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I review theories and problems of inconsistencies in the description of higher spin
wave equations.

1. INTRODUCTION

A relativistic particle has as dynamical variables the the energy-momentum,
intrinsics spin, and the mass. Particles belong to irreducible representations
of the Poincaré group (the inhomogeneous Lorentz group). A complete
characterization and the behavior under Poincaré group is known for more
than half a century. In the case of particles with non-zero mass one can
also define a position variable.

Despite this we like to have a covariant description of these particles
to incorporate other physical requirements. The interactions of a relativistic
particle are best described in terms of a covariant amplitude. For example,
the finite mass, spin-1/2 particles can be described by the two component
Foldy–Wouthuysen–Tani representation, which gives a complete and con-
sistent treatment of the coordinates and spin of a free particle.

But when interaction with an electromagnetic field are introduced, the
beautiful results of the Dirac equation are not obtained by the non-covariant
description: instead, one has to introduce a highly non-linear interaction.
Furthermore, when we consider the quantum field theory of finite mass
spin-1/2 particles, there are two physical requirements. The first one



concerns Kirchhoff ’s principle stating that emission and absorption have
to be described by same interaction. This behavior is manifest as ‘‘crossing
symmetry’’ of scattering amplitudes in quantum field theory. The second
principle prescribes the connection between spin and statistics to be either
Fermi–Einstein or Bose–Einstein statistics.

The above requirements are only met if one uses covariant wave
equations for the description of particles. There is a double covariance:
in addition to the wave functions of free particles as representations of
the Poincaré group, the wave amplitudes are also described by means of
covariant wave equations based upon space-time dependent finite dimen-
sional (non-unitary) representations of the (homogeneous) Lorentz group.
We, therefore, use co-variant wave equations; interactions including dual
covariant amplitudes are described by local couplings.

In general, the above wave equations need more than one covariant
amplitude. For example, the (linearized) wave equation for massive spinless
particles involves a five-component field consisting of one scalar field and
a covariant vector field. In order to reproduce the correct mass and spin,
the wave equation must contain supplementary conditions which are not
equations of ‘‘motion.’’ The spin-0 Duffin–Kemmer field is described by
the following set of variational equations:

i“
mf=mfm, i“

mfm=f. (1)

Among these, only two are equations of motion:

i
“

“t
f=mf0+N · f, i

“

“t
f0=−mf0+N · f. (2)

The other equations,

f=Nf, (3)

are not equations of motion; they do not contain time derivatives. Such
constraints reduce the truly dynamical variables (and equations of motion)
to be 2 (2s+1). The constrains could be of two types. The holonomic con-
straints can be directly substituted into the true equation. But the non-
holonomic constraints can not be incorporated easily. They tend to modify
the true equations of motion and reduce the number of kinematic ampli-
tudes. In quantum field theory this would mean a modification of the
commutation (anti-commutation) relations and make kinematics depending
on dynamics.
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A simple example of this circumstance is obtained from the equation
of motion of a particle in three dimensions coupled to a scalar source. The
action density chosen is

m
2

ẋ2+g(x) x2, (4)

which can be written in the first order form

p · ẋ −
m
2

ẋ=g(x) x2. (5)

The variational equations are

ẋ=p, ṗ=N(g(x) x2), ġ(x)=0. (6)

When g(x) — 0 this is a free particle with a continuous spectrum; but
otherwise it becomes a rotator in three dimensions with a characteristic
discrete spectrum. The dynamics (interactions) however modified the
kinematics (true degrees of freedom).

Theory of constrained dynamical systems for holonomic constraints
was solved by Lagrange who introduced generalized coordinates and
momenta equal in number to the degrees of freedom. But non-holonomic
constraints had to wait until Dirac (1) introduced the modern theory of
constraints. His work has been followed up by many people, who, partly
working outside the Action Principle framework, tried to describe relativistic
interaction and simultaneously circumvent the non-interaction theorem.
Higher spin fields equations provide a natural evolution of non-holonomic
constraints, but the reduction to the true equations of motion under usage
of non-holonomic constraints amounts to unexpected difficulties.

