. It is this
work that will be the subject of a future paper.
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