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I present an overview of the paradigm of quantum computing that is emerging as a result of recent 
advances in a variety of fields, including fundamentals of quantum mechanics, information theory, 
quantum optics and atomic physics. The essentials of a practical quantum computer are discussed 
and a few algorithms that may be implemented on such a computer are presented. The advantages 
of quantum computers over classical ones are touched upon. A brief discussion on quantum 
teleportation and entanglement is also included in this article. 

 
THE past half century has seen the digital computer 
which used to be only a scientific aid, develop into a con-
sumer appliance; today almost all commercial and even 
personal activities are dominated by the computer and 
computer-aided gadgets. Thus the Y2K was a matter of 
great concern for everyone. It appears that we have tran-
scended all those troubles.  
 Digital calculating aids have been known for a long 
time. When the numbers used exceeded the number of 
digits of the hand it became necessary to use other aids. 
Some of them, particularly cowrie shells are used even 
today by astrologers computing the data for the 
panchanga, the five-limbed calendar-ephemeris. Other 
countries have used the abacus. Some of us were taught 
how to do operations on large numbers mentally. In addi-
tion to digital computation, analogue computation was 
also done mainly using the versatile slide rule.  
 Today ‘computation’ refers not only to arithmetical 
operations on numbers but any process in which an ‘in-
put’ and a ‘program’ will yield an ‘output’. This could be 
data retrieval, algebraic calculations or producing a word 
processed document. We can now also use the computer 
to transmit, edit and modify text as well as graphics. At 
the same time elaborate computer programs like Mathe-
matica seem almost human in their ability to calculate 
and display the solutions of complicated problems.  
 The progress in the computing power of computers has 
been phenomenal. When I was a graduate student in the 
late fifties, the most powerful computer in our university 
was the IBM650 with its inevitable bunch of punched 
cards. Today hand-held calculators can do far more. The 
supercomputers like the Cray can do the incredible 
amount of number crunching needed for problems like 
weather prediction in meteorology or computer-aided 

design of airframes and other complicated machines. One 
of the methods of speeding up these computations is to 
use ‘parallel processing’ where a number of different but 
similar calculations are carried out simultaneously.  
 Underlying our success in vastly improving the variety 
and the allowed complexity of the problems that can be 
tackled using modern digital computers is the question: 
are all problems computable? This question has received 
considerable attention over the past century leading up to 
the Church–Turing hypothesis. There are two aspects to 
the Church–Turing hypothesis. One is the definition of 
problems that can be regarded as ‘computable’, the other 
is a sweeping statement about the means by which a 
‘computable’ problem can indeed be ‘computed’. 
 The answer to the question whether all problems that 
we can imagine are computable is in the negative as 
demonstrated by Gödel1. He showed that in every arith-
metizable framework there are propositions which cannot 
be either proved or disproved from within the framework. 
In other words the truth (or falsehood) of certain propo-
sitions cannot be verified through a computation. So we 
must be modest in our attempts to compute: only the 
class of computable problems must be attempted. Apart 
from problems that are in principle not computable we 
must identify those that are not computable due to the 
sheer complexity of the computation involved. For in-
stance, there are some physical processes displaying such 
a degree of complexity that the system is its best com-
puter in the sense that no simulation can predict or even 
keep track of the complex evolution for any reasonable 
amount of time.  
 Even if we are modest and consider only computable 
problems we have to keep in mind the practical question 
of how much time (or how many computational steps) are 
needed to carry out the computation. For a problem with 
N input elements the time may grow exponentially with 
N making the very complex computation practically im-
possible. For simple problems one expects that the time 
need grows only as some power of N; these problems 
belong to a class of problems called P-computable2. Even 
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for some of the problems in the class P, the time required 
might be too long as anyone looking up a particular 
phone number in a city telephone directory would know. 
One could have a N  or a log (N) dependence. Such 
methods (algorithms) of computation are more desirable. 
There are a class of problems that are not P-computable. 
They are broadly referred to as NP-problems. For NP 
problems the time required for the computation scales 
exponentially (or faster) with the number of inputs N. 
Note that even with modest amounts of parallel comput-
ing power it is not possible to reduce an NP problem to a 
P problem.  
 The Church–Turing hypothesis states that any problem 
that is computable (in the sense that it belongs to the 
class P) can be computed using a very rudimentary com-
putational device called a Turing Machine3,4. The basic 
Turing Machine consists of a long ticker tape filled with 
a long sequence made up of a limited variety of symbols, 
a read–write head that runs over the tape and a device 
with a fixed number of internal configurations connected 
to the read–write head. The hypothesis states that any 
computable problem can be reduced to a form in which 
the ticker tape machine with the limited number of inter-
nal states and a set of instructions that decides what the 
state is and what the read–write head should do next as 
the ticker tape moves through can perform the computa-
tion. The instruction set in the Turing Machine is the 
analogue of the software in modern-day computers. 
Turing’s thesis suggests that the complexity of the com-
putation is independent of the means using which it is 
performed. The modern digital computer which uses 
nothing more than just two symbols, 0 and 1, to perform 
a wide variety of computational tasks is in itself an ex-
cellent validation of the hypothesis. The Turing machine 
can always be made reversible by construction leading to 
the conclusion that any computable problem can always 
be computed in a reversible fashion. There are further 
refinements and extensions of Turing’s idea for classical 
computers which include probabilistic computation and 
so on which I will omit in this discussion5.  

Quantum mechanics and quantum computation 

From the discussion on Turing machines we recognize 
that in the end all classical computers deal with only 
binary bits, a two level register with 0 and 1 as the possi-
ble states. As mentioned before, problems can be reduced 
to strings of zeroes and ones. We map all the data and all 
the instructions in the computer into such strings. There is 
the possibility of going from using integers as the basic 
units on which the computation is done to complex  
numbers by using as elements quantum bits or qubits6.  
A qubit is the state of a two-level quantum system.  
These are represented by complex vectors of unit norm. 
We write 
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so that φ is indeterminate. We could equally write 
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The pair (z, φ) defines the vector (a, b)T with three (3 = 
2 × 2–1) parameters. Since only scalar products 
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are relevant physically, it follows that only differences of 
φ are relevant.  
 Since a complex number z is needed to define a quan-
tum state, and hence a qubit, we have infinitely more 
variability than the state for a classical system with 0, 1 
(or in the more general stochastic computer, a number p, 
0 ≤ p ≤ 1). This is one of the advantages of quantum ele-
ments, but not the most important. They are the possibil-
ity of amplitude division and of entanglement, both 
absent for classical particle systems.  
 If we have two qubits each having the states |0〉 and |1〉 
then the state |0〉.|1〉 in which the first qubit is excited and 
the second qubit is not excited can be transformed by a 
reversible unitary transformation to 
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dividing the amplitude of the first qubit and delivering to 
the second. We could do it for N qubits to obtain 
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This is amplitude division.  
 We can also deal with two qubits and we have a prod-
uct state like the one above, i.e. 
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This state is entangled since both the + and the – states 
have the same individual qubit states that are correlated 
and superposed but the phases of the superpositions are 
different. This information of the two qubit system is not 
contained in the state of either one separately. 
 The qubit may be realized by a spin 1/2 particle, or by 
a two level atom. If it is a spin 1/2 particle the natural 
method is to have a liquid in which the spin 1/2 objects 
are suspended. This liquid NMR7 is a convenient method 
when one is only interested in the states of a spin 1/2 
ensemble; and it may be used as an adaptation of classi-
cal parallel processing (See below for an application to 
encrypting very large numbers). The two level atom may 
be in a cold atomic trap to preserve the phase relations 
and to reduce external noise. The technique of handling 
one or more cold atoms in a trap (even to the extent of 
realizing Bose–Einstein condensation) are now available 
in many laboratories.  

Quantum algorithms 

Deutsch and Jozsa 

There are problems that take exponential time to do using 
classical computers but which can be P-computable on a 
quantum computer; two such problems were described by 
Deutsch and Josza8 in 1992. For a function f from Z2N 
(the integers from 0 to 2N–1) to Z2 (yes, no) for a large N 
the problem is to establish the truth value of the 
following two alternatives allowed for the function f: (A) 
f is not a constant (at 0 or 1); (B) f(0), f(1),…, f(2N) does 
not contain exactly N zeroes.  
 For any f, at least one of (A) or (B) has to be true. It 
may be that both of them are true. We require that the 
computation (quantum or otherwise) return an answer 
with certainty if only one of them is true. 
 The method of solution makes use of quantum paral-
lelism. We start a state of the form |0 0〉 where the two 
zeroes denote two registers of qubits in which all the 
qubits are set to the zero state. The first register should 
be big enough to accommodate all the numbers from 0 to 
2N–1 while the second register, for this problem, has to 
have only one qubit. We use a transformation called the 
Hadamard–Walsh transformation to take this initial state 
to a superposition of states of the form 

 }.0,12|...0,2|0,1|0,0{|
2

1
| 〉−+〉+〉+〉=〉 N

N
ϕ  

If 2N is a power of two, this operation can be done in  
  (log N) steps. In matrix form, the Hadamard transfor-

mation is given by 
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The states |0〉, |1〉, |2〉… (or equivalently |000…0〉, 
|000…1〉, |000…10〉… in binary) to which the first reg-
ister |x〉 is set to is called the computational basis. 
 We now identify a unitary transformation Uf, called the 
‘Oracle’ for the function f such that 
 
 Uf |i, 0〉 = |i, f(i)〉. 
 
Uf acting on the linear superposition of states ϕ obtained 
from the initial state gives 
 

 

}.)12(,12|...

)2(,2|)1(,1|)0(,0{|
2

1
|

〉−−+

〉+〉+〉=〉

NfN

fff
N

U f ϕ
 

 
Next, we need an element S which changes the phases of 
the individual state vectors so that  
 
 S| j, f( j)〉 = (–1) f(j) | j, f(j)〉. 
 
Then 
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Using 〉=〉 0,|0,|2 jjU f  we get 
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Then compute 
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c = 1 only when f( j) is a constant, i.e. (A) is false and 
c = 0 only when one f(0), f(1) …, f(2N – 1) has exactly N 
zeroes, i.e. (B) is false. This means that the projection 
operator |ϕ〉〈ϕ| in the state |ψ〉 returning the values 0 and 
1 are the determining cases. So each computation gives 
one or the other conclusion. The measurement of |ϕ〉〈ϕ| in 
the state |ψ〉 can be done in   (log N) steps. This is to be 
compared with the possibly N + 1 trials required in the 
worst case if we were to compute f( j) using a classical 
computation to establish the truth values of (A) and (B). 
What is important to note is that in the quantum case the 
oracle Uf is invoked precisely two times while in the 
classical case it may have to be invoked up to N + 1 
times. It follows that if the oracle Uf has size p(log N) 
then the classical computer requires   (eN) steps while  
the quantum computer requires only polynomial p(N) 
steps. 
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 One can object that these are artificial, ‘manufactured’ 
problems. This is true, but it illustrates the power of 
quantum computing. To make more converts to quantum 
computing we need the solution to some more realistic 
problems. These are provided by three ‘classic’ problems 
and their quantum algorithms. (1) The Grover algorithm 
for searching a large database for a specific element 
(like a phone number or a name in the phone book). (2) 
The Shor algorithm for factorizing very large numbers 
and (3) The Chinese remainder theorem for encrypting 
very large numbers beyond the word size in the memory. 
We outline these briefly. 

Grover’s algorithm 

Grover’s algorithm9 searches a large database for a par-
ticular element. It is a reversible computation that gradu-
ally builds up the probability for the element that we are 
searching for. The database search problem is very much 
like trying to find her name and address from the  
phone book if all that she has given you is her phone 
number. 
 The database that we want to search is of size N. Out 
of the N elements we have to find the element ω. Classi-
cally if we pick one element from the database at ran-
dom, the probability of it being ω is 1/N. We have to 
query the database at least N/2 times to get a fifty fifty 
chance of obtaining the element we want. Using a quan-
tum algorithm we can reduce the number of queries that 
are needed to a certain extent. Unlike in the previous case 
the speedup provided by using quantum algorithms is not 
exponential. 
 In the case of Grover’s algorithm also we assume that 
we have at hand an oracle or a unitary operator Uω(x) 
which computes the characteristic function χ(x) for any 
input x: χ(x) = 1 if x = ω and χ(x) = 0 otherwise. We start 
off with the state |0, 0〉 again with the first register big 
enough to represent the largest element, N–1 in our data-
base. The second register contains only one qubit. This 
initial state is transformed by Hadamard transformations 
(1) on the individual qubits to  
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in   (log N) steps. Note that the second register in this 
case is initialized to a different (singlet) state rather than 
to |0〉.  
The oracle Uω has the action  
 
 Uω|i, j〉 = |i, j ⊕ χ (i)〉, 
 
where ⊕ denotes the exclusive or operation (0 + 0 = 1 + 
1 = 0 and 1 + 0 = 0 + 1 = 1). Then 
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This follows from  
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The action of Uω on the vector |φ〉 is to flip the sign of 
only the component along the direction of the desired 
element |ω〉. This amounts to reflecting the vector |φ〉 in 
the N dimensional Hilbert space about the hyperplane 
that is orthogonal to the vector |ω〉. All we know at this 
stage is that the oracle performs such a reflection for 
some value of |ω〉. The value of ω itself is unknown to us 
and that is what we have to find out by consulting the 
oracle a minimum number of times.  
 We now construct another operator Us that does a 
reflection in which the component of the vector |φ〉 along 
|s〉 is preserved while the signs of the component in the 
hyperplane perpendicular to |s〉 is flipped. One iteration 
of the Grover’s algorithm is the unitary transformation 
 
 Rgrov = Us Uω, (4) 
 
one query to the oracle followed by our reflection. The 
action of one iteration of the algorithm on the state |φ〉 is 
to rotate its component along |s〉 by an angle 2θ away 
from the hyperplane perpendicular to |ω where θ is the 
angle between the vectors |s〉 and |ω〉. Successive itera-
tions with various choices of |s〉 brings the vector |φ〉 pro-
gressively closer to |ω〉 and away from the hyperplane 
perpendicular to |ω〉.  
 We can estimate that the number of queries of this sort 
required to get the correct value of |ω〉 with high prob-
ability when |φ〉 is measured after the iterations is about 

.4 Nπ  This is a quadratic speedup relative to the classi-
cal computation.  

Shor’s algorithm 

Shor’s algorithm10,11 uses a period finding routine to find 
a method of factorizing large numbers in polynomial 
time. Given a large number N which can be factorized 
into exactly two large prime numbers, classically we 
might have to exhaustively test out all the numbers from 
1 to N  to find the factors.  
 The factorization problem is reduced to a period find-
ing problem by the following observation. We randomly 
pick a number a < N such that ar = 1(mod N) for some 
even integer value of r. It can then be shown that N 
shares a common factor with ar/2 + 1 or ar/2 – 1 for most 
choices of a. Once we find r (which is usually an even 
number) then using the classical Euclid’s algorithm it is 
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easy to find the common factor of N and ar/2 ± 1 which 
solves the problem of factorizing N.  
 To reduce the problem of finding r to period finding 
problem we do the following. We choose as the function 
that we want to evaluate, 
 
 fN ,a(x) = ax  (mod N ). (5) 
 
Since ar = 1 (mod N) the period of the function fN,a(x) is 
r.  
 We can evaluate the function fN,a on a state |φ〉 initial-
ized as in the case of Grover’s algorithm to  
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The only difference here is that the second register is big 
enough to hold fN,a(i). We can now construct a unitary 
operation (oracle) UfN,a

 such that 
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The second register contains a function with period r so 
if we make a measurement on the second register and 
obtain a value |u〉 then that will collapse the first register 
to a linear combination of all the values of x that give 
f(x) = u. Because of the periodicity of the function these 
values of x have the form x0 + jr, where j = 0, 2 … xmax/r 
and f(x0) = u. xmax is the biggest number that can be con-
tained in the first register. For simplicity we assume here 
that t = xmax/r is an integer. The measurement reduces the 
state |ψ〉 to  
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We can now implement a quantum Fourier transform on 
the first register of the state |ϕ〉 to obtain the value of r. 
The quantum Fourier transform can be implemented effi-
ciently and it has the following effect on |ϕ〉 
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wise. If we measure the first register then the value of k  
obtained has the form .max

r
xk λ=  Both λ and r are 

unknown but in the cases where λ and r have no common 
factor we can reduce k /xmax = λ/r to an irreducible 
fraction to read off the values of r and λ. If λ and r do 
share a common factor then the algorithm fails and we 

will have to repeat it with a different value of a to start 
off with. Even with the possibility of having to repeat the 
algorithm to get to the correct factor it is possible to 
show that it takes only   (log N) steps to run the 
algorithm enough number of times to get the right answer 
with certainty. This is still exponential speedup compared 
to the classical algorithm. 

Chinese remainder theorem 

Suppose we are given the remainders r0, r1 …, rn–1 when 
a number N is divided by m0, m1 …, mn–1 where all mi are 
pairwise relatively prime (no two share a common fac-
tor). The Chinese remainder theorem12 tells us that 
modulo the product m = m0 × m1 × … × mn–1 we can re-
construct N from the knowledge of the divisors and the 
remainders. If sufficient number of mi are given so that 
N ≤ m then N is determined uniquely. 
 For example if we have a number x such that  
 
 x = 2 mod 3, x = 3 mod 5, x = 2 mod 7, 

 
then to find x we do the following. Find three numbers s0, 
s1 and s2 such that each of them give a remainder of 1 
when divided by exactly one of the divisors of x while 
giving a remainder 0 when divided by all the other divi-
sors. In this example  
 
 s0 = 70 = 1 mod 3 = 0 mod 5 = 0 mod 7, 

 
 s1 = 21 = 0 mod 3 = 1 mod 5 = 0 mod 7, 

 
 s0 = 15 = 0 mod 3 = 0 mod 5 = 1 mod 7. 

 
Multiply each si by ri (ri is the remainder when x is di-
vided by that divisor which has remainder 1 with si). So 
we get 140 = 2 × 70, 63 = 3 × 21 and 30 = 2 × 15. Then 
the Chinese remainder theorem tells us that 140 + 63 + 
30 = 233 is x modulo 105 = 3 × 5 × 7. In this example, 
x = 233 mod 105 = 23. 
 The application of the remainder theorem is in quan-
tum cryptography more than in computing. Large number 
can be encoded into small registers (smaller word size) 
by recording only the divisors and the remainders rather 
than the large number itself and then reconstructing the 
number from this knowledge. These smaller registers of 
qubits are easier to transmit through some sort of quan-
tum communication channel. Truly quantum communi-
cation channels, in turn, can provide absolute security in 
the transmission of confidential data because the very 
nature of quantum systems makes sure that they cannot 
be observed without disturbing them. So any eavesdrop-
ping on the communication channel can, in principle, be 
always detected.  
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Quantum gates 

The effectiveness and usefulness of the quantum algo-
rithms that we have seen lies not only in the exponential 
speedup of the computation but also in the fact that they 
can be implemented using a sequence of operations on a 
few qubits at a time. Controlled operations on entire reg-
isters of qubits at one shot is not only near impossible but 
also not in line with the spirit of Turing’s ticker tape ma-
chine that does operations on only one individual cell in 
the tape at a time. Going a step further it can be shown 
that not even all possible one qubit and two qubit opera-
tions are required to build a network that implements 
quantum algorithms. The few one, two and sometimes 
three qubit operations using which all the algorithms can 
be implemented are called universal quantum gates.  
 We have already encountered one such universal gate: 
the Hadamard transformation given in eq. (1). The 
Hadamard gate acts on a single qubit and its effect is to 
rotate the state about the y axis. (It is rotation about the y 
axis only if we follow the usual convention and choose to 
represent our qubit in terms of the eigenstates of the spin 
operator oriented about the z axis.) In symbolic form we 
can represent the Hadamard gate as shown in Figure 1. 
 Another useful gate is the controlled not (CNOT) gate. 
This is a two qubit gate that modifies the state of one of 
the qubits depending on the state of the other (control) 
qubit. The CNOT gate is shown in Figure 2. The action 
of the CNOT gate on the two qubits is the same as the 
classical XOR (exclusive OR) gate. Depending on the 
values of the inputs A and B we get the following out- 
puts: 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1 and 1 ⊕ 1 = 0. 
Since the state of the second qubit is now dependant on 
the state of the first qubit, the two qubits become entan-
gled on passing through the CNOT gate. By using a com- 
 
 

 
 

Figure 1. The Hadamard gate. 
 
 

 
 

Figure 2. The CNOT gate (A ⊕ B stands for B XOR A). 

bination of the CNOT gate and the Hadamard gate we 
can achieve both quantum superposition and entangle-
ment. 
 The Toffoli gate is an extension of a CNOT gate which 
acts on three qubits, modifying the state of the third qubit 
based on the states of the first two. Sometimes it is called 
the C2NOT gate. The Toffoli gate is shown in Figure 3. 

Building a working quantum computer 

Since the superposition of amplitudes with their phases is 
involved in any quantum computation, it is important to 
deal with any phase decoherence by external perturba-
tion. So to maintain the integrity of the computation we 
need to make use of error correcting codes. Such a pro-
gram has been experimentally realized last year with a 3 
qubit code13.  
 It is in principle possible for any system with superpo-
sition of linear complex amplitude to be appropriate for 
implementing a quantum computer. In particular, wave 
optics14,15 is a natural choice. We may then recognize that 
we have already carried out simple quantum computa-
tions with light: like in X-ray diffraction of crystals, 
Michaelson interferometry, the Zernike phase contrast 
microscopy and in optical holography. With its two po-
larization states, a thin pencil of light is a qubit. When 
monochromatic light of wavelength λ propagates through 
an aperture of area A, approximately A/λ2 pencils pass 
through and all of them maintain constant relative phases. 
So we automatically get a coherent register of A/λ2 opti-
cal qubits. In trying to locate and study a thin transparent 
microbe using phase contrast microscopy, we make use 
of only the independent pencils and superposition of the 
signal beam with a phase shifted reference beam. This 
maybe thought of as a search of a large database, the field 
of illumination, for the specific small set ‘the microbe 
occupied patch’.  
 Quantum gates can be constructed using optical ele-
ments; so also the processes corresponding to quantum 
computing can in principle be done using wave optics. 
This includes the error-correcting codes16 so necessary 
for reliably serial quantum computing.  
 

 

 
 

Figure 3. The Toffoli gate. 
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Quantum teleportation 

Another area closely related to quantum computing is 
quantum teleportation17. This makes use of quantum 
entanglement in which a pure state of a composite system 
differs from the product of pure states of the components 
of the system. These days we call them EPR states18. 
Using such a state shared by two experimenters Appu 
and Ammu, they can do non-classical transmission of 
quantum states. If Ammu receives a signal not known to 
her (she does not ‘measure’ it) she can superpose this on 
her half of a EPR state. Since the EPR state is shared by 
the two of them, when Ammu does the superposition that 
modifies the whole state including the half that Appu has 
with him. Ammu can now measure the combined state of 
the signal and her half of the EPR pair without actually 
ever measuring the signal itself. If this information is 
then provided to Appu through a classical channel like a 
telephone line, Appu can combine his half of the EPR 
state with a blank register and then modify this combined 
state to one in which the blank register becomes the input 
state that Ammu originally received.  
 The input state is thus effectively teleported via a 
combination of quantum (EPR) communication channels 
and a classical channel. The transmission is done without 
either person knowing what exactly the (perhaps secret) 
input signal was. This process of transferring a quantum 
state from one place to another without any actual trans-
portation of matter is called quantum teleportation. It is 
the ‘quantum configuration’ that is transported from 
Ammu to Appu. Note that Ammu does transmit non-
quantum information to Appu (in that sense it is not Star 
Trek where people are beamed aboard the starship Enter-
prise).  
 The property of quantum states that are used in tele-
portation (and computation) is their ability to form  
superpositions and thus for a composite system to be 
entangled. The quantum state can be subdivided by am-
plitude division (beam splitting), both copies being the 
same state. Superposition, entanglement and beam split-
ting are non classical (non-corpuscular) properties. These 
properties are reminiscent of the couplet: 
 

  
 
(As the sky is reflected in many pots, so does the 
individuated awareness in the Absolute awareness) and: 

  

(Let word and meaning be so joined indivisibly so as to 
present the meaning of the words, so do I pay homage to 
Parvati and Parameswara, the progenitors of all the 
world.) 

Concluding remarks 

This is the transition period between two millennia – 
yugaparivarthanam. Tradition has it that at such transi-
tion times the sandhyas are ideal for new insights (sand-
yavandanam). Rsí Patanjali says that we must seek to 
attain the intellect undisturbed by noise and chaos to get 
greater insights. It is therefore appropriate that we invoke 
quantum computing at this time.  
 The coming together of the most prosaic, most orderly 
notion of computation and the most pure discipline of 
quantum mechanics is seen in the paradigm of quantum 
computation. The practical applications of quantum com-
puting brings a most esoteric and pure research topic into 
the information technology arena. Since many of these 
techniques are adaptable to quantum optics in place  
of spin assemblies, it may be of particular interest in 
India.  
 It has been often said that when we make decisions or 
learn, we act like a computer; so much so that many peo-
ple are willing to equate the mind to the brain and then to 
a complex digital network. But my own observation is 
that creative processes or moments of insight can rarely 
be adequately described thus. Insight or creativity is the 
abstract discipline (and sometimes in the not so abstract 
discipline – Nobel Prize winner Woodward’s doodling) 
involves a period of apparent gloom when many alterna-
tive views are superimposed in thinking. It is in this do-
main of superposition of pictures that sudden insight 
illuminates.  
 

  
 
(I pay homage to that entity (the guru) which banishes all 
doubts, joins all perspectives and thus enables secret 
knowledge to be accessible.) 
 It is not only in such profound situations but also in 
routine activities that such superpositions occur: when 
you are just about to go to the university you hesitate 
between two neck ties: like Buridan’s ass one could pass 
a long time without being able to decide. Similarly very 
reminiscent of Grover’s algorithm (which involves 
spreading your awareness on a multitude of ‘sites’) is the 
‘computation’ that you have to perform when you meet a 
person whom you know and you are trying to make the 
precise identification. I usually misplace things and look 
for them classically. My wife, does her searching using 
the analogous quantum protocol and she usually finds it.  
 If the 21st century is the century of the science of the 
mind, it may well be that the lessons learnt from quantum 
computing may enable us to use the proper protocol for 
analysing our data and formulating the problems. We 
may or may not be quantum computers, but we are defi-
nitely not classical computers.  
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 So to the promise of quantum computing: 
 
1. More powerful computing protocols converting some 

of the NP-computable problems to P-computable 
problems. 

2. Faster data search. 
3. Quantum teleportation and secure information trans-

port. 
4. Merging of the disciplines of quantum mechanics and 

computer sciences. 
5. Possible basis for a beginning of a science of the 

mind. 
 
Then maybe Mashelkar’s dream of the revival of an 
Indian leadership in science becomes realized. 

Appendix: Quantum entanglement 

Anil Shaji 
University of Texas, Department of Physics, Austin TX 78712, USA 

 
Interactions of any sort between two quantum systems 
leaves a mark on both of them that persists even if the 
two systems are prevented from having any further con-
tact with each other. This, of course, is not something 
unique to quantum systems. Two classical systems that 
interact with each other; say, through a collision can end 
up bearing signatures of the interaction for quite a long 
time. A fende-bender collision between two cars bears 
the signs of the accident until one spends a bit of money 
at the mechanics! 
 The persistent effects of the interaction between two 
(or more) quantum systems that show up in measure-
ments made on each system even after they are isolated 
from each other is entanglement. The prototypical system 
that illustrates the various, often counter-intuitive, as-
pects of the phenomenon of quantum entanglement is the 
following: 
 Imagine that a quantum particle of total angular mo-
mentum zero breaks up into two pieces, each carrying 
spin 1/2. Conservation of angular momentum requires 
that the state of the system after the original particle has 
dissociated must be of the form 
 

 ).|(|
2

1
| ↓↑〉−↑↓〉=〉ψ  

 
Here the up and the down arrows represent the compo-
nents of the spin of the first and the second particle 
measured along a particular direction (we choose the z-
direction).  
 Even if we assume that the two particles have no fur-
ther interaction with each other after they are created the 
two still seem to be inseparably connected by just being 
in the combined quantum state |ψ〉. The state |ψ〉 is a co-

herent superposition of the two particle states |↑↓〉 and 
|↓↑〉. Consequently, if a measurement on the first particle 
yields the result that it is in the |↑〉 state then that means 
that we have picked up the |↑↓〉 component of the super-
position and therefore the second particle must be in the 
state |↓〉. Yet, one could argue that in the original state 
|ψ〉 the second particle by itself is in a superposition of 
|↑〉 and |↓〉 states. It is then as if the measurement on the 
first particle transforms the second particle automatically 
from a superposed state to a definite spin state. This 
transformation seems inevitable even if we assume that 
the second particle is totally isolated from the first parti-
cle at all times except at the instant of their creation from 
the original particle. Without any interaction between the 
two particles, how is it then possible for the measurement 
on the first particle to affect the state of the second? 
Questions like this has been the source of a large amount 
of discussion18,19 and endless confusion. We do not dis-
cuss these aspects of entanglement here but refer the 
reader to ref. 20 for details. 
 Viewed as a single two-particle state, the effects of the 
quantum entanglement in |ψ〉 presents no particular con-
ceptual difficulties. Observing the first particle in the |↑〉 
state simply means that we have observed the |↑↓〉 com-
ponent of the original superposition. The difficulties 
come in when we stipulate that a consequence of the fact 
that the two particles do not interact with each other once 
they are created is that the result of a measurement on 
each of them should be understandable in terms of their 
individual quantum states rather than in terms of the 
combined state |ψ〉. Deliberately avoiding such treacher-
ous discussions on the connection between entanglement, 
causality and the nature of physical reality we merely 
state that there is sufficient experimental evidence to 
substantiate the reality of the phenomena of quantum 
entanglement21. 
 From the point of view of quantum computation, en-
tanglement is a potent physical resource that is used in 
almost all quantum algorithms that we know of. For in-
stance, in Grover’s algorithm and Shor’s algorithm there 
is an ‘oracle’ Uf that has the following action on a spe-
cially prepared initial state |ϕ〉: 
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Uf evaluates the function f onto the second register in |ϕ〉 
depending on the state |i〉 of the first register. In doing so 
Uf is entangling the first and second registers.  
 In the algorithm, the final measurement is always on 
one of the registers which in turn ‘collapses’ the other 
register of qubits to a desired state. This step depends 
crucially on the entanglement between the two registers.  
 Quantum entanglement is of considerable interest in 
information theory also. It is recognized that the infor-
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mation content of an array of qubits depends not only on 
the states of the individual qubits but also on whether or 
not the qubits are entangled among themselves. It can be 
shown that a maximally entangled array of qubits has a 
greater information content than an equivalent array in 
which the qubits are not entangled. The problem of char-
acterizing and detecting the degree of entanglement of an 
array of qubits is still an open one with only a few partial 
solutions available22,23. 
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