2. RELATIVISTIC WAVE EQUATIONS

The light quantum was the first relativistic particle that we encoun-
tered more than a century ago. But it was first thought of in terms of the
electromagnetic field. Introducing light quanta was required for the expla-
nation of both the photoelectric and Compton effect. Yet, it was work by
S. Bose on photon statistics that established the particle nature of a Bose
gas. Subsequently, Heisenberg and Pauli quantized the Maxwell field to
produce the field theory of electromagnetism. The Maxwell field and the
associated field equations may be viewed as the first relativistic field. (2)
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But the first explicit and new equation was the one discovered by
Dirac. Dirac described a massive particle of spin-1/2 in terms of a four
component first order equation. Soon it was realized that the second order
relativistic wave equation first introduced by Schrödinger (and refereed to
as the Klein–Gordon equation) was the appropriate relativistic equation
for spinless massive particles). This second order equation can be linearized
to get a five component first order wave equation for, again, spinless par-
ticles. This Duffin–Kemmer linearized form had a similar ten component
analogues to describe massive spin-1 particles. (3)

Having obtained the above relativistic wave equations, there were
extensive work by many authors, among them Belinfante, Bhabha, Corson,
Harish-Chandra, Kemmer, Majorana, Fierz, and Pauli, toward finding
generic wave equations. These equations do contain too many components
and must involve supplementary constraints, since relativistic wave func-
tions are finite dimensional representations of the Lorentz group and have
many ‘‘spin’’ values for rotations in three space. As a consequence the wave
equations for higher spins must have constraints eliminating the unwanted
components.

The simplest non-trivial case is that for spin-3/2. The two Lorentz
group representations of lowest dimensionalities which can be used for
embedding spin-3/2, are of twelve, and eight components, respectively. (4)

But to get an acceptable equation we need the 12-component representa-
tion linearly with a four component spinor. The easiest way to do this is to
take the vector spinor km with 16 components and write an equation in
such a fashion that only eight components remain. The latter can be fixed
by means of eight constraints, four of them holonomic, and the other four
non-holonomic. There is a mass parameter with dynamic significance and a
gauge parameter that can be chosen at will.

Then we have the possibility of having more than one spin or mass in
the same wave equation. In the simplest cases, like, say, a spin-3/2 ampli-
tude as a part of the 12 component representation of the Lorentz group,
the spin-3/2 and spin-1/2 wave functions have opposite signs of the scalar
products and hence of the corresponding probabilities. We can construct
more sophisticated equations with a mass and spin spectrum. Simplest of
these equations were found by Bhabha who observed that for spin-0,
spin-1/2, and spin-1 wave equations,

bm i “mk − mk=0, (7)

the four-vector matrices b satisfy the relations

[bm, bn]=i const S mn, (8)
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where S mn are the six Lorentz group generators. Bhabha (2) proposed study-
ing the class of higher spin equations which would satisfy this relativistic
relation. He could find the generic solution since if we write

bm=const S m5, (9)

then bm, S mn together constitute the generators of the de Sitter group. Since
the irreducible representations of the de Sitter group are known we can
write down the mass spectrum of those wave functions which obey Bhabha
equations. Bhabha also found however that the mass spectrum is inverted,

M(s) ’ (2s+1)−1. (10)

It has been found that the inverted spectrum of the Bhabha equations
is a generic property of all wave equations (see the concluding section for
the multi-mass Bhabha equation with an arbitrary mass ratio between
spin-3/2 and spin-1/2 solutions).

3. THE GENERIC WAVE EQUATION

If Y is the relativistic wave function it obeys the wave equation (4)

(iCm
“m − M) Y=0, (11)

where Cm are vector matrices and M is a scalar matrix. The commutators
of the C ’s with the Lorentz group generators are

[S mn, Cl]=i(Cmgnl − Cng ml), (12)

[S mn, M]=0. (13)

Without any loss of generality, we could take Cm and Y to be purely real.
This is always possible by virtue of the Majorana matrices for the Dirac
equation in which case one encounters all real C ’s defined according to

Cm=ibc m, M=mc0, (c0)*=−c0. (14)

Since all representations of the Lorentz group can be built from the
spinor (1/2, 0) À (0, 1/2), this remains true for all representations of the
(extended) Lorentz group. In case we need to introduce an electric charge,
we can double the components and use the antisymmetric matrix

Q=10
i

−i
0
2 . (15)
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For the Dirac equation the matrix M is antisymmetric and cm are symmetric,
“m is antisymmetric. The bilinear form

ȲC0Y (16)

is antisymmetric.
For a multispinor which transforms as the direct product of an even or

odd number of spinors the symmetry property of C0 will alternate—it will
be anti-symmetric for integer spin (even rank multi-spinor) and symmetric
for half-integer spin; similarly, M would be symmetric for integer spin and
anti-symmetric for half-integer. For the wave equation in the form

3C0 “

“t
+C · N+M4 Y=0, (17)

the action principle (4) demands

[YTC0dY, Y]=dY. (18)

For C0 non-singular we could derive the anti-commutation (commu-
tation) rules

{Yj, Yk}=(C0)−1
jk . (19)

4. CONSTRAINTS FOR HIGHER-SPIN EQUATIONS

Lorentz invariance of the wave equations demands (4) that

C0=(ST) C0+2STC0S+C0S2, (20)

where S is a generator of pure Lorentz (‘‘boost’’) transformations. If l is
the lowest eigenvalue of C0, this implies, in turn

2P(l) S(1 − P(l))(C0 − l)(1 − P(l)) SP(l)=lP(l)(1 − 2S2) P(l), (21)

where P(l) projects to the lowest eigenvalue l of C0. Since the left hand
side of this equation is non-negative for all fields (except pure Dirac fields),
the matrix C0 must be indefinite. With respect to commutation relations
between the field components, the matrix C0 is antisymmetric—and hence
its indefiniteness is automatic. But anti-commutators are non-negative;
hence the negative eigenvalue components of Y must be eliminated by
supplementary conditions. So the correct equations for higher spin anti-
commuting fields must have second class currents.
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In passing we note that since YTC0Y is an invariant bilinear in Y,
it must be symmetric for half-integer spin fields and anti-symmetric for
integer spin-fields. This already follows from rotational invariance (which
may or may not be Lorentz invariant!). So the action principle demands
that integer spin field must obey commutation relations (Fermi’s fields).
This basic result that integer spin-fields must be Bose fields and half integer
spin fields must be Fermi fields was published more than twenty five years
ago. It is the fundamental theorem on the connection between spin and
statistics. Here it is derived from rotational invariance only, unlike the cele-
brated Pauli spin-statistic theorem. One of the corollaries is that electrons
in condensed matter must be fermions, and phonons in lattice must be
bosons.

5. THE SPIN-3/2 EQUATION: RARITA–SCHWINGER FIELDS

For the particular case of spin-3/2 there are two types of fields which
may be considered, namely D(1, 1/2) À D(1/2, 1) with 12 components,
and D(3/2, 0) À D(0, 3/2) with 9 components. Consistency demands that
these by themselves are not sufficient. We have the following conditions:

1. The 12 component D(1, 1/2) À D(1/2, 1) gives an indefinite C0.

2. Coupling the 8 component D(3/2, 0) À D(0, 3/2) has also C0

indefinite.

3. Coupling the 4 component D(1/2, 0) À D(0, 1/2) to the 12 com-
ponent D(1, 1/2) À D(1/2, 1) can make the system consistent by
generating two necessary (second class) constraints.

4. The 16-component amplitude may be written following Rarita and
Schwinger in terms of a vector spinor, km, which transforms as
D(1/2, 1/2) é D(1/2, 0) À D(0, 1/2), and a carefully crafted mass
matrix M.

5. There is a one parameter transformation of the form

kl
Q kl − ccl(cnk

n), (22)

all of which give equivalent Rarita–Schwinger equations. (5)

Action density in terms of kl has the form

i
4

(kl)T 3bc mgls+W(d m
l cs+d m

s cl) −
1
2

(3W2+2W+1) cl c mcs
4 ks. (23)
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6. KINEMATICS DEPENDS ON THE DYNAMICS

To discuss minimal electromagnetic interaction by the replacement
i“m Q (i“m − eQAm)=pm, where Am is the vector potential of an external
field and Q is the antisymmetric imaginary matrix of electric charge. We
have fixed the arbitrary parameters. The equations of motion now produce
a second class constraint

(− 2
3 c · P+m) c · P=P · k+1

3 c · Pc · k. (24)

This leads to the modified anti-commutator relations

{k3/2
k (x), k3/2

l (y)}=(dkn+1
3 ck cn)(dnk+2

3 pnDpl) d(x − y), (25)

with

D=(m2 − 2
3 eQs · B), B=N × A. (26)

This anti-commutator is local. But here the problem is when

|eB| ± 3
2M2, (27)

the anti-commutator is still local but indefinite.
This makes the theory inconsistent. (3) Further, since B can be made

as large as we please by going to sizable Lorentz frame, the theory also
violates relativistic invariance. Similar but more complicated constraints
arise for theories of spin-5/2, etc.

Let us recapitulate what we have discovered. When we take a spin-3/2
wave equation constructed to be consistent for the free field and introduce
in it minimal electromagnetic interaction with an external field, we find that
the theory is no longer consistent.

Hagen (6) has studied the coupling of a scalar external field and showed
that it develops inconsistency too. One might inquire if we deal not with
one field but many fields strung together as a super-field could the elec-
tromagnetic interactions be consistent? The answer is not known.

It must be emphasized that the framework was of a spin-3/2 field by
itself and in minimal electromagnetic interaction. Several modern theories
treat collections of particles with different masses and spins; and, in par-
ticular, super-fields. It is concisely that within some such context, higher
spin fields in interaction can be consistently treated.

The demonstrated inconsistency is not obtained if the higher spin par-
ticles are bound states of more elementary units; for example, we have
many complex nuclei with higher spin which interact with electromagnetic
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field. In these cases the structure of the action is different but the one we
have studied.

7. PHENOMENOLOGY WITH THE RARITA–SCHWINGER FIELD

This raises the question of possible use of higher spin fields to incor-
porate hadronic resonances. The Poincaré transformations may be defined
by a Rarita–Schwinger field or other representations of the Lorentz group.
It would be worthwhile searching for such systematizations.

Classification schemes according multiplets of various groups have
been widely employed in nuclear as well as in particle physics, the most
familiar of them being Wigner super-multiplets of isospin–spin SU(2)×SU(2)
scheme in nuclear physics. (7) The extended supersymmetry based upon a
graded Lie algebra was used by Iachello and Arima to make super-super-
multiplets of nuclei. (8)

Even more striking is the use of the spin–isospin symmetry SU(6) to
classify the ground states of hadrons. (9) It puts pseudo-scalar and vector
mesons in the 35-dimensional adjoint representation while the nucleon and
the spin-3/2 ground state baryons are part of the 56-dimensional represen-
tation. Although this scheme led to some useful sum-rules, after all, pseudo-
scalar mesons had to be coupled to baryons (whether of same spin or dif-
ferent) only through derivative (not Yukawa) couplings in order to respect
chiral symmetry. Hence, strictly speaking, even at the kinematic level of
Yukawa coupling, the particle classification needed to include the orbital
angular momentum. This could be done, for example, in assigning particles
to SU(6) × SO(3) group multiplets, (10) an option we made use of here.

8. CONCLUDING REMARKS

In summary, we recognize that there are second class constraints,
where the choice of canonical variables depends on the dynamics. In the
spin-3/2 Rarita–Schwinger field we find that the true spin-3/2 dynamical
fields obeyed anti-commutation rules which depended exclusively on the
external field to which it is coupled, which is part of the dynamics. We have
outlined a number of attempts to introduce higher spin fields with multiple
masses into a quantum field theory. The Bhabha equations which formed
a de Sitter (SO(4, 1)), multiplet have an inverted mass spectrum. The
Rarita–Schwinger spin-3/2 field equations are consistent for free fields,
but develop inconsistencies when an electromagnetic or scalar field is
coupled to it. Bhabha had developed an extended Rarita–Schwinger field (11)
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together with an additional Dirac field which described a spin-3/2 particle
and a spin-1/2 particle with an arbitrary mass ratio. Unfortunately, this
system also develops inconsistencies when external electromagnetic inter-
actions are included. Although in the SU(6) × O(3) case there was the
inconsistency in writing down Yukawa couplings, the scheme was none-
theless useful in obtaining mass and coupling sum rules. Back to the enter-
ing question of Sec. 6, the inconsistencies of constraint Rarita–Schwinger
fields do not exclude the usefulness of unconstrained Rarita–Schwinger, or
more generally, higher-spin fields in classifying hadron spectra, as done in
Ref. 12. This would widen the spirit of the non-relativistic SU(4) nuclear-,
or the SU(6) hadron super-multiplet classification toward relativistic clas-
sification schemes.

There is an entirely different kind of difficulty with higher spin fields
which is manifest already at the wave equation level, even before quantiza-
tion. It applies equally to integer spin and half integer spin wave equations.
The constraints in the higher spin field equations has the dependent fields
with external sources coupled to the field. Solving for this introduces non-
local functions of the sources. This may be interpreted as amplitudes that
propagate outside the light cone. Such a behavior of the solutions can be
interpreted as ‘‘non-causal’’ ( faster than light) propagating modes. This
result was first obtained by Joseph Weinberg (13) in his doctoral thesis of
the University of California, Berkley under the supervision of Robert
Oppenheimer. This was not published. It was rediscovered by Velo and
Zwanziger (14) who one credited with showing that higher spin fields are
inconsistent. This conclusion holds equally for integer and half-integer
higher spin fields. This problem has nothing to do with kinematics depending
on dynamics. Yet, the ‘‘axiomatic brotherhood’’ would like to propagate
the view that the Velo–Zwanziger result superseded the field inconsistency
we have demonstrated and of course they have forgotten J. Weinberg’s
work several decades ago.
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