Available online at www.sciencedirect.com

SCIENCE @DIRECT“
PHYSICS LETTERS A

ELSEVIER Physics Letters A 327 (2004) 353-364

&5

www.elsevier.com/locate/pla

Positive maps of density matrix and a tomographic criterion
of entanglement

V.I. Man’ko ®*, G. Marmo®, E.C.G. Sudarshd&nF. Zaccari&

2 PN. Lebedev Physical Ingtitute, Leninskii Prospect, 53, 119991 Moscow, Russia
b Dipartimento di Scienze Fisiche, Universita “ Federico 11" di Napoli and Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,
Complesso Universitario di Monte Sant Angelo, Via Cintia, 1-80126 Napoli, Italy
€ Physics Department, Center for Particle Physics, University of Texas, Austin, TX 78712, USA

Received 12 April 2004; accepted 3 May 2004
Available online 17 May 2004
Communicated by V.M. Agranovich

Abstract

The positive and not completely positive maps of density matrices are discussed. Probability representation of spin states
(spin tomography) is reviewed ané( N)-tomogram of spin states is presented. Unitéyo)-group tomogram of photon state
in Fock basis is constructed. Notion of tomographic purity of spin states is introduced. An entanglement criterion for multipartite
spin-system is given in terms of a function depending on unitary group parameters and semigroup of positive map parameters.
Some two-qubit and two-qutrit states are considered as examples of entangled states using depolarizing map semigroup.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction difference is clearly pointed out by the phenomenon
of entanglement. The notion of entanglem@it is
States in quantum mechanics are associated withrelated to the quantum superposition rule for the states
vectors in Hilbert spacfl] in the case of pure states. of subsystems of a given multipartite system. For pure
Mixed states are associated with density matrices States, the notion of entanglement and separability can
[2,3]. In classical statistical mechanics, the states are be given as follows.
associated with joint probability distributions in phase  If the wave functior{5] of a state of a bipartite sys-
space. There is an essential difference in the concepttem is represented as the product of two wave func-
of state in classical and quantum mechanics. This tions depending on coordinates of the subsystems, the
state is simply separable; otherwise, the state is simply
- entangled. An intrinsic approach to the entanglement
E?::fgggf&?%f;zio@sd ebedenry measure was suggested[B]. The measure was in-
vladimir.manko@na.infn.it (V.. Ma.m’ko), m.ar;no@na.infn.it trodu_ced as the distance between the system density
(G. Marmo), sudarshan@physicexas.edu (E.C.G. Sudarshan), matrix and the tensor product of the subsystem states.
zaccaria@na.infn.it (F. Zaccaria). There are several other different characteristics and
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measures of entanglement considered by several au-completely positive maps of density matridé$,27]
thors[7—15]. Each of the entanglement measures de- play an important role in studying the entanglement
scribes some degree of correlation between the sub-phenomenon and they induce specific transformation
systems’ properties. properties of the tomograms.

The notion of entanglement is not an absolute no-  The aim of this work is to formulate (in view of
tion for a given system but depends on the decomposi- the tomographic approadhi8]) necessary and suffi-
tion into subsystems. The same quantum state can becient conditions of separability and entanglement of
considered as entangled, if one kind of division of the multipartite systems in terms of properties of the quan-
system into subsystems is given, or as completely dis- tum tomogram. We apply the action of specific posi-
entangled, if another decomposition of the system into tive map (so-called depolarizing channel) to detect the
subsystems is considered. entanglement. Then we foswn properties of entan-

For instance, the state of two continuous photon glement and separability of a bipartite system using
quadratures can be entangled in Cartesian coordinatespin tomograms3J(2)-tomograms) and tomograms
and disentangled in polar coordinates. of the U (NV)-group for two qubit and two quitrit states.

A review of different approaches to the entangle- The idea of the approach suggested can be summa-
ment notion and entanglement measures is given in rized as following.

[16] where the approach to describe entanglementand The positive but not completely positive linear
separability of composite systems is based, e.g., on en-maps of a subsystem density matrix do preserve the
tropy methods. Another detailed review of entangle- positivity of separable density matrices of the compos-
ment problem is given ifil7]. In [18] a tomographic  ite system. These maps contain also maps which do
approach to entanglement of spin-system states wasnot preserve the positivity of density matrices of en-
suggested. tangled states for the composite system. It means that

The notion of entangled states has attracted a lot the set of all linear positive maps of the subsystem den-
of efforts to find criterion to detect entanglement and sity matrix will create from the initial entangled posi-
to find quantitative characterization of entanglement. tive density matrix of composite system a set of Her-
A criterion based on the use of the partial transpose mitian matrices including the matrices with negative
transform[19] of subsystem density matrix (complex eigenvalues. To detect the entanglement we use the to-
conjugation of the subsystem density matrix or its mograms of the obtained Hermitian matrices. The to-
time reverse) provides the necessary and sufficient mograms of state density matrices (state tomograms)
condition of separability othe system of two qubits  are standard probabilities. In view of this the tomo-
and qubit-qutrit systenf20]. Recently it was pointed  grams of the obtained Heitian matrices correspond-
out that the tomographic approach to reconstruct the ing to initial separable state preserve all the proper-
Wigner function of a quantum statf21-23] can ties of the probability representation including posi-
be developed to consider the positive probability tivity and normalization. But in case of entangled state
distribution (tomogram) as an alternative to density the tomograms of the obtained Hermitian matrices can
matrix (or wave function) because the complete set take negative values. The different behaviour of tomo-
of tomograms contains the complete information on grams of separable and entangled states of composite
the quantum stat¢24]. This representation (called systems under the action of positive maps of the sub-
probability representation) was constructed also for system density matrix provides the tomographic crite-
spin states including a bipartite system of two spins. rion of the separability.

Up to now the problem of entanglement was not
discussed in the tomographic representation in detail.
Some remarks on tomograms and entanglement of
photon states in the process of Raman scattering
were done in[25]. The tomographic approach has
the advantage of dealing with positive probabilities
and one deals with standard probability distributions ~ When matrices represent states it may be conve-
which are positive and normalized. The positive and nient to identify them with vectors. In this case, a

2. Density operatorsasvectorsand thelLie
algebra of the unitary group
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density matrix can be considered as a vector whose can be transformed. We will consider linear transfor-
components satisfy additional properties. Linear trans- mations of the density operators. The density operator
formations of the density matrices called superopera- has nonnegative eigenvalues. In any representation, di-
tors can be interpreted as matrices acting on the vectoragonal elements of density matrix have physical mean-
space. It means that density matrices—vectors undergo-ing of probability distribution function.

ing linear transformations are acted on by the matrices  Density operator can be decomposed as a sum
representing the action of the superoperators on theof eigenprojectors with positive coefficients equal to

linear space. Given a rectangular matsik with ele-
mentsM;;, wherei = 1,2, ..., n andd =12,....m,
one can consider the matrix as a vectdrwith N =
nm components constructed by the following rule:

its eigenvalues. Each one of the projectors defines
a pure state if eigenvalues except the zero one, are
not degenerate. There exists a basis in which every
eigenprojector of rank one is represented by a diagonal

matrix of rank one with only one matrix element
equal to one and all other matrix elements equal to
zero. Other density matrices with similar properties
belong to the orbit of the unitary group acting on
Then x n density matrixo has matrix elements the starting eigenprojector. The number of distinct
. nonzero eigenvalues and their value determines the
Pik = Py Tro=1, {Ylely) 2 0. @ class of the orbit. Since density matrices of higher rank

Since the density matrix is Hermitian, it can always Pelong to an appropriate orbit of a convex sum of the
be identified as an element of the convex subset of different diagonal eigenprojectors (in special basis),
the linear space associated with the Lie algebra of the W& may say that generic density matrices belong to

U(n) group, on which the group/(n) acts with the the orbits of the unitary group acting on the diagonal
adjoint representation density matrices which belong to a Cartan subalgebra

of the Lie algebra of the unitary group.

Mz = May,
Mm+l=M217 ey

M2=M12» Mm:Mlm’
MN = Mup. (1)

p— pu=UpU". (3

If we consider map of density matrix onto vector
o — p the above adjoint representation transform
formula(3) yields

3. Semigroup of linear positive maps

If the initial density matrixp is diagonal, i.e., it be-
longs to a Cartan subalgebra of the Lie algebra of the
unitary group, the diagonal elements of the obtained
It turns out that there exists interesting connection of matrix p;; give a “smoother” probability distribution
quantum states (density matrices) with orbits of the than the initial one. A set of transformations preserv-
unitary group. For finitez-dimensional system, the ing previously stated properties may be given in the
Hermitian states and the Hermitian observables may form (se€26,27)
be mapped into the Lie algebra of the unitary group
U (n). The states correspond to nonnegative Hermitian po — py = Ly po = Z VkpoVkT,
operators, observables can be associated with both k
types of operators, including nonnegative and nonpos- Z vivi=1
Lo . Kk Vk= 41 (4)
itive ones. The space of states is therefore a convex- P
linear space which, in principle, is not equipped with
an inner product structure. Due to this, transformations Here by definition V,:r is Hermitian conjugate in
in the linear space of states are not required to preserveterms of the standard scalar product. In the above
any product structure. In the set of observables, on the equations, the operatofg are not uniquely defined
other hand, one has to be concerned with what is hap-out of Ly . An orthogonal transformation on the index
pening with the product of operators when some trans- will leave the equations unchanged. For example, if
formations are performed. State vectors can be trans-V; (k = 1,2,..., N) are taken as square roots of
formed into other state vectors. Density operators also orthogonal projectors onto complete set ¥f state,

p— pu=UUp.
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the map provides the map of the density maipix
onto diagonal density matrigg; which has the same
diagonal elements ag has. In this case, the matrices
Vi have the only nonzero matrix element which is
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o and p* for all p. (But for any fixedp, there is a
unitary transformation depending @n)

There is noncompletely positive map in thedi-
mensional case, which is given by the formula (for

equal to one. Such a map may be called “decoherencesomes)

map” because it removes all nondiagonal elements
of the density matrixop killing any phase relations.

In quantum information terminology, one uses also
the name “phase damping channel’. More general
map may be given if one takek, as N generic
diagonal density matrices, in which eigenvalues are
obtained byN circular permutations from the initial
one. Due to this map, one has a new matrix with
the same diagonal matrix elements but with changed
nondiagonal elements. The purity of this matrix is
smaller then the purity of the initial one. This means
that the map is contractive. All diagonal matrices with

1+¢

p—> ps=—¢ep+ 1y.
In quantum information terminology, it is called “de-
polarizing channel”.

For the qubit case, the matrix form of this map is

1— 1
20 0 0
0 —¢ 0 O
— 5
¢ 0 0 —¢ O ®)
1 1—
3 0 0

the same diagonal elements up to permutations belong  Thus, we have constructed the matrix representa-

to a given orbit of the unitary group.

For a large number of terms with randomly chosen
matricesV;, in the sum in(4), the above map gives the
most stochastic density matrix

0o — ps = Lipo= (n) 1.

tion of the positive map of density operators of the

spin-1/2 system. This particular set of matrices pro-

vides a representation of the semigroup of real num-
bers—1 < e < 1. If one considers the produgte; =

3, the resultez belongs to the semigroup. This set of

matrices is a subsemigroup of the semigroup of all lin-

For the qubit case, its four-dimensional superoperator €ar positive maps. Only two elements 1 antl of the

matrix L1 can be taken as matrix with four matrix
elements different from zero. These matrix elements
are equal to 12. They have the labels11, L14, L41,
Lya.

The positive map is called “not completely posi-
tive” if in superoperator form its matrix acting on vec-
tor 5 has the following expression:

E:ZVk(X)Vk*—sz@v;‘,
k s
Z VkTVk — Z v:vs =1
k K
An example of such a map is given by the positive

map that connects the positive density matrix with its
transpose (or complex conjugate). For example, in the

semigroup have the inverse. These two elements form
the finite subgroup of the semigroup. The semigroup
itself without element = 0 can be embedded into the
group of real numbers with natural multiplication rule.
Each matrixL, has an inverse element in this group
but all the parameters of the inverse elements live out
of the segment-1, 1. The group of the real numbers
is commutative. The matrices of the nonunitary repre-
sentation of this group commute too. It means that we
have nonunitary reducible representation of the semi-
group which is also commutative. To construct this
representation, one needs to use the map of matrices
on the vectors discussed in the previous section.

In some cases, the purity paramefer= Tr p?
after performing the positivenap generically becomes

qubit case this map can be presented as the connectior?ma"er' There are maps for which the purity parameter

of the matrixp with its transpose of the form

,0—>,Otr=,0*
1

2
whereo1, o2, andos are the standard Pauli matrices.
There is no unitary transform connecting the matrices

(1-p-1+01p01 — 02002 + 03003),

is preserved, for example,

(6)

The linear positive maps include also unitary trans-
form of density matrices. There are maps which pro-
vide dilation. For qubit system, matrix of superopera-

p— p" p—>—p+31
: L
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tor

o O O

1
0
0 ™

’

O O O -
o O O O

0 0

acting on arbitrary vectorgg corresponding to a
density matrixpo gives the pure state with density

matrix
(10
Pr=\o o)

This is a “pin map”[28] and it maps every density
matrix onto a fixed density matrix. For the matrides
the inverse matrices exist fer# 0. But these inverse
matrices do not provide positive trace preserving
maps.

One has also for completely positive maps

©)

)
p—p' =D pt p=VepV,,
k

Y vivi=1
k

One can construct another positive njag] called
entanglement breaking m§®0]

p—p =D rTr(Rip),
k

©)

(10)

where r; are density matrices an®; are posi-
tive operators satisfying the normalization condition
Zk R, =1.

The entanglement breaking map is a positive map.
There exist some special cases of completely positive
maps. For example,

1+¢
N
differs from the depolarizing map because the unity
operator is replaced by the density operator. Another
map reads

p— —&p+ (11)

1-—diagp
- —.
N

The decoherence map (phase damping map) of the
kind

(12)

i=],
i#]j

Pijs

Aoij, (13)

,Oij—>{
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where|)1| < 1 provides contractive map with uniform
change of off-diagonal matrix elements of the density
matrix. All the positive maps described can be com-
bined with each other. The combined maps form a set
which has the structure of a semigroup. The superoper-
ator matrices describing all these combined maps yield
the matrix representation of the semigroup.

4. Separable systemsand separ ability criterion

For bipartite system, according to the definition,
the system density matrix is called separable but not
simply separable, if there is decomposition of the form

PAB =ZPk(P )
k

dom=1 1>p>0

k

This is Hilbert's problem of biquadrates. Is a positive
biguadratic the positive sum of products of positive
quadratics? In this formula, one may use also sum
over two different indices. Using another labelling in
such sum over two different indices, this sum can be
always represented as the sum over only one index.
The formula does not demand orthogonality of the

density operatorsik) and pg‘) for differentk. Since
every density matrix is a convex sum of pure density
matrices, one could demand thé\’f) andpg‘) be pure.

There are several criteria for the state to be separa-
ble. We suggest in the next sections a new approach
to the problem of separability and entanglement based
on the tomographic probability description of quantum
states. The states which cannot be represented in the
form (14)by definition are called entangled staf&6].
Thus the states are entangled if in formylat) at
least one coefficient (or morgj, is negative which
means that the positive ones can take values greater
than unity.

As an example, we consider the generalized Werner
state of bipartite spin-1/2 system. For the generalized

Werner state with the density matrix

(k)
A

(k)

® pp

>

=

(14)

1+ps P1—D2
4 0 0 4
0 1—4173 Pljl‘Pz
PAB = 0 p1+p2 1-p3 > (15)
4 4
Pi—p2 1+ps
4 0 0 4
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there exists the known result. Namely, for the standard matrix
Werner state 1 = 2p, p2 =0, p3 = p) and forp < 10 ... 0
1/3 the state is separable and for- 1/3 the state is

entangled, since in the decomposition of the density , _ 0 , n=2j+1 (18)
operator in the fornf14) the state oo
100 00 ---0
110 1 0 O has the unitary spin tomogram denoted as
Po=— (16)
410 0 1 0 . 2 . 2
wi(Jj, u) = lu11l”, wi(j — L u) = lus2l”, ...
° 90 (—j, u) 2 (19)
has the weightpg = (1 — 3p)/4. For p > 1/3, the wil=J ) =l
coefficientpg becomes negative. Other projectors

One can show that for generalized Werner state 00 ... .0
the condition for separability becomés| + |p2| + o

|p3l < 1. According to the partial transpose crite- S : S

rion [19], the system is separable if the partial trans- p, =0 ... 1 ... 0], (20)
pose of the matrixsp (14) gives a positive density

matrix. In general, this condition is necessary but not

sufficient. We will discuss the condition of separability c o0 .. ..0

using the tomographic description of spin states. in which unity is located in thek, k)-entry, have the
tomogramwy (m, u) of the form

5. Spin tomography and unitary spin tomograms wie (j, ) = |ugal?, we(j — Low) = lugzl?, ...
wi (—j, ) = | . (21)

Below we review the tomography of spin states for
a given value of spin. By using the Weyl trace of matrices, and matriégs

The tomographic probability (spin tomogram) com- with (j, k) entries equal to one, all others being zero,
pletely determines the density matrix of a spin state. &ny density matrix can be written in the form
It has been introduced if8B1-33] The tomographic
probability for the spiny s[':;te is %jefined via gtJhepden— p= Zp/kEf"’ (22)
sity matrix by the formula ik

the unitary spin tomogram can be presented in form of

(imI D" ()pD(g)] jm) = W) (m. O(g)). the decomposition

m:—j,—j+1,...,j,

= . . . ) = j j L) L] 2
0(g) = (sind cosgp, sind sing, cosY), a7) wpm. i) jzkp,kw,k(m “ (3)

where D(g) is the matrix ofSU(2)-group representa-
tion depending on the group elemegntletermined by
three Euler angles. The unit vector(g) depends on
the group elemeng. Below we will _omit the explicit w ik (m, u) = (jm|MTEjkM|jm>. (24)
dependence og. There are only a finite number of el-

ements in the density matrix but there are an infinity T ON€ uses a map

wherew i (m, u) are basic unitary spin tomograms of
transition operatorg j; of the form

of the spin tomograms. So there ought to be an infinite o0, (25)
number of sum rules.
One can introduce unitary spin tomograim@n, u) the unitary spin tomogram is transformed as
by replacing in above formulél7) the matrix D(g)
by generic unitary matrix. For example, in the case  Wo(m, u) = wl,(m,u) =y plyw jx(m, u), (26)

of higher spinsj = 1,3/2,2, ..., thenxn projector Jk
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If the transform(25)is linear

Pjk — p}k = ZL./'k,pspps’ (27)
ps
the transform of the tomogram reads
w), (m, u) = Z PpsWy (m, u). (28)
ps
Here
wh (m,u) =Y Lk pswji(m, u) (29)

Jk
is the linear transform of the basic tomograms of the

operatorst jy.
In the case of infinite-dimensional Hilbert space of

photon states, the construction of the tomogram can

be applied also. We construct the tomograitwz, 1)
using the same formul@l7) where the statgjm) is
replaced by the Fock state:) (im =0,1,2,...) and
the matrix D(j) is replaced by infinite-dimensional
unitary matrixu.

For illustration, we can consider the tomogram of a

specific spin state. If the state is pure state with density Z |w<j1,jz) (my, ma, g(”)) |=1.

matrix

(10
p"r—oov

the spin tomograri¥ (m, 6), wherem = +1/2, has the
values

1 - 6
Wi(=,0)=coé =,

1 - 0
Wy(—2,0)=sir’ .

(30)

(31)

6. Tomogram of the group U (n) for a bipartite
system

In this section we discuss in more detail the
separability criterion usim the introduced notion of
unitary spin tomogram. We focus on bipartite systems.

In order to formulate a criterion of separability for a
bipartite spin system with spin andj,, we introduce
the tomogram for the groufd (n), where
n1=2j1+1,

n=nino, np=2j2+ 1.

/ Physics Letters A 327 (2004) 353-364
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Let us denoteg™ as parameters of the group ele-
ment. Let us define th& (n) tomogram using the ba-
sis|j1, j2, m1, m2) namely for fundamental represen-
tation, i.e.,

w2 (1, ma, g™)
= (j1. ja.m1. ma|U" (g")pU (g™)
X |j1, j2, m1, m2). (32)

This unitary spin tomogram becomes the spin-tomo-
gram[34] for the g™ e U(2) ® U(2) subgroup of the
groupU (n). The properties of this tomogram follow
from its definition as the joint probability distribution
of two random spin projections1, m»> depending on
g™ parameters.

One has the normalization condition

Z Wi (my, ma, g™) = 1. (33)
my,m2
Also all probabilities & nonnegative, i.e.,
w72 (my, ma, g™) > 0. (34)
Due to this, one has
(35)

may,m2

For the spin-tomogram, the group element is an
ordered pair of orthogonal group elements

g™ — (01, 02) (36)
and
w2 (ml, mo, g(”)) — W(mz, mo, 51, 52)- (37)

The separability and ermtglement condition can be
considered from the viewpoint of the properties of a
U (n) tomogram. If the two-spin x n density matrix
p is separable, it remains separable under the action
of the generic positive map of the subsystem density
matrices. This map can be described as follows.

Let p be mapped onto vectqgs with n2 compo-
nents. The components are simply ordered rows of the
matrix p, i.e.,

-

6= (p11. p12, .. -\ Pnn). (38)

Let then? x n? matrix of superoperatak be taken in
the form

L= Z psL§jl) ® LijZ)» Ps > 0’ Z Ps = 1,
K K

(39)

» Plns P21, P22, - -
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where ther; x ny matrix L§“) and theny x np matrix Let us introduce the basis

L§/2) describe the positive maps of density matrices of N

spin-j1 and spinj2 subsystems, respectively. We map ;) = l_[ | jxm) (45)
vectorp onto vectorpy, i1

pL=Lp (40) in the linear space of the fundamental representation of
the groupl (n). We define now th&/ (n) tomogram of

and construct the x n matrix o, which corresponds . .
a state with the x n matrix p:

to the vectorp,. Then we consider th& (n) tomo-

gram of the matrixy , i.e., wp(,;l’ g(n)) _ (},;’l|UT(g(n))pU(g(n))|r;>l>_ (46)
(J1.J2) -, . . .
wp 7 (my, ma, g(n)) For a positive Hermitian matriy with Trp =1, we
= (j1, jo, m1, m2|UT(g(”))pLU(g(”)) formulate the criteri(_)n of separability as follows.
. Let the map matrix. be of the form
X | j1, j2, my, m2). (41)
. . . . N
Using this tomogram we introduce the function
X Jram e L= ps<]_[®L§">>, ps >0,
F(g("), L)= Z |w(L“’]2) (m1, ma, g("))|. (42) 5 k=1
ma,mp Zps — 1’ (47)

For separable states, this function does not depend on™;
the U (n)-group parameteg™ and on positive-map

matrix elements of the matrik. whereL§k) is the positive-map matrix of the density
For the normalized density matrixof the bipartite ~ Matrix of thekth spin subsystem. We construct the
spin-system, this function reads matrix p;, as in the case of the bipartite system using
the matrixL. The function
F(g™,L)=1. (43)

(n) — A )
For entangled states, this function dependsgéh F(s™, 1) = XM]“’/’L (. g™)| > 1 (48)

and L and is not equal to unity. This property can )
be chosen as a necessary and sufficient condition foriS €qual to unity for separable state and depends on

separability of bipartite spin-states. the matrixL andU (n)-parameterg ™ for entangled
We introduce also tomographic purity parameter _states._Thus, for all separaple states, one has equality
1k of kth order by the formula in rglatlon(48). If the state is nonseparable, one can
(i) 1k conjecture that there exist some elements of semigroup
(g™, L) = Z (w7 (m1,ma, g™)|*, k>1 L and some unitary group elements for which sum
mym2 (48)is bigger than unity.

The tomographic purity parameters can take values This criterion can be applied also in the case of
larger than unity for entangled states for some semi- continuous variables, e.g., for Gaussian states of pho-
group parameter&. For identity semigroup element tons. Functior(48) can provide the measure of entan-
and specificg” unitary transform diagonalizing the ~ glement. Thus one can use the maximum value (or a

density matrix, the tomographic purigy is identical mean value) of this functivas a characteristic of en-
to purity parameter of the stage The parameters for ~ tanglement. In the previous section, we considered the
k=2,3,..., correspond to Tp*+1, generalized Werner states. Using the above criterion,

In fact, the formulated approach can be extended one can get the domain of values of the parameters of
to multipartite systems too. The generalization is as the states for which one has separability or entangle-

follows. ment. In fact, the separability criterion is related to the
GivenN spin-systems with sping, jo, ..., jn,let  following positivity criterion of finite or infinite (trace
us consider the groufd (n) with class) matrixA. The matrixA is positive iff the sum
N of moduli of diagonal matrix elements of the matrix
T iti
n—= l—[ ng, ne=2ji+ 1 (44) UAU" is equal to a positive trace of the matuxfor

i1 an arbitrary unitary matrit/.
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7. Bipartite system and depolarizing map

Let us discuss the property of tomogram of bipartite

system with density matrix12. We consider now the

tomogram of density matrix using depolarizing map

361
The criterion of separability yields
1/2
1+e¢
> 2 —ewy (m1,m2, g™)| =1 (54)
mi,mp=—1/2

to detect the entanglement. If the density matrix is Equality (54)takes place for arbitrary™ ande only
separable, than the depolarizing map of the secondfor |p| <1/3.Forp >1/3, the above sum depends on

subsystem provides the following density matrix

1+¢
p12—> pe = —ep12+ ——pY ® 1, (49)
Ny —
where
PP =Tra(p12) (50)

and b is the N>-dimensional unity matrix. Then one
has the property of unitary spin tomogram
we (m1, ma, g™)
1+¢
= —8w12(m1, ma, g(")) + sz(ml, m2, g(")),
(51)

where g™ is matrix of U((2j1 + 1)(2j2 + 1)) uni-
tary transform; we(m1, mo, g™) is the tomogram
of transformed density matrix of bipartite system;
w(may, ma, g™) is the unitary spin tomogram of tensor
product of partial trace™® over the second subsys-
tem’s coordinates of the density matgx, and unity
operator %; wiz(m1, mo, g™) is the unitary spin to-
mogram of the state with density matyxo.

The generic criterion of separability for the partial
case of depolarizing map means

mi=—j1mz=—j2

X wi\msi, ma,
2j2+ T §

— ew1z(m1, ma, g(”)) =1 (52)

for arbitraryg™ ande.

For Werner states, the tomogram of transformed

state (in this case, it means that 4 andp — —e&p)
is related to the initial-state tomogramy
we (m1, m2, g™)

1+¢

= —8ww(m1, mo, g(”)) + I

(53)

¢"™ ande and it is larger than one.
It is obvious if one calculates the tomogram using
the element of the unitary group of the form

0 0 0 1
01 0O
()
= 55
8o 0010 (55)
1 0 0 O
At this point, the sun{54) reads
1/2
/ 1+e¢ )
> 7 —cwwlmimz.g™)
my,mp=—1/2
1+e¢p 1—3pe
=3 . 56
4| (56)

One can see that this sum equals to one independently
on the value of parametde| < 1 only for values

|p| < 1/3. For p = 1, the maximum value of the
sum equals Z (1 + 3¢)/2 (¢ = 1). This value can
characterize the degree of entanglement of Werner
state. For generalized Werner state, $6d) reads

Z{|1+e(p1—pz—p3)| + |14 &(p2 — p1— p3)|
+ |14 &e(p3 — p1— p2)|
+|1+e(p1+ p2+ p3)|}

This sum is equal to one for any if |p1| + |p2| +
|p3|l < 1. Fore = 1, we have a measure of entangle-
ment.

8. Quitrit states

One can also check the criterion using example of
two-quitrit pure entangled state with wave function

1
D lumdlvm).

|1/f>—i
- \/ﬁm:—l

The sum defining the criterion of separability for

specific U (9) transformgé”) which is diagonalizing

(57)
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the Hermitian matrix_. [y ) (y| reads

(58)

F(g,gén))=8‘l+8 ’1—88

9 9
For 1/2 > ¢ > 1/8, this sum is larger than one, that

means that the state is entangled. Eos 1/2, the
function has maximum and it is equal tg3H

The entanglement of the considered state can be

detected using partial transposition criterion too.
For the case of pure entangled state of two-qutrit
system with the wave function

1
|¢>)=ﬁ(|u1>|v1>+|uo)lvo)), (59)
in which the states with spin projections = —1

do not participate, the partial transpose criterion does

also detect entanglemen®ur criterion yields for
specificU (9) transformg(()”), which diagonalizes the
Hermitian matrixL.|®)(®| the following expression
for the functionF (e, gé”)), which reads

(n) |1+8| |1—58|
Fle.g") =5 =

The function takes maximum value fer= 1/2
that equals to . This value is smaller than/3 of
the previous case. It corresponds to our intuition that
the superposition of three product states of two quitrit

(60)

system is more entangled than the superposition of

only two such product states.

9. Multipartite system

The criterion can be extended to multipartite spin
system.

We have to apply for-partite system the transform
of the density matrixp with superoperator of the form
L;=LP®LP® oL, (61)

where the transfornllffz) acts as depolarizing map on
thekth subsystem. If the state is separable

1 2
p=> pry ®p

k
Y =1 =0
k

®...®p1£”),

(62)
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each of the term$,£j) (j=1,2,...,n) in the tensor

product is replaced by the term
1 .
ﬂl/*

Nj ’

This means that the transformed density matrix reads

n
h o l+eg;
) J
— 1),
mq%+wg}

j=1
(64)
The unitary spin tomogram of the transformed density

o) = —ein + (63)

p—>L50=2pk
k

matrix takes the fornge = 1, €2, ..., &)
wz (m1,ma, ..., my, g™)
ml,mz,...,mn,g(N),E), (65)

=Y prw(
k

where N = []i_;(2js + 1) and elemeng™ is the
unitary matrix inN -dimensional space. The tomogram
wﬁ,kr)(ml, mo, ...,my, g™ ) is the joint probability
distribution of spin projectionsny; = —j;, —js +
1,..., js, which depends on the unitary transfogf’

in the state with density matrix

n
Pk = l_[ ®(—8S,o,is) 1S>.

s=1

1+ &

+
Ny

(66)
For the elements

n
g™ =]]ous2js+ 1),
s=1
where u;(2j; + 1) is unitary matrix, the tomogram
(65) takes the form of sum of the products

g

n
=i [ Jwe(ms, us2js + 1), &),
k s=1

with wy(my, us(2j; + 1), &5) being the unitary spin
tomograms of theth spin subsystem with transformed
density matrix’,, p,ﬁs).

For a separable state of the multipartite system, one
has

Z |wg(m1,m2,...,mn,g(N))| =1

my,...,my

wg(ml,mz,..

(67)

(68)

for all elementg ™) and all parameters
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For entangled state, there can be some values ofstate”[35] which contains an approach close to the one

parameterg and group elementg™) for which the
sum is larger than one.

10. Conclusions

We summarize the main results of the Letter.

The new type of tomographic probability distrib-
utions describing state of multipartite spin systems,
which depend on unitary group elements, is intro-
duced. For a partial case of the unitary group element
expressed in terms of tensor product of matrices of ir-
reducible representation of rotation group, the intro-
duced tomographic probability distribution coincides
with spin tomogram of a spin-system state.

We have given a criterion for the separability of
multipartite spin system. The criterion is called “tomo-
graphic criterion” of separability. The suggested crite-
rion is connected with properties of the unitary spin
tomogram given by functio(48). For entangled den-
sity matrix, the function depends on unitary group pa-
rametersg and the parameters of positive map semi-
group L. For separable density matrix, the function
equals to unity. We applied the particular case of the
positive map (depolarizing map) to detect entangle-
ment of some qubit and qutrit states. Suggested cri-
terion differs from available ones. To apply this crite-
rion, one needs to calculate the sum of moduli of di-
agonal matrix elements of product of three matrices.
One of the matrices is Hermitian and two others are
unitary ones. This procedure doest need the cal-
culation of the eigenvalues of a matrix. We also in-
troduced the concept of tomographic purity which in
a limit case coincides with usual purity parameter of
mixed quantum state. The structure of positive (includ-
ing not completely positive) map semigroup with ele-
mentsL needs further investigation.
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