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Abstract

The arguments that are often put forward to justify the singular importance given to completely positive maps over more
generic maps in describing open quantum evolution are studied. We find that these do not appear convincing on closer exami-
nation. Positive as well as not positive maps are good candidates for describing open quantum evolution.

0 2005 Elsevier B.V. All rights reserved.

PACS:03.65.Yz; 03.67.Mn; 03.65.Ta

Keywords:Open guantum systems; Reduced dynamics; Entanglement; Not completely positive maps

1. Introduction equations along with other approaches like the in-
fluence functional methogi7] are significant pieces
in the effort to understand and characterize the dy-
namics of open quantum systems and their evolu-
tion [8].

There has been a substantial amount of interest in
studying a sub-class of linear maps on density matri-
ces called completely positive maps (see, for example,
[9-14]). Such maps do not exhaust all possible dynam-

The most general evolution of a quantum me-
chanical system is by linear transformations that map
density matrices to density matrices. It follows from
the properties of density matrices that the mappings
must preserve Hermiticity, trace and positivity].
When certain approximations hdi@,3] and the linear
maps form a semi-group, a Markovian master equa- ) -
tion called the Kossakowski-Lindblad equatidr-6] ical l:.)ehawor an open quantum syste_m may exhibit.
can also be used to describe open quantum dynamics.'n spite of this, the more general possibilities allowed

The maps on density matrices and quantum master!n OPeN guantum dynamics have received only lim-
ited attentiorjfl5—17]compared to completely positive

maps. The aim of this Letter is to examine closely the
* Corresponding author. arguments't.hat have been put forward to favor com-
E-mail addressshaji@physics.utexas.e@@. Shaji). pletely positive maps over more general maps as pos-
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sible descriptions of the evolution of quantum systems
subject to external influences.

2. Choi’'stheorem, complete positivity and the
withess

Choi, in his seminal work on completely positive
maps[18], describes the distinction between positive
and completely positive maps @i*-algebras. Choi's
definition of a completely positive map may be para-
phrased as follows: Consider a linear mapl —

B between twoC*-algebrasl and 8. The map®
is positiveif @(A) > 0 for all positive A € 2. Let
M,, be the collection of allz x n complex matri-
ces andM,2) = A ® M, be the C*-algebra of
n x n matrices overd; meaning alln x n (block)
matrices with the elements of the matrices being el-
ements oR(. Now defined ® 1, : M, () — M,,(*B)
by @ ® 1,((Aj) 1<) k<n) = (@A) 1<, k<n- Here
(Aji)jx denotes a block matrix witht ;;, € 2 occu-
pying the jk-th block. We say tha® is n-positive if
® ®1, is positive. The set of all-positive linear maps
onl is denoted byP, [21, B].

@ is said to becompletely positivef @ € Py [, B].

Choi goes on to prove several theorems on positivity
and complete positivity including the useful result that
if a map @ :2 — M, is n-positive then it is com-
pletely positive, where is the dimensionality of the
Hilbert space on which th€*-algebral is defined.

2.1. The witness

Let us leave Choi’s definition of complete positivity
aside for a moment and look at the “physical argu-
ments” given for accepting only completely positive
maps as describing the evolution of open quantum sys-
tems. The following passage is representative of simi-
lar arguments seen widely in the literatdre.

A completely positive map is not only a reason-
able map from density operators to density oper-
ators for S, but it is extensible in a trivial way to

1 We have taken the liberty of making the mathematical notation
uniform in the passages quoted in this Letter.
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a reasonable map from density operators to den-
sity operators on any larger systefn+ W. Since

we cannot exclude a priori that our systehis in

fact initially entangled with some distant isolated
systemW, any acceptablé had better satisfy this
condition.

