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Abstract

Forms of dynamics of open finite level systems is formulated. We give a presentation of stochastic dynamics of such

systems in terms of maps. Completely positive maps are classified and parametrized. If the system is coupled to a

companion system, the contraction of the unitary evolution of the combined system leads to a completely positive map

of the system density matrix. The inverse problem of embedding a stochastic map in a unitary map of the combined

system is posed and solved. This construction is not unique. Dephasing and decoherence stem from the same mecha-

nism. The decoherence induced may be viewed in terms of the distance between the diagonal forms of the initial density

matrix and the final: D ¼
P

i jk
0
i � kij. The unitary factor of the evolution does not contribute to the decoherence so

defined. A model is given for the stochastic evolution of a qubit coupled to a qubit. This yields a completely positive

map for the original qubit. A triangle inequality constraint obtains for the three relaxation times; and it is due to the

complete positivity of the map. Some comments are made about bipartite entangled systems in relation to maps.

� 2002 Published by Elsevier Science Ltd.

1. Stochastic dynamics of open systems

Given an isolated quantum system with a finitely many dimensional state space represented by an n� n density

matrix q with properties

x�rqrsxs P 0; trðqÞ ¼ 1; qy ¼ q

the dynamical evolution is by a suitable unitary transformation

qðt2Þ ¼ Uðt2; t1Þqðt1ÞU yðt2; t1Þ:

If there were a Hamiltonian H which is time independent

Uðt2; t1Þ ¼ expð�iHtÞ:

If the Hamiltonian were time dependent this is modified to read

Uðt2; t1Þ ¼ T exp

��
� i

Z t2

t1

HðtÞ0dt0
��

;

where T is the time ordering. If the system is interacting with external fields which are constant or time dependent, this

result obtains. All that is needed is that the external fields do not manifest any back reaction.

If we were to take into account the back reaction this is no longer possible. The time evolution is still linear. The

most general form of such a dependence is by a dynamical map [1]:
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qrsðt1Þ ! Brr0 ;s0sðt2; t1Þqr0s0 ðt1Þ:

The standard properties of q are met if and only if the following relations hold for B:

B�
rr0 ;s0s ¼ Bss0 ;rr0 ðhermiticityÞ;

RrBrr0 ;s0r ¼ dr0s0 ðnormalizationÞ;

and X
rr0ss0

xr0x�s0y
�
r ysBrs;s0r0 P 0 ðpositivityÞ:

The Hermitian super matrix B is not necessarily positive. If it is, then B is said to be completely positive [2].

z�rr0zss0Brr0 ;s0s P 0 ðcomplete positivityÞ:

2. Completely positive maps: extreme maps

A completely positive map is of the form

qrs !
X
r0s0

frr0 ðmÞf�ss0 ðmÞkðmÞqr0s0 ;

where the f, k are the eigenvectors and the eigenvalues (all positive) of B. We may absorb the eigenvalues into the

eigenvectors and write this in the form

q !
X
r0s0

Crr0 ðmÞqr0s0C
y
s0s � CðmÞqCyðmÞ;

X
m

CðmÞCyðmÞ ¼ 1:

We note that unitary evolution is of this form with one single nonzero eigenvalue:

q ! UqU y; U � Cð1Þ:

Let us now consider noncoherent evolutions:

Start with a coupled system which includes the system of interest S in interaction with another system R. The density

matrices of the combined system may be written in terms of (positively entangled) state vectors Wra in the form

R ¼ Rar;bs:

The unentangled state vectors would be Kronecker products:

Wra ¼ wrua:

More generally

Wra ¼
X

l

sðlÞuaðlÞwrðlÞ;
X

l

s�ðlÞsðlÞ ¼ 1:

The system Rþ S is considered closed and would evolve unitarily

Rar;sb !
X

r0 ;a0 ;s0 ;b0
Vrr0 ;aa0Rr0a0 ;s0b0V �

ss0 ;bb0 :

The state of the system S by itself is given by the density matrix

qrsðt2Þ ¼
X
a

Rra;saðt2Þ ¼
X
a

X
r0 ;s0 ;a0 ;b0

Vrr0 ;aa0 ðt2; t1ÞRr0a0 ;s0b0 ðt1ÞV �
ss0 ;ab0 ðt2; t1Þ:

This can be written in the form

qðt2Þ ¼
X

m

CðmÞqðt1ÞCyðmÞ

with

qðt1Þ ¼ trRfRðt1Þg; qðt2Þ ¼ trRfRðt2Þg;
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provided the initial state of the combined system is completely separable, that is

Rðt1Þra;sb ¼ sabðt1Þqrsðt1Þ:

If we were to work in a basis where sabðt1Þ is diagonal:

sabðtÞ ¼
X
n

knðtÞdandbn; knðtÞP 0;
X

knðtÞ ¼ 1;

the expression for qrsðt2Þ becomes

qrs !
X
n

X
a

X
r0 ;s0 ;a0 ;b0

Vrr0 ;aa0 ðt2; t1Þqr0s0 ðt1Þfknðt1Þda0ndb0ngV �
ss0 ;ab0 ðt2; t1Þ

¼
X
n;a;r0 ;s0

knðt1ÞVrr0 ;anðt2; t1Þqr0s0 ðt1ÞV �
ss0 ;anðt2; t1Þ:

If we put

Crr0 ðm; nÞ ¼ Vrr0 ;mn;

the decoherent evolution may be written

qðt2Þ ¼
X
m;n

knCðm; nÞqðt1ÞCyðm; nÞ;

which is the convex combination of completely positive maps with any fixed value of n. The dynamical maps thus form

a convex set of which the extremal elements are obtained by choosing the density matrix of R itself to be a projection. It

is therefore of interest to study these extremal maps. A map

q !
X
n

CðnÞqCyðnÞ;
X
n

CyðnÞCðnÞ ¼ 1

is extremal if we cannot write it in the formX
n

fcos2 hCð1; nÞqCyð1; nÞ þ sin2 hCð2; nÞqCyð2; nÞg:

So the decoherent dynamical evolution may be separated into classes, depending upon the range of n [3]. The simplest

maps are these extremal maps which are the building blocks of all completely positive maps.

3. Parametrization of extreme completely positive maps

For n ¼ 1, CCy ¼ 1 implies that C is unitary. So we start with the case n ¼ 2.

q ! Cð1ÞqCyð1Þ þ Cð2ÞqCyð2Þ;

Cyð1ÞCð1Þ þ Cyð2ÞCð2Þ ¼ 1:

By a unitary transformation on the state space we could make Cð1Þ diagonal. Let us parametrize this in the form:

Cð1Þ ¼ cos h1 0
0 cos h2

� �
¼ Cyð1Þ;

then

Cð2ÞCyð2Þ ¼ 1� cos2 h1 0

0 1� cos2 h2

� �
¼ sin2 h1 0

0 sin2 h2

� �
:

The solution to this equation is

Cð2Þ ¼ sin h1 0
0 sin h2

� �
Uð2Þ; Uð2ÞU yð2Þ ¼ 1;
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where Uð2Þ is any unitary operator. Thus the most general solutions for rank 2 is:

Cð1Þ ¼ V
cos h1 0

0 cos h2

� �
Uð1Þ; Cð2Þ ¼ V

sin h1 0

0 sin h2

� �
Uð2Þ;

where Uð1Þ, Uð2Þ, V are arbitrary 2� 2 unitary matrices. We shall show below that we need not consider any rank

greater than the dimension of the density matrix.

The classification of all dynamical maps, even for the 2� 2 case is considerably more complicated [4].

For three level systems we can have both rank 2 and rank 3 decoherent evolutions. For rank 3 we have, as for 2� 2

systems,

Cð1Þ ¼ V
cos h1 0 0

0 cos h2 0

0 0 cos h3

0
@

1
AUð1Þ:

Then we have the constraint

Cyð2ÞCð2Þ þ Cyð3ÞCð3Þ ¼
sin2 h1 0 0

0 sin2 h2 0

0 0 sin2 h3

0
@

1
A � S2

with

S ¼
sin h1 0 0

0 sin h2 0

0 0 sin h2

0
@

1
A:

Write

Cð2Þ ¼ SDð2Þ; Cð3Þ ¼ SDð3Þ;

then

SDyð2ÞDð2ÞSy þ SDyð3ÞDð3ÞSy ¼ S2 ¼ SSy

and consequently

Dyð2ÞDð2Þ þ Dyð3ÞDð3Þ ¼ 1:

Now we have already solved this problem for the 2� 2 system,

Dð2Þ ¼ V 0
cos h0

1 0 0

0 cos h0
2 0

0 0 cos h0
3

0
B@

1
CAU 0ð2Þ;

Dð3Þ ¼ V 0
sin h0

1 0 0

0 sin h0
2 0

0 0 sin h0
3

0
B@

1
CAU 0ð3Þ

and hence

Cð2Þ ¼ VSV 0
cos h0

1 0 0

0 cos h0
2 0

0 0 cos h0
3

0
B@

1
CAU 0ð2ÞUð2Þ;

Cð3Þ ¼ VSV 0
sin h0

1 0 0

0 sin h0
2 0

0 0 sin h0
3

0
B@

1
CAU 0ð3ÞUð3Þ:

This procedure could be extended to N � N matrices.
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By making use of the equivalence between CðnÞ andX
m

OnmCðmÞ;
X
n

OnmOnm0 ¼ dmm0 ; Oy ¼ O

we can further simplify this to get sin h1 ¼ 0; sin h0
1 ¼ 0.

For a 3� 3 system, we wish to prove that the extremal maps need to have the number of terms equal to or less than 3.

We have already determined these. An extermal map cannot be expressed as a convex combination of two other maps.

If the CðnÞ are such that there is a nontrivial relation of the formX
m;n

KmnCðnÞCyðmÞ ¼ 0:

Then, consider the two maps:X
m;n

ðdmn � KmnÞCðmÞqCyðnÞ:

Then the original map is the average of these. The only question is whether these two maps are completely positive

maps, that is whether dmn � Kmn considered as matrices in m; n are nonnegative. Since Kmn can be as small as we want (by

scaling) this can be obtained.

So for an extremal map, the matrices CðnÞCyðmÞ should be linearly independent. This requires that for extremal

maps there can be no more than N matrices CðnÞ so that CðmÞCyðnÞ are linearly independent. It may be directly verified
that the generic solutions we have found for N ¼ 2 and N ¼ 3 satisfy this constraint.

The inverse constructon of embedding a stochastic map in the unitary evolution is not unique. Neither the dimension

nor the details of the unitary map of the extended system is unique, claims to the contrary not withstanding! (The

‘‘Kraus’’ terms was introduced by us in 1960!) The CðnÞ are not unique in so far as we have the possibility of making the

linear transformation

CðnÞ ! Mðn; n0ÞCðn0Þ

with Mðn; n0Þ being a unitary matrix, not necessarily unimodular. Further, since no more than N 2 such matrices are

linearly independent this is the largest number of terms in a generic map CðnÞ. We have already shown that this number

may not exceed N for an extremal map.

There is a loss of relative phase information between certain decompositions of the component states. From a pure

state density matrix

q ¼ wwy;

we get, after the stochastic map

q ! q0 ¼
X
n

unu
y
n

with

un ¼ CðnÞw:

Here even the relative phases of un are lost since CðnÞ maybe replaced by eianCðnÞ without changing the map. Thus

stochasticity involves both dephasing and linear combinations of amplitudes.

There exists a method of ‘‘purification’’ [5] which replaces the impure matrix q0 by a pure matrix q00 but this is a
nonlinear transformation even though it is a one-to-one map. This is specified by an arbitrary positive herlmitian matrix

L and

q00 ¼
X
a;b

qðaÞLqðbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½qðaÞL�tr½qðbÞL�

p ; q ¼
X
a

kaqðaÞ; qðaÞqðbÞ ¼ da;bqðaÞ:

This may be also looked on as a phase coherent addition of pure states.

4. Back reaction and stochasticity

We have shown that when the external reservoir R reacts back on the system S, a pure state will evolve into

an impure state. This evolution may be thought of as the phases between components of a state vector becoming
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decoherent. It is not the external (time dependent) reservoir influencing the system that causes decoherence, it is the

reaction of the reservoir. It is also interesting to recognize that the reservoir need not be very large. For an extremal

map, it need be no more than the dimension of the density matrix. So a 2� 2 system coupled to another 2� 2 system

can reproduce any extremal dynamical map. Consider an interaction

H ¼ rjCjksk :

By suitable Uð2Þ transformations on r and s we could render it into the standard form

H ¼ c1r1s1 þ c2r2s2 þ c3r3s3:

Since r1s1; r2s2; r3s3 commute

e�iHt ¼ e�iðc1r1s1Þte�iðc2r2s2Þte�iðc3r3s3Þt ¼ fcosðc1tÞ � ir1s1 sinðc1tÞgfcosðc2tÞ � ir2s2 sinðc2tÞgfcosðc3tÞ � ir3s3 sinðc3tÞg:

Hence

e�iHtr1e
iHt ¼ r1e

2itðc2r2s2þc3r3s3Þ;

e�iHtr2e
iHt ¼ r2e

2itðc3r3s3þc1r1s1Þ;

e�iHtr3e
iHt ¼ r3e

2itðc1r1s1þc2r2s2Þ:

When partial traces are taken with respect to s we get

r1 ! r1 cosð2tc2Þ cosð2tc3Þ etc:

This map therefore corresponds to spin relaxation in the ‘principal directions’ 1, 2, 3. For any fixed t these represent a

contraction map.

5. Dynamical semigroups

The time evolution discussed in the previous section is always a contraction, but these evolutions do not satisfy a

semigroup property though they are contraction maps:

Bðt1ÞBðt2Þ 6¼ Bðt1 þ t2Þ:

But we could consider this evolution for a short time t0 and then recouple S to another copy of R and then contract. This

would lead to an iteration of Bðt0Þ so that after nt0,the evolution matrix is

½Bðt0Þ�n ¼ AðnÞ;

Að0Þ ¼ 1; Aðn1ÞAðn2Þ ¼ Aðn1 þ n2Þ;

thus yielding a discrete semigroup. Such a modality is appropriate for the system encountering one reservoir R1, de-

coupling from it, recoupling to another similar reservoir R2, and so on. For example a system undergoing successive

interactions with a stream of particles would have such a stochastic evolution for times large compared with t0.
For the model of a 2� 2 systems S in successive interactions with a sequence of identical but distinct 2� 2 reservoirs

at intervals t0 the evolution matrix is diagonal in the polarization components:

Bðt0Þ �
1þ~rr:~aa

2

 !
¼ 1

2
f1þ r1a1 cosð2t0c2Þ cosð2t0c3Þ þ r2a2 cosð2t0c3Þ cosð2t0c1Þ þ r3a3 cosð2t0c1Þ cosð2t0c2Þg

which may be approximated by

Bðt0Þ �
1þ~rr:~aa

2

 !
¼ 1

2
1
�

þ ½1� ðc22 þ c23Þt20�r1a1 þ ½1� ðc23 þ c21Þt20�r2a2 þ ½1� ðc21 þ c2s Þt20�r3a3
�

’ 1

2
1
h

þ e�ðc2
2
þc2

3
Þt2
0r1a1 þ e�ðc2

3
þc2

1
Þt2
0r2a2 þ e�ðc2

1
þc2

2
Þt2
0r3a3

i
’ 1

2
1
�

þ e�f1a1r1 þ e�f2a2r2 þ e�f3a3r3

�
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so

AðnÞ 1þ~rr:~aa
2

 !
¼ 1

2
1
�

þ e�inf1a1r1 þ e�nf2a2r2 þ e�nf3a3r3

�
:

The relaxation parameters f1, f2, f3 satisfy the inequalities

f1 þ f2 > f3; f2 þ f3 > f1; f3 þ f1 > f2:

While we have derived this result only for a special model of the interaction, the Complete Positivity of the Kossakowski

semigroup [6] generator leads to the same triangle inequality for the relaxation rates.

For a 2� 2 system the density matrices correspond to solid sphere of unit radius. A map will make a linear

transformation of the sphere into an ellipsoid contained within this sphere. By a suitable rotation we can reduce the

ellipsoid to standard form. These extremal maps can be parameterized as we have have done (or otherwise). In the

example that we sketched above the 1,2,3 axes are the principal axes of the ellipsoid and the ellipsoid has the same

center as the sphere. More generally we can have an inhomogeneous transfer which displaces the center of the ellipsoid.

With 3� 3 systems the density matrices correspond to the product of 2-spheres, S2 � S4. Any density matrix has 8
parameters but by suitable SUð3Þ transformations can be made diagonal. A convenient way of parameterizing is as

follows:

q ¼ 1

3

1þ x� 1ffiffi
3

p y 0 0

0 1þ 2
ffiffiffi
3

p
y 0

0 0 1� x� 1ffiffi
3

p y

0
B@

1
CA

and the two nontrivial invariants are

I2 ¼ x2 þ y2;

I3 ¼
1

3
y2

�
� x2

�
2ffiffiffi
3

p y:

The allowed values of x and y are represented by the interior points of a triangle bounded by

y ¼ �
ffiffiffi
3

p

2
;

xþ 1ffiffiffi
3

p y ¼ 1;

�xþ 1ffiffiffi
3

p y ¼ 1

with vertices ð3=2;�
ffiffiffi
3

p
=2Þ; ð�3=2;�

ffiffiffi
3

p
=2Þ; ð0;

ffiffiffi
3

p
Þ where ðI1; I2Þ ¼ ð3; 0Þ, the same for all three vertices. Any deco-

herent evolution should map all these points into the interior of the triangle, but not linearly.

6. Remarks concerning the extremal density matrices of bipartite systems

Some remarks about entangled systems: The natural evolution by unitary transformations can affect the entangle-

ment and separability. But with a decoherent evolution a pure state of the entangled systems can (and will) become

impure, unless one can neglect the back reaction. When it cannot be neglected the decoherence will manifest itself as an

additional source of degradation of quantum information.

These evolutions are not unitary and they serve to change the eigenvalues of the density matrix, in contrast to a

generic unitary evolution. In particular, a pure state becomes impure. But any linear transformation of the convex set

into itself has at least one fixed point. This is the equilibrium state left invariant by the stochastic evolution. It need not

be the most degenerate state. For example, for the ‘‘pin map.’’

qrs ! q0
rs ¼ ðq0Þrsdr0s0qr0s0

the equilibrium state is q0 and all states are mapped on to it, including the most degenerate state q ¼ 1=N .
A measure of dephasing is the loss of coherence within the density matrix which takes a pure state into mixtures. A

pure state with only one unit eigenvalue is degraded into a mixture with loss of relative phase information. The dif-

ference between the trace of the square of the resultant matrix and unity is a measure of the dephasing. A unitary
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evolution, however complicated, cannot change the eigenvalues of a density matrix. The change in the eigenvalues

under a map would give us a measure of the decoherence suffered by any density matrix. If we need to have a single

parameter, this may be defined by the ‘‘distance’’

D ¼
XN
j¼1

jkj � ljj:

This distance is unaffected by any unitary transformation which forms part of the stochastic map. Once one has reached

equilibrium there is no change in the eigenvalues and hence no distance even when there is a unitary transformation

which keeps changing the specific result of the map.

There is a close connection between dynamical (stochastic) maps and the density matrix of a bi-partite system; and

the tools we have developed for the study of maps can also be used to study bipartite systems of arbitrary finite di-

mensions.

The dynamical maps are specified by the hermitian matrix Baj;bk which is nonnegative for completely positive maps

[1]. The trace of a dynamical map is N rather than 1 for a bipartite density matrix R:

Baj;aj ¼ N ;

Raj;aj ¼ 1:

The mapping matrix satisfies an additional restriction

Baj;ak ¼ djk :

Raj;bk is always nonnegative and has an eigenvector decomposition

Raj;bk ¼
X
r

lðrÞfajðrÞf�bkðrÞ

which reduces to a single term when the density matrix is pure. Both fBg and fRg constitute convex sets which are

generated by their extremal elements. The pure density matrices, R2 ¼ R are the extremal elements. We can go from

any pure denisty matrix to any other pure density matrix by a transformation in SUðNÞ.
The combined density matrix is said to be separable [7] if it can be expressed in the form

Raj;bk ¼
X
r

krq
I
abðrÞ � qII

jkðrÞ; kr > 0;
X
r

kr ¼ 1:

It is of some interest to find the extremal separable density matrices. We do this for a bipartite qubit system.

The most general bipartite qubit system density matrix may be written

R ¼ 1
4
f1� 1þ~aa:~rr � 1þ 1�~bb:~ss þ rj � skCjkg;

where aj, bj, cjk are real parameters. They must satisfy

RP 0:

Such density matrices form a convex set. We could make SUð2Þ � SUð2Þ ‘‘local’’ transformations to put R in a ca-

nonical form:

R ¼ 1
4
f1þ ajrj þ bjsj þ cjrjsjg:

We may use the standard representations

r1 ¼
0 1

1 0

� �
¼ s1; r2 ¼

0 �i
i 0

� �
¼ s2; r3 ¼

1 0

0 �1

� �

to write R as a 4� 4 matrix. When R is pure

R2 ¼ R:

All 2� 2 and 3� 3 minors as well as R itself have zero determinants. In terms of the parameters these imply

ð1� a3Þ2 ¼ ðb3 þ c3Þ
2 þ a21 þ a22;
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ð1� b3Þ2 ¼ ða3 � c3Þ
2 þ b21 þ b22;

ð1� c3Þ
3 ¼ ða3 � b3Þ2 þ ðc1 � c2Þ

2
;

1þ ða1 � ia2Þðb1 þ ib2Þ þ ða1 þ ia2Þðb1 � ib2Þ ¼ ða21 þ a22Þ þ b21 þ b22 þ ðc1 þ c2Þ
2:

These equations imply

a3 ¼ c3b3; b3 ¼ c3a3; c3 ¼ a3b3 � c1c2:

If a3 6¼ 0, it follows that

c3 ¼ �1; b3 ¼ c3a3:

Therefore 1� c3 ¼ 0 and so c1 � c2 ¼ 0 and a3 � b3 ¼ 0. So for a3 6¼ 0, we have the additional restrictions

ð1� a3Þ2 ¼ c23ð1� a3Þ2 þ a21 þ a22;

ð1� b3Þ2 ¼ c23ð1� b3Þ2 þ b21 þ b22:

So

a1 ¼ a2 ¼ b1 ¼ b2 ¼ 0; a3 ¼ �b3; b3 ¼ �1

and

ð1� c3Þ
2 ¼ a23ð1� c3Þ

2 þ ðc1 � c2Þ
2;

c1 ¼ �c2; a23 ¼ 1:

The possible solutions are

c3 ¼ þ1; a3 ¼ þb3 ¼ �1; c1 ¼ c2 ¼ b1 ¼ b2 ¼ a1 ¼ a2 ¼ 0;

c3 ¼ �1; a3 ¼ �b3 ¼ �1; c1 ¼ c2 ¼ b1 ¼ b2 ¼ a1 ¼ a2 ¼ 0:

These relations are equivalent since the local transformations

eir2p=2 and eiðr2þs2Þp=2

transform them into each other.

The other possibility is a3 ¼ b3 ¼ 0 and c3 6¼ 02. Consequently

c3 ¼ �c1c2

1þ c23 ¼ c21 þ c22

so that

c21c
2
2 � c21 � c22 þ 1 � ðc21 � 1Þðc22 � 1Þ ¼ 0:

So the solutions are

c1 ¼ �1 c2 ¼ þ1 c3 ¼ �1;

c1 ¼ �1 c2 ¼ �1 c3 ¼ �1;

which are equivalent by the local unitary transformation eis2p=2.

A third possibility is a3 ¼ b3 ¼ b3 ¼ 0. Then

a21 þ a22 ¼ b21 þ b22 ¼ 1:

Using the determinant of the 3� 3 minor we get

1þ fða1 � ia2Þðb1 þ ib2Þ þ ða1 þ ia2Þðbi � ib2Þgðc1 þ c2Þ ¼ a21 þ a22 þ b21 þ b22 þ ðc1 þ c2Þ
2: ð1Þ
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Reality of ðc1 þ c2Þ requires the restriction
a1 � ia2
a1 þ ia2

¼ b1 � ib2
b1 þ ib2

¼ e2ih:

A unitary transformation

eiðr3þs3Þp=2:

Could make a2 ¼ b2 ¼ 0, and then a1 ¼ �b1 ¼ c1b1. This is equivalent to the case a3 ¼ b3c3; a
2
3 ¼ b23 ¼ 1 by the local

unitary transformation

eiðr2þs2Þp=4:

Thus the extremal elements are of the form

ðAÞ R ¼ 1
4
ð1þ r3Þð1þ s3Þ;

ðBÞ R ¼ 1
4
ð1� r1s1 � r2s2 � r3s3Þ:

The extremal elements of the class (A) are given by

~aa2 ¼~bb2 ¼ 1:

They form an invariant class under a partial time reversal transformation

~rr !~rr; ~ss ! �~ss; ~rr:~ss ! �~rr~ss

and are simply reducible.

R ¼ qI � qII :

The class (B) is not an invariant class under the partial time reversal. The extremal elements of the set of separable

matrices are the six vertices of the octahedron which is obtained by the intersection of the original tetrahedron by its

reflection c1 ! �c1, c2 ! �c2, c3 ! �c3.
There are also two continuous parameter extremal density matrices for which

c3 ¼ þ1; a3 ¼ þb3 ¼ cos h; c1 ¼ c2 ¼ sin h; b1 ¼ b2 ¼ a1 ¼ a2 ¼ 0

c3 ¼ �1; a3 ¼ �b3 ¼ cos/; c1 ¼ c2 ¼ sin/; b1 ¼ b2 ¼ a1 ¼ a2 ¼ 0

and the ones obtained by permutation of the indices 1, 2, 3. These correspond to pure entangled states.

7. Concluding remarks

In this paper, which is really a sequel to the author’s basic paper of 1961 on stochastic dynamics of quantum

mechanical systems, we have introduced the notion of a stochastic map of the density matrices generalizing their

conventional unitary evolution [1]. A probability weighted average of such unitary evolutions is a type of stochastic

map in which both decoherence and dephasing arise. Interference between the various component unitary evolutions

will contribute to (partial) suppression of the off diagonal elements: this is decoherence. Yet this is not the most general

stochastic map. In any such map phase relations are lost which provide dephasing. These two are intimately related.

It is shown that any stochastic map may be viewed as the contraction of a unitary evolution of an extended system.

This extension is by coupling a reservoir system with density matrix s to the primary system with density matrix q by a

generic Hamiltonian. To produce decoherence and dephasing it is not sufficient that the reservoir affects the primary

system with (possibly time dependant) interactions: to produce a stochastic map, the reservoir must react to the primary

system. In the second order this reaction produces ‘‘propogator modifications’’ in the primary system. It is this two-step

self-interaction that leads to decoherence [6].

Not only is such a mechanism capable of producing stochastic evolution of the primary system, but we also show

that it is the only mechanism by ‘‘unfolding’’ the stochastic evolution to a type of unitary evolution of the combined

system of the system of interest and the reservoir. This extension is not unique, not even as to the size of the reservoir. It

is however remarkable that the combined system need only a modest N 2 � N 2 reservoir at most.

Since density matrices form a (compact) convex set the stochastic maps also form a convex set. Those elements

which are not a convex combination of two mappings are called extremal maps. They are the building blocks for any

378 E.C.G. Sudarshan / Chaos, Solitons and Fractals 16 (2003) 369–379



stochastic map. It is shown that the reservoir need have only R6N dimensions to get an extremal map [3,4]. All the

extremal maps can be computed by a simple algebraic process [4] which is illustrated for qubits and qutrits with obvious

generalization to any dimension.

For bipartite systems we have the case of quantum entanglement and quantum separability. The simplest separable

state has its density matrix as the direct product of the reduced density matrices. A convex combination of such simply

separable states is the generic separable state. In contrast, like the singlet state of two qubits, there are states which

cannot be expressed as probabilistic sum of simply reducible density matrics. The generic two qubit system can be easily

expressed in a simple canonical form by local SUð2Þ � SUð2Þ transformations:

q ¼ 1
4
ð1þ~aa:~rr þ~bb:~ss þ CnrnsnÞ:

Any other bipartite density matrix may be obtained by a suitable SUð2Þ � SUð2Þ transformation. The extreme elements
can be determined in terms of the nine parameters separated into two classes each, in turn, labelled by three nonzero

parameters. The parameters that determine the extreme elements form the vertices of a regular tetrahedron. Not all of

the extreme elements are separable. Using the Peres criterion [7] we could show that the nonnegative separable matrices

are bounded by a regular octahedron in appropriate parameters.

From each stochastic map we can construct a semigroup of evolutions. If the stochastic map is completely positive,

the resulting semigroup is also completely positive. Some examples of such a construction [8] is given explicitly. The

generators of the semigroup form a convex cone, with extremal elements being the generators of the cone. The re-

laxation parameters of a finite level system obeying a completely positive semigroup obey certain inequalities. For

relaxation of a qubit we recover the familiar results which imply in particular that in axially symmetric relaxtion the

axial relaxation rate cannot be greater than twice the transverse relaxation rate; a restriction obeyed by all experimental

results.

This paper is an attempt to tie together the work of the last four decades on quantum stochastic processes done

under different notations and different contexts. Many of the ‘‘new’’ results in this field are reproductions of old results

and which appear ‘‘new’’ since the old results are not cited.
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