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Abstract

The positive and not completely positive maps of density matrices are discussed. Probability representation of s
(spin tomography) is reviewed andU(N)-tomogram of spin states is presented. UnitaryU(∞)-group tomogram of photon sta
in Fock basis is constructed. Notion of tomographic purity of spin states is introduced. An entanglement criterion for mu
spin-system is given in terms of a function depending on unitary group parameters and semigroup of positive map pa
Some two-qubit and two-qutrit states are considered as examples of entangled states using depolarizing map semigr
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

States in quantum mechanics are associated
vectors in Hilbert space[1] in the case of pure state
Mixed states are associated with density matri
[2,3]. In classical statistical mechanics, the states
associated with joint probability distributions in pha
space. There is an essential difference in the con
of state in classical and quantum mechanics. T
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difference is clearly pointed out by the phenomen
of entanglement. The notion of entanglement[4] is
related to the quantum superposition rule for the st
of subsystems of a given multipartite system. For p
states, the notion of entanglement and separability
be given as follows.

If the wave function[5] of a state of a bipartite sys
tem is represented as the product of two wave fu
tions depending on coordinates of the subsystems
state is simply separable; otherwise, the state is sim
entangled. An intrinsic approach to the entanglem
measure was suggested in[6]. The measure was in
troduced as the distance between the system de
matrix and the tensor product of the subsystem sta
There are several other different characteristics
.
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measures of entanglement considered by severa
thors[7–15]. Each of the entanglement measures
scribes some degree of correlation between the
systems’ properties.

The notion of entanglement is not an absolute
tion for a given system but depends on the decomp
tion into subsystems. The same quantum state ca
considered as entangled, if one kind of division of
system into subsystems is given, or as completely
entangled, if another decomposition of the system
subsystems is considered.

For instance, the state of two continuous pho
quadratures can be entangled in Cartesian coordin
and disentangled in polar coordinates.

A review of different approaches to the entang
ment notion and entanglement measures is give
[16] where the approach to describe entanglement
separability of composite systems is based, e.g., on
tropy methods. Another detailed review of entang
ment problem is given in[17]. In [18] a tomographic
approach to entanglement of spin-system states
suggested.

The notion of entangled states has attracted a
of efforts to find criterion to detect entanglement a
to find quantitative characterization of entangleme
A criterion based on the use of the partial transp
transform[19] of subsystem density matrix (comple
conjugation of the subsystem density matrix or
time reverse) provides the necessary and suffic
condition of separability ofthe system of two qubit
and qubit-qutrit system[20]. Recently it was pointed
out that the tomographic approach to reconstruct
Wigner function of a quantum state[21–23] can
be developed to consider the positive probabi
distribution (tomogram) as an alternative to dens
matrix (or wave function) because the complete
of tomograms contains the complete information
the quantum state[24]. This representation (calle
probability representation) was constructed also
spin states including a bipartite system of two spi
Up to now the problem of entanglement was n
discussed in the tomographic representation in de
Some remarks on tomograms and entanglemen
photon states in the process of Raman scatte
were done in[25]. The tomographic approach h
the advantage of dealing with positive probabilit
and one deals with standard probability distributio
which are positive and normalized. The positive a
-

s

completely positive maps of density matrices[26,27]
play an important role in studying the entanglem
phenomenon and they induce specific transforma
properties of the tomograms.

The aim of this work is to formulate (in view o
the tomographic approach[18]) necessary and suffi
cient conditions of separability and entanglemen
multipartite systems in terms of properties of the qu
tum tomogram. We apply the action of specific po
tive map (so-called depolarizing channel) to detect
entanglement. Then we focus on properties of entan
glement and separability of a bipartite system us
spin tomograms (SU(2)-tomograms) and tomogram
of theU(N)-group for two qubit and two qutrit state

The idea of the approach suggested can be sum
rized as following.

The positive but not completely positive line
maps of a subsystem density matrix do preserve
positivity of separable density matrices of the comp
ite system. These maps contain also maps which
not preserve the positivity of density matrices of e
tangled states for the composite system. It means
the set of all linear positive maps of the subsystem d
sity matrix will create from the initial entangled pos
tive density matrix of composite system a set of H
mitian matrices including the matrices with negat
eigenvalues. To detect the entanglement we use th
mograms of the obtained Hermitian matrices. The
mograms of state density matrices (state tomogra
are standard probabilities. In view of this the tom
grams of the obtained Hermitian matrices correspond
ing to initial separable state preserve all the prop
ties of the probability representation including po
tivity and normalization. But in case of entangled st
the tomograms of the obtained Hermitian matrices
take negative values. The different behaviour of tom
grams of separable and entangled states of comp
systems under the action of positive maps of the s
system density matrix provides the tomographic cr
rion of the separability.

2. Density operators as vectors and the Lie
algebra of the unitary group

When matrices represent states it may be con
nient to identify them with vectors. In this case,
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density matrix can be considered as a vector wh
components satisfy additional properties. Linear tra
formations of the density matrices called superope
tors can be interpreted as matrices acting on the ve
space. It means that density matrices–vectors unde
ing linear transformations are acted on by the matr
representing the action of the superoperators on
linear space. Given a rectangular matrixM with ele-
mentsMid , wherei = 1,2, . . . , n andd = 1,2, . . . ,m,
one can consider the matrix as a vector�M with N =
nm components constructed by the following rule:

M1 = M11, M2 = M12, Mm = M1m,

(1)Mm+1 = M21, . . . , MN = Mnm.

Then × n density matrixρ has matrix elements

(2)ρik = ρ∗
ki , Trρ = 1, 〈ψ|ρ|ψ〉 � 0.

Since the density matrix is Hermitian, it can alwa
be identified as an element of the convex subse
the linear space associated with the Lie algebra of
U(n) group, on which the groupU(n) acts with the
adjoint representation

(3)ρ → ρU = UρU†.

If we consider map of density matrix onto vect
ρ → �ρ the above adjoint representation transfo
formula(3) yields

�ρ → �ρU = (U ⊗ U∗) �ρ.

It turns out that there exists interesting connection
quantum states (density matrices) with orbits of
unitary group. For finiten-dimensional system, th
Hermitian states and the Hermitian observables m
be mapped into the Lie algebra of the unitary gro
U(n). The states correspond to nonnegative Hermi
operators, observables can be associated with
types of operators, including nonnegative and nonp
itive ones. The space of states is therefore a con
linear space which, in principle, is not equipped w
an inner product structure. Due to this, transformati
in the linear space of states are not required to pres
any product structure. In the set of observables, on
other hand, one has to be concerned with what is h
pening with the product of operators when some tra
formations are performed. State vectors can be tr
formed into other state vectors. Density operators a
-

can be transformed. We will consider linear transf
mations of the density operators. The density oper
has nonnegative eigenvalues. In any representation
agonal elements of density matrix have physical me
ing of probability distribution function.

Density operator can be decomposed as a
of eigenprojectors with positive coefficients equal
its eigenvalues. Each one of the projectors defi
a pure state if eigenvalues except the zero one,
not degenerate. There exists a basis in which e
eigenprojector of rank one is represented by a diag
matrix of rank one with only one matrix eleme
equal to one and all other matrix elements equa
zero. Other density matrices with similar propert
belong to the orbit of the unitary group acting
the starting eigenprojector. The number of disti
nonzero eigenvalues and their value determines
class of the orbit. Since density matrices of higher r
belong to an appropriate orbit of a convex sum of
different diagonal eigenprojectors (in special bas
we may say that generic density matrices belong
the orbits of the unitary group acting on the diago
density matrices which belong to a Cartan subalge
of the Lie algebra of the unitary group.

3. Semigroup of linear positive maps

If the initial density matrixρ is diagonal, i.e., it be
longs to a Cartan subalgebra of the Lie algebra of
unitary group, the diagonal elements of the obtai
matrix ρU give a “smoother” probability distribution
than the initial one. A set of transformations prese
ing previously stated properties may be given in
form (see[26,27])

ρ0 → ρV = LV ρ0 =
∑

k

Vkρ0V
†
k ,

(4)
∑

k

V
†
k Vk = 1.

Here by definitionV
†
k is Hermitian conjugate in

terms of the standard scalar product. In the ab
equations, the operatorsVk are not uniquely define
out ofLV . An orthogonal transformation on the ind
will leave the equations unchanged. For example
Vk (k = 1,2, . . . ,N) are taken as square roots
orthogonal projectors onto complete set ofN state,
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the map provides the map of the density matrixρ0
onto diagonal density matrixρ0d which has the sam
diagonal elements asρ0 has. In this case, the matric
Vk have the only nonzero matrix element which
equal to one. Such a map may be called “decohere
map” because it removes all nondiagonal eleme
of the density matrixρ0 killing any phase relations
In quantum information terminology, one uses a
the name “phase damping channel”. More gene
map may be given if one takesVk as N generic
diagonal density matrices, in which eigenvalues
obtained byN circular permutations from the initia
one. Due to this map, one has a new matrix w
the same diagonal matrix elements but with chan
nondiagonal elements. The purity of this matrix
smaller then the purity of the initial one. This mea
that the map is contractive. All diagonal matrices w
the same diagonal elements up to permutations be
to a given orbit of the unitary group.

For a large number of terms with randomly chos
matricesVk in the sum in(4), the above map gives th
most stochastic density matrix

ρ0 → ρs = L1ρ0 = (n)−11.

For the qubit case, its four-dimensional superoper
matrix L1 can be taken as matrix with four matr
elements different from zero. These matrix eleme
are equal to 1/2. They have the labelsL11, L14, L41,
L44.

The positive map is called “not completely po
tive” if in superoperator form its matrix acting on ve
tor �ρ has the following expression:

L =
∑

k

Vk ⊗ V ∗
k −

∑
s

vs ⊗ v∗
s ,

∑
k

V
†
k Vk −

∑
s

v†
s vs = 1.

An example of such a map is given by the posit
map that connects the positive density matrix with
transpose (or complex conjugate). For example, in
qubit case this map can be presented as the conne
of the matrixρ with its transpose of the form

ρ → ρtr = ρ∗

= 1

2
(1 · ρ · 1+ σ1ρσ1 − σ2ρσ2 + σ3ρσ3),

whereσ1, σ2, andσ3 are the standard Pauli matrice
There is no unitary transform connecting the matri
n

ρ and ρ∗ for all ρ. (But for any fixedρ, there is a
unitary transformation depending onρ.)

There is noncompletely positive map in theN -di-
mensional case, which is given by the formula (
someε)

ρ → ρs = −ερ + 1+ ε

N
1N.

In quantum information terminology, it is called “d
polarizing channel”.

For the qubit case, the matrix form of this map is

(5)Lε =




1−ε
2 0 0 1+ε

2
0 −ε 0 0

0 0 −ε 0
1+ε

2 0 0 1−ε
2


 .

Thus, we have constructed the matrix represe
tion of the positive map of density operators of t
spin-1/2 system. This particular set of matrices p
vides a representation of the semigroup of real nu
bers−1 � ε � 1. If one considers the productε1ε2 =
ε3, the resultε3 belongs to the semigroup. This set
matrices is a subsemigroup of the semigroup of all
ear positive maps. Only two elements 1 and−1 of the
semigroup have the inverse. These two elements f
the finite subgroup of the semigroup. The semigro
itself without elementε = 0 can be embedded into th
group of real numbers with natural multiplication ru
Each matrixLε has an inverse element in this gro
but all the parameters of the inverse elements live
of the segment−1,1. The group of the real numbe
is commutative. The matrices of the nonunitary rep
sentation of this group commute too. It means that
have nonunitary reducible representation of the se
group which is also commutative. To construct t
representation, one needs to use the map of mat
on the vectors discussed in the previous section.

In some cases, the purity parameterµ = Trρ2

after performing the positivemap generically become
smaller. There are maps for which the purity param
is preserved, for example,

(6)ρ → ρtr, ρ → −ρ + 2

N
1.

The linear positive maps include also unitary tra
form of density matrices. There are maps which p
vide dilation. For qubit system, matrix of superope
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(7)L =




1 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0


 ,

acting on arbitrary vector�ρ0 corresponding to a
density matrixρ0 gives the pure state with densi
matrix

(8)ρf =
(

1 0

0 0

)
.

This is a “pin map”[28] and it maps every densit
matrix onto a fixed density matrix. For the matricesLε

the inverse matrices exist forε �= 0. But these inverse
matrices do not provide positive trace preserv
maps.

One has also for completely positive maps

ρ → ρ′ =
∑

k

ρ′
k, ρ′

k = VkρV
†
k ,

(9)
∑

k

V
†
k Vk = 1.

One can construct another positive map[29] called
entanglement breaking map[30]

(10)ρ → ρ′ =
∑

k

rk Tr(Rkρ),

where rk are density matrices andRk are posi-
tive operators satisfying the normalization conditi∑

k Rk = 1.
The entanglement breaking map is a positive m

There exist some special cases of completely pos
maps. For example,

(11)ρ → −ερ + 1+ ε

N
ρ

differs from the depolarizing map because the un
operator is replaced by the density operator. Ano
map reads

(12)ρ → 1− diagρ

N
.

The decoherence map (phase damping map) of
kind

(13)ρij →
{

ρij , i = j,

λρij , i �= j,
where|λ| < 1 provides contractive map with uniform
change of off-diagonal matrix elements of the dens
matrix. All the positive maps described can be co
bined with each other. The combined maps form a
which has the structure of a semigroup. The supero
ator matrices describing all these combined maps y
the matrix representation of the semigroup.

4. Separable systems and separability criterion

For bipartite system, according to the definitio
the system density matrix is called separable but
simply separable, if there is decomposition of the fo

ρAB =
∑

k

pk

(
ρ

(k)
A ⊗ ρ

(k)
B

)
,

(14)
∑

k

pk = 1, 1 � pk � 0.

This is Hilbert’s problem of biquadrates. Is a positi
biquadratic the positive sum of products of posit
quadratics? In this formula, one may use also s
over two different indices. Using another labelling
such sum over two different indices, this sum can
always represented as the sum over only one in
The formula does not demand orthogonality of
density operatorsρ(k)

A andρ
(k)
B for different k. Since

every density matrix is a convex sum of pure dens
matrices, one could demand thatρ

(k)
A andρ

(k)
B be pure.

There are several criteria for the state to be sep
ble. We suggest in the next sections a new appro
to the problem of separability and entanglement ba
on the tomographic probability description of quantu
states. The states which cannot be represented in
form(14)by definition are called entangled states[16].
Thus the states are entangled if in formula(14) at
least one coefficient (or more)pk is negative which
means that the positive ones can take values gre
than unity.

As an example, we consider the generalized We
state of bipartite spin-1/2 system. For the generali
Werner state with the density matrix

(15)ρAB =




1+p3
4 0 0 p1−p2

4

0 1−p3
4

p1+p2
4 0

0 p1+p2
4

1−p3
4 0

p1−p2 1+p3


 ,
4 0 0 4
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there exists the known result. Namely, for the stand
Werner state (p1 = 2p, p2 = 0, p3 = p) and forp <

1/3 the state is separable and forp > 1/3 the state is
entangled, since in the decomposition of the den
operator in the form(14) the state

(16)ρ0 = 1

4




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




has the weightp0 = (1 − 3p)/4. For p > 1/3, the
coefficientp0 becomes negative.

One can show that for generalized Werner s
the condition for separability becomes|p1| + |p2| +
|p3| � 1. According to the partial transpose crit
rion [19], the system is separable if the partial tra
pose of the matrixρAB (14) gives a positive densit
matrix. In general, this condition is necessary but
sufficient. We will discuss the condition of separabil
using the tomographic description of spin states.

5. Spin tomography and unitary spin tomograms

Below we review the tomography of spin states
a given value of spin.

The tomographic probability (spin tomogram) co
pletely determines the density matrix of a spin sta
It has been introduced in[31–33]. The tomographic
probability for the spin-j state is defined via the den
sity matrix by the formula

〈jm|D†(g)ρD(g)|jm〉 = W(j)
(
m, �0(g)

)
,

m = −j,−j + 1, . . . , j,

(17)�0(g) = (sinθ cosϕ,sinθ sinϕ,cosθ),

whereD(g) is the matrix ofSU(2)-group representa
tion depending on the group elementg determined by
three Euler angles. The unit vector�O(g) depends on
the group elementg. Below we will omit the explicit
dependence ong. There are only a finite number of e
ements in the density matrix but there are an infin
of the spin tomograms. So there ought to be an infi
number of sum rules.

One can introduce unitary spin tomogramsw(m,u)

by replacing in above formula(17) the matrixD(g)

by generic unitary matrixu. For example, in the cas
of higher spinsj = 1,3/2,2, . . . , the n×n projector
matrix

(18)ρ1 =




1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 · · · 0


 , n = 2j + 1

has the unitary spin tomogram denoted as

w1(j, u) = |u11|2, w1(j − 1, u) = |u12|2, . . .

(19)w1(−j,u) = |u1n|2.
Other projectors

(20)ρk =




0 0 . . . . . . 0
...

...
...

...
...

0 . . . 1 . . . 0
...

...
...

...
...

0 0 . . . . . . 0




,

in which unity is located in the(k, k)-entry, have the
tomogramwk(m,u) of the form

wk(j,u) = |uk1|2, wk(j − 1, u) = |uk2|2, . . .

(21)wk(−j,u) = |ukn|2.
By using the Weyl trace of matrices, and matricesEjk

with (j, k) entries equal to one, all others being ze
any density matrix can be written in the form

(22)ρ =
∑
jk

ρjkEjk,

the unitary spin tomogram can be presented in form
the decomposition

(23)wρ(m,u) =
∑
jk

ρjkwjk(m,u),

wherewjk(m,u) are basic unitary spin tomograms
transition operatorsEjk of the form

(24)wjk(m,u) = 〈jm|u†Ejku|jm〉.
If one uses a map

(25)ρ → ρ′,

the unitary spin tomogram is transformed as

(26)wρ(m,u) → w′
ρ(m,u) =

∑
jk

ρ′
jkwjk(m,u).
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If the transform(25) is linear

(27)ρjk → ρ′
jk =

∑
ps

Ljk,psρps,

the transform of the tomogram reads

(28)w′
ρ(m,u) =

∑
ps

ρpsw
′
ps(m,u).

Here

(29)w′
ps(m,u) =

∑
jk

Ljk,pswjk(m,u)

is the linear transform of the basic tomograms of
operatorsEjk .

In the case of infinite-dimensional Hilbert space
photon states, the construction of the tomogram
be applied also. We construct the tomogramw(m,u)

using the same formula(17) where the state|jm〉 is
replaced by the Fock state|m〉 (m = 0,1,2, . . .) and
the matrixD(j) is replaced by infinite-dimensiona
unitary matrixu.

For illustration, we can consider the tomogram o
specific spin state. If the state is pure state with den
matrix

(30)ρ+ =
(

1 0

0 0

)
,

the spin tomogramW(m, �0), wherem = ±1/2, has the
values

W+
(

1

2
, �0

)
= cos2

θ

2
,

(31)W+
(

−1

2
, �0

)
= sin2 θ

2
.

6. Tomogram of the group U(n) for a bipartite
system

In this section we discuss in more detail t
separability criterion using the introduced notion o
unitary spin tomogram. We focus on bipartite syste

In order to formulate a criterion of separability for
bipartite spin system with spinj1 andj2, we introduce
the tomogram for the groupU(n), where

n = n1n2, n1 = 2j1 + 1, n2 = 2j2 + 1.
Let us denoteg(n) as parameters of the group e
ment. Let us define theU(n) tomogram using the ba
sis |j1, j2,m1,m2〉 namely for fundamental represe
tation, i.e.,

w(j1,j2)
(
m1,m2, g

(n)
)

= 〈j1, j2,m1,m2|U†(g(n)
)
ρU

(
g(n)

)
(32)× |j1, j2,m1,m2〉.

This unitary spin tomogram becomes the spin-tom
gram[34] for theg(n) ∈ U(2) ⊗ U(2) subgroup of the
groupU(n). The properties of this tomogram follo
from its definition as the joint probability distributio
of two random spin projectionsm1,m2 depending on
g(n) parameters.

One has the normalization condition

(33)
∑

m1,m2

w(j1,j2)
(
m1,m2, g

(n)
) = 1.

Also all probabilities are nonnegative, i.e.,

(34)w(j1,j2)
(
ml,m2, g

(n)
)
� 0.

Due to this, one has

(35)
∑

m1,m2

∣∣w(j1,j2)
(
ml,m2, g

(n)
)∣∣ = 1.

For the spin-tomogram, the group element is
ordered pair of orthogonal group elements

(36)g(n) → ( �O1, �O2)

and

(37)w(j1,j2)
(
ml,m2, g

(n)
) → W(m1,m2, �O1, �O2).

The separability and entanglement condition can b
considered from the viewpoint of the properties o
U(n) tomogram. If the two-spinn × n density matrix
ρ is separable, it remains separable under the ac
of the generic positive map of the subsystem den
matrices. This map can be described as follows.

Let ρ be mapped onto vector�ρ with n2 compo-
nents. The components are simply ordered rows of
matrixρ, i.e.,

(38)�ρ = (
ρ11, ρ12, . . . , ρ1n, ρ21, ρ22, . . . , ρnn

)
.

Let then2 × n2 matrix of superoperatorL be taken in
the form

L =
∑

s

psL
(j1)
s ⊗ L

(j2)
s , ps � 0,

∑
s

ps = 1,
(39)
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where then1 × n1 matrixL
(j1)
s and then2 × n2 matrix

L
(j2)
s describe the positive maps of density matrices

spin-j1 and spin-j2 subsystems, respectively. We m
vector �ρ onto vector�ρL

(40)�ρL = L �ρ
and construct then × n matrixρL, which correspond
to the vector�ρL. Then we consider theU(n) tomo-
gram of the matrixρL, i.e.,

w
(j1,j2)

L

(
ml,m2, g

(n)
)

= 〈j1, j2,m1,m2|U†(g(n)
)
ρLU

(
g(n)

)
(41)× |j1, j2,ml,m2〉.

Using this tomogram we introduce the function

(42)F
(
g(n),L

) =
∑

m1,m2

∣∣w(j1,j2)
L

(
m1,m2, g

(n)
)∣∣.

For separable states, this function does not depen
the U(n)-group parameterg(n) and on positive-map
matrix elements of the matrixL.

For the normalized density matrixρ of the bipartite
spin-system, this function reads

(43)F
(
g(n),L

) = 1.

For entangled states, this function depends ong(n)

and L and is not equal to unity. This property ca
be chosen as a necessary and sufficient condition
separability of bipartite spin-states.

We introduce also tomographic purity parame
µk of kth order by the formula

µk

(
g(n),L

) =
∑
m1m2

∣∣w(j1,j2)
L

(
m1,m2, g

(h)
)∣∣k, k > 1.

The tomographic purity parameters can take val
larger than unity for entangled states for some se
group parametersL. For identity semigroup elemen
and specificg(n)

0 unitary transform diagonalizing th
density matrix, the tomographic purityµ2 is identical
to purity parameter of the stateρ. The parameters fo
k = 2,3, . . . , correspond to Trρk+1.

In fact, the formulated approach can be exten
to multipartite systems too. The generalization is
follows.

GivenN spin-systems with spinsj1, j2, . . . , jN , let
us consider the groupU(n) with

(44)n =
N∏

nk, nk = 2jk + 1.
k=1
Let us introduce the basis

(45)| �m〉 =
N∏

k=1

|jkmk〉

in the linear space of the fundamental representatio
the groupU(n). We define now theU(n) tomogram of
a state with then × n matrixρ:

(46)wρ

( �m,g(n)
) = 〈 �m|U†(g(n)

)
ρU

(
g(n)

)| �m〉.
For a positive Hermitian matrixρ with Trρ = 1, we
formulate the criterion of separability as follows.

Let the map matrixL be of the form

L =
∑

s

ps

(
N∏

k=1

⊗L(k)
s

)
, ps � 0,

(47)
∑

s

ps = 1,

whereL
(k)
s is the positive-map matrix of the densi

matrix of the kth spin subsystem. We construct t
matrix ρL as in the case of the bipartite system us
the matrixL. The function

(48)F
(
g(n),L

) =
∑

�m

∣∣wρL

( �m,g(n)
)∣∣ � 1

is equal to unity for separable state and depend
the matrixL andU(n)-parametersg(n) for entangled
states. Thus, for all separable states, one has equ
in relation(48). If the state is nonseparable, one c
conjecture that there exist some elements of semig
L and some unitary group elements for which s
(48) is bigger than unity.

This criterion can be applied also in the case
continuous variables, e.g., for Gaussian states of p
tons. Function(48)can provide the measure of enta
glement. Thus one can use the maximum value (
mean value) of this function as a characteristic of en
tanglement. In the previous section, we considered
generalized Werner states. Using the above criter
one can get the domain of values of the paramete
the states for which one has separability or entan
ment. In fact, the separability criterion is related to
following positivity criterion of finite or infinite (trace
class) matrixA. The matrixA is positive iff the sum
of moduli of diagonal matrix elements of the matr
UAU† is equal to a positive trace of the matrixA for
an arbitrary unitary matrixU .
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7. Bipartite system and depolarizing map

Let us discuss the property of tomogram of bipar
system with density matrixρ12. We consider now the
tomogram of density matrix using depolarizing m
to detect the entanglement. If the density matrix
separable, than the depolarizing map of the sec
subsystem provides the following density matrix

(49)ρ12 → ρε = −ερ12 + 1+ ε

N2
ρ(1) ⊗ 12,

where

(50)ρ(1) = Tr2(ρ12)

and 12 is theN2-dimensional unity matrix. Then on
has the property of unitary spin tomogram

wε

(
m1,m2, g

(n)
)

(51)

= −εw12
(
m1,m2, g

(n)
) + 1+ ε

N2
w

(
m1,m2, g

(n)
)
,

whereg(n) is matrix of U((2j1 + 1)(2j2 + 1)) uni-
tary transform;wε(m1,m2, g

(n)) is the tomogram
of transformed density matrix of bipartite syste
w(m1,m2, g

(n)) is the unitary spin tomogram of tens
product of partial traceρ(1) over the second subsy
tem’s coordinates of the density matrixρ12 and unity
operator 12; w12(m1,m2, g

(n)) is the unitary spin to-
mogram of the state with density matrixρ12.

The generic criterion of separability for the part
case of depolarizing map means

j1∑
m1=−j1

j2∑
m2=−j2

∣∣∣∣ 1+ ε

2j2 + 1
w

(
m1,m2, g

(n)
)

(52)− εw12
(
m1,m2, g

(n)
)∣∣∣∣ = 1

for arbitraryg(n) andε.
For Werner states, the tomogram of transform

state (in this case, it means thatn = 4 andp → −εp)
is related to the initial-state tomogramwW

wε

(
m1,m2, g

(n)
)

(53)= −εwW

(
m1,m2, g

(n)
) + 1+ ε

4
.

The criterion of separability yields

(54)
1/2∑

m1,m2=−1/2

∣∣∣∣1+ ε

4
− εwW

(
m1,m2, g

(n)
)∣∣∣∣ = 1.

Equality(54) takes place for arbitraryg(n) andε only
for |p| � 1/3. Forp > 1/3, the above sum depends
g(n) andε and it is larger than one.

It is obvious if one calculates the tomogram us
the element of the unitary group of the form

(55)g
(n)
0 =




0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0


 .

At this point, the sum(54) reads

1/2∑
m1,m2=−1/2

∣∣∣∣1+ ε

4
− εwW

(
m1,m2, g

(n)
)∣∣∣∣

(56)= 3

∣∣∣∣1+ εp

4

∣∣∣∣ +
∣∣∣∣1− 3pε

4

∣∣∣∣.
One can see that this sum equals to one independ
on the value of parameter|ε| � 1 only for values
|p| � 1/3. For p = 1, the maximum value of th
sum equals 2= (1 + 3ε)/2 (ε = 1). This value can
characterize the degree of entanglement of We
state. For generalized Werner state, sum(54) reads

1

4

{∣∣1+ ε(p1 − p2 − p3)
∣∣ + ∣∣1+ ε(p2 − p1 − p3)

∣∣
+ ∣∣1+ ε(p3 − p1 − p2)

∣∣
+ ∣∣1+ ε(p1 + p2 + p3)

∣∣}.
This sum is equal to one for anyε, if |p1| + |p2| +
|p3| � 1. For ε = 1, we have a measure of entang
ment.

8. Qutrit states

One can also check the criterion using example
two-qutrit pure entangled state with wave function

(57)|ψ〉 = 1√
3

1∑
m=−1

|um〉|vm〉.

The sum defining the criterion of separability f
specificU(9) transformg

(n)
0 which is diagonalizing
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the Hermitian matrixLε|ψ〉〈ψ| reads

(58)F
(
ε, g

(n)
0

) = 8

∣∣∣∣1+ ε

9

∣∣∣∣ +
∣∣∣∣1− 8ε

9

∣∣∣∣.
For 1/2 > ε > 1/8, this sum is larger than one, th
means that the state is entangled. Forε = 1/2, the
function has maximum and it is equal to 5/3.

The entanglement of the considered state can
detected using partial transposition criterion too.

For the case of pure entangled state of two-qu
system with the wave function

(59)|Φ〉 = 1√
2

(|u1〉|v1〉 + |u0〉|v0〉
)
,

in which the states with spin projectionsm = −1
do not participate, the partial transpose criterion d
also detect entanglement.Our criterion yields for
specificU(9) transformg

(n)
0 , which diagonalizes the

Hermitian matrixLε|Φ〉〈Φ| the following expression
for the functionF(ε, g

(n)
0 ), which reads

(60)F
(
ε, g

(n)
0

) = 5
|1+ ε|

6
+ |1− 5ε|

6
.

The function takes maximum value forε = 1/2
that equals to 3/2. This value is smaller than 5/3 of
the previous case. It corresponds to our intuition t
the superposition of three product states of two qu
system is more entangled than the superposition
only two such product states.

9. Multipartite system

The criterion can be extended to multipartite s
system.

We have to apply forn-partite system the transform
of the density matrixρ with superoperator of the form

(61)L�ε = L(1)
ε1

⊗ L(2)
ε2

⊗ · · · ⊗ L(n)
εn

,

where the transformL(k)
εk acts as depolarizing map o

thekth subsystem. If the state is separable

ρ =
∑

k

pkρ
(1)
k ⊗ ρ

(2)
k ⊗ · · · ⊗ ρ

(n)
k ,

(62)
∑

k

pk = 1, pk � 0,
each of the termsρ(j)
k (j = 1,2, . . . , n) in the tensor

product is replaced by the term

(63)ρ
(j)

k → −εjρ
(j)

k + 1+ εj

Nj

1j .

This means that the transformed density matrix rea

(64)

ρ → L�ερ =
∑

k

pk

[
n∏

j=1

⊗
(

−ερ
(j)
k + 1+ εj

Nj

1j

)]
.

The unitary spin tomogram of the transformed den
matrix takes the form(�ε = ε1, ε2, . . . , εn)

w�ε
(
m1,m2, . . . ,mn, g

(N)
)

(65)=
∑

k

pkw
(k)
pr

(
m1,m2, . . . ,mn, g

(N), �ε),
whereN = ∏n

s=1(2js + 1) and elementg(N) is the
unitary matrix inN -dimensional space. The tomogra
w

(k)
pr (m1,m2, . . . ,mn, g

(N), �ε) is the joint probability
distribution of spin projectionsms = −js,−js +
1, . . . , js , which depends on the unitary transformg(N)

in the state with density matrix

(66)ρk =
n∏

s=1

⊗
(

−εsρ
(s)
k + 1+ εs

Ns

1s

)
.

For the elements

g(N) =
n∏

s=1

⊗us(2js + 1),

whereus(2js + 1) is unitary matrix, the tomogram
(65) takes the form of sum of the products

w�ε
(
m1,m2, . . . ,mn, g

(N)
pr

)
(67)=

∑
k

pk

n∏
s=1

wk

(
ms,us(2js + 1), εs

)
,

with wk(ms,us(2js + 1), εs) being the unitary spin
tomograms of thesth spin subsystem with transforme
density matrixLεsρ

(s)
k .

For a separable state of the multipartite system,
has

(68)
∑

m1,...,mn

∣∣w�ε
(
m1,m2, . . . ,mn, g

(N)
)∣∣ = 1

for all elementsg(N) and all parameters�ε.
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For entangled state, there can be some value
parameters�ε and group elementsg(N) for which the
sum is larger than one.

10. Conclusions

We summarize the main results of the Letter.
The new type of tomographic probability distri

utions describing state of multipartite spin system
which depend on unitary group elements, is int
duced. For a partial case of the unitary group elem
expressed in terms of tensor product of matrices o
reducible representation of rotation group, the int
duced tomographic probability distribution coincid
with spin tomogram of a spin-system state.

We have given a criterion for the separability
multipartite spin system. The criterion is called “tom
graphic criterion” of separability. The suggested cri
rion is connected with properties of the unitary sp
tomogram given by function(48). For entangled den
sity matrix, the function depends on unitary group p
rametersg and the parameters of positive map se
group L. For separable density matrix, the functi
equals to unity. We applied the particular case of
positive map (depolarizing map) to detect entang
ment of some qubit and qutrit states. Suggested
terion differs from available ones. To apply this crit
rion, one needs to calculate the sum of moduli of
agonal matrix elements of product of three matric
One of the matrices is Hermitian and two others
unitary ones. This procedure doesnot need the cal-
culation of the eigenvalues of a matrix. We also
troduced the concept of tomographic purity which
a limit case coincides with usual purity parameter
mixed quantum state. The structure of positive (incl
ing not completely positive) map semigroup with e
mentsL needs further investigation.
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