The reduced dynamics of the systérdescribed by
the map® is induced by the coupled unitary evolution
of § and a suitable environme®t At this point there
is no restriction of complete positivity on the map. The
trick by which complete positivity is imposed oh
is to introduce an auxiliary system called théness
W that is separate fromR. The witness is assumed to
be ‘blind’ in the sense that it does not interact with
and ‘dead’ in that it has no free evolution of its own.
Pechukas, ifi15], was one of the first to question the
implications of introducing the witness that is statis-
tically coupled toS but otherwise inert. In Pechukas’
own words:

One may reasonably doubt this argument. It is very
powerful magic:W sits apart fromS + R and does
absolutely nothing; by doing so, it forces the mo-
tion of S to be completely positive with dramatic
physical consequences such7as< 27 for expo-
nential two-state relaxation.

The motivation for introducing the witness is clear.
From Choi's result it appears that to keep the action of
@ ® 1y positive on the states &f + W, @ must be
completely positive. Expecting ® 1y to be positive
is perfectly reasonable because just the mere presence
of W cannot suddenly make the dynamicsSof- W
unphysical.

2.2. The significance df and W being entangled

The first step in analyzing the effect of introducing
the witness o is to understand the role of the entan-
glement betwees andW in imposing complete pos-
itivity. We do this by working out explicitly a couple
of simple examples. We assume that the sysfdsas
simple as it gets and is@ubit with density matrixo.
Since the mapp acts on a two-dimensional Hilbert
space, it is sufficient to show that is 2-positive in
order to show that it is completely positive. With this
in mind we choose the witness to be a qubit also with
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density matrixow . Let us keep the initial states of the
system and witness completely general and choose

1 _1( 1+a3 ai1—ia>

p_§(1+a"6/)_5<a1+iaz l—asz J°
1 1/ 1+ws wi—iwp

pW—§(1+wka)—§<w1+iw2 1—ws )

(1)
whereo; andz, j,k=1,2,3, are two sets of Pauli
matrices. Let

a:,/af+a§+a§ and o= w%+w§+w§.

For o andpyw to be states, we requirel < a, w < 1.

If we assume that there is no entanglement betwieen
and W then from the way the witness is defined, we
know that the initial state of + W is a simple product
State

1
Rsep= Z(l—i—ajoj) ® (L+ witk).

The eigenvalues dRsepare

1 1
=g0-l-), l2=71-0l+o)

o= %(1+a)(1+w),

2
which are all positive semi-definite. Starting from this
valid two qubit state, let us apply a map prwhich
we know to be positive but not completely positive.
An easy choice is the transposition mBpThe action
of T on p is to changess to —ay and leaveq; and
az unchanged. This transformation does not change
and hence does not change In other words, we find
thatR’Sepz (T ® 1w)Rsepis also a positive matrix.

Another example is a map that Choi introduces
in [18] as one that ign — 1) positive but notr pos-
itive:

x3=%u+ux1—wx

o€ (A) ={(n - D(trd)}1, — A.
The action of®€ (with n = 2) onp is

—a1+iar
1+a3 ’

l—a3
—a1 —iap

©)

In other words,a; — —a;, j =1,2,3. Again, this
transformation does not change and therefore
Réep= (P€ ® Lw)Rsep is a positive matrix for all
possible choices gf andpy .

1
ﬂ=¢%m=§<
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We see that two not completely positive maps
and®C pass the “witness test” and appear to be valid
descriptions of the evolution of if we assume that
there is no entanglement betwegrand W. For the
transpose map in the two qubit case this, of course,
makes a lot of sense becauBe 1y is just the Peres’
partial transpose criteriofi 9] for detecting entangle-
ment. The partial transpose is indeed positive preserv-
ing on all separable states and ceases to be so only
on entangledR. Similarly Choi shows that € is 1-
positive and not 2-positive by considering its action on
the matrix (E jx)1<j k,» Which, up to a normalization
factor, is the fully entangled two qubit state. It also is
a (block) matrixM € M with each of its elements in
turn being 2x 2 matrices belonging to thé*-algebra
of single qubit operators. Specificall11 ~ 1 + o3,
Mio~ o1+ io2, Moy~ o1 —iop andMoy~1—o3.

We see that the device of introducing the witnéés
that does not interact witlf is inadequate to restrict
the dynamics of§ to completely positive transforma-
tions if there is no entanglement betwe&rand W.
This fact is not always emphasized when the witness
is introduced even ifitis pretty well known. The action
of a given map®, when extended t® ® 1, can fail
to be positive on generic elements.bt, () while at
the same time being positive on all® pw .

3. Effect of initial entanglement on the reduced
dynamics

The problem at hand might well be the evolution
of an open quantum system. Still, one has to assume
that system along with its environment can be con-
sidered in isolation with no residual interaction or
entanglement with anything outside. Sfand W are
entangled—a fact that seems crucial for the witness
test to work—then there must have been some sort of
direct or indirect interaction between the two at some
point and hencéV should really be part of the defin-
ition of the environment of. The pertinent question
therefore seems to be the nature of map inducef on
by the coupled evolution of the system and an environ-
ment that may possibly be entangledStand whether
the reduced dynamics allows a consistent physical in-
terpretation.

Before considering the case whefeand W are
entangled let us briefly review an alternate approach
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taken by Alicki in his reply to Pechukas to try and
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The system and the environment being in a separa-

show that open quantum dynamics must be completely ble tensor product state initially is not an unreasonable

positive [20]. This approach introduces the notion of
an “assignment map” that will be useful to us in the
discussion that follows.

The origin of a dynamical mag acting on the state
p of § can always be traced back the coupled unitary
evolution of S and a reservoir (environmenf [1],
ie.,

p— ®p=trgx[URUT], @)

where ti represents the partial trace over the reser-
voir, U a unitary transformation ofi+ R andR being
a generic initial state of + R. The map® may now be

assumption in a wide variety of realistic situations.
For instance, for quantum information processors one
can safely assume that there is sufficient control over
the system to be able to initialize its state to one that
is decoupled from its environment. The point here is
that it is perfectly reasonable to assume that in many
situations there might be initial correlations between
the system and its environment. In such situations one
cannot rely on completely positive maps to model the
open system and a better understanding of not com-
pletely positive maps are called for.

The easiest way of understanding the subtleties in

treated as the composition of three operations, namely, the arguments using the assignment map and address-

the partial trace, the unitary map and assignment
mapA : p — R that assigns to each statef S a state
R of S+ R. Since the partial trace and the unitary map
are positive, the character &f depends on the nature
of the assignment map.

Alicki assumes the following three reasonable
properties for the assignment map:

(1) Aislinear so that it preserves mixtures:

AZPiPi = ZPiA/Oi with ZP;’ =1
i i i

(2) The assignment map is consistent in the sense that

trr[Apl=p.
(3) A maps every to density matrices
Ap=R>0; TIR]=1 R=R"

With all three conditions it is possible to show that the
only allowed assignment mapis:p — p ® pr =R
that assigns to every a stateR by taking the tensor
product of p with the samestatep}, of the reservoir.
There are several ways to now show that any map
Do =trg[Up ® ,oj;UT] constructed as the contraction
of the unitary evolution of asimply separable initial
stateof S + R is always completely positive. One way
is to start from a tensor product state of the system
and the environment and show that the evolution of
the system is given by a transformation of the form

p— ) C@pC@’ (5)

which is characteristic of completely positive maps
[1,9,21]

ing them is to consider the question of what hap-
pens wherS and R are initially in an entangled state.
This question was considered in detail[i6,17] and
here we reproduce the essential aspects of an example
worked out in[17].

We take bothS andR to be qubits and couple them
through a Hamiltonian of the fornfggz = %was‘[;;.
The initial state ofS + R is taken to be one that is
generically entangled:

(6)

The state ofS is completely determined hy;. The
unitary evolution ofR by U = e~/ for a timet in-
duces the following transformations an

1
R= Z(1+aj0j + bt + ko Th).

a1 — aj CoSwt — c13SiNwt,
az — ap Coswt + cp3Sinwt,
(7)

We note here that certaiimitial correlations in R
(c13 andc3) appear in Eq(7) as parameters defining
the transformation o8. The choice ofH determines
which correlations appear. Now imagine that the as-
signment map is such that it assigns to evesyanR
with specificfixedvalues for the correlations that ap-
pear as parameters in the reduced dynamics dhis
assignment map along with the unitary evolution and
the partial trace operation induces the dynamics given
by Eq.(7) on S. The dynamics of treated as a map,
far from being completely positive, is not even posi-
tive. To see this, consider the transformation induced
on an initial statep = 1/2(1 + aj01) of S. This state

as — as.
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gets transformed to in [17] and is given by the inequality
1 1 a1 Coswt — c13Sinwt asc?
== . 2 2 2, .2 +“43
r=3 <alcosw — c13Sinwt 1 ay+aZtaztciz— 5 <1 (8)
3
with eigenvalues with
v1 =1+ aj coswt — c13Sinwt c13a1 + €23a2 €2301 — €13a2
ap = —F—, a-=—F (9
and \/ c%3 + c§3 \/ cfg + c§3
vy =1 — a1 COSwt + c13SiNwt. and
The new statg’ is n_ot positivg for all possible choices ., ;= /053 + 033. (10)
of a1 andcy3. For instance, ifiy = —1 andciz=1
thenvy =1 — /2 <0 for wr = /4. The action of the map in Eq7) can be verified to

To make sense of the fact that unitary evolution be positive on all states in the compatibility domain
of the initially entangled state of the system and the and not so outside. A caricature of the compatibility
reservoir induces not positive reduced dynamicspon  domain with the choice1z = c23 = 1/2 is drawn in
one has to look more carefully at the assignment map Fig. 1
A:p — R.The pointis thatifR is entangled then not The third condition on the assignment map is not
all states ofS are allowed. For example,gfR] can- necessary. The interpretation of the assignment of un-
not be apure state ofS. The assignment map applied Pphysical states of the extended system to some of the
blindly to all states ofS with the restriction that cer-  states of§ is clear if we letS andR be entangled when
tain correlations inR are to be kept fixed will map  the assignment is made. The meaningful thing to do
some of the states of to negative matrices. This, in IS to confine the domain of action of the map to the
turn, makes the dynamical map induced$not pos- compatibility domain. We see from the example that
itive. In the discussion that follows we refer to such
maps only asiot completely positiveo include both
positive (but not completely positive) as well as not
positive ones.

The question is whether we should treat such not
completely positive evolution of as being unphysi-
cal? The evolution in E(7) is positive on a subset of
states ofS. In [17] we have shown explicitly that this
subset is precisely the set of states whichamapat-
ible with two qubit statesk containing certain fixed 0.5
correlations. In other words, if the observed dynamics g5
of a system is not positive on some of its states then
that must be treated as a sign of entanglement between _( 5
the system and its environment. Physical consistency
is restored by noting that the states on which the action
of the map is not positive are precisely those states that
cannot be partial traces of the state of extended sys-
tem when certain specific correlations are present in
it. The set of states of the system that can appear as ! : |
partial traces of physical entangled stafess called
the compatibility domainof the system. For the eX-  Fig. 1. The compatibility domain for the case whesg and c13
ample we have considered the compatibility domain are both3. The unit sphere (the Bloch sphere) that represents all
can be worked out explicitly following the calculations possible states of the system is shown with dotted lines.
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the specification of the nature of the entanglement be- that is sometimes utilized to force complete positiv-
tween the system and the reservoir, that is built into the ity on the reduced dynamics is to re-define the sys-
definition of the assignment map, is sufficient to delin- tem and the environment in a suitable manner so that
eate the domain of action of the map. We note here new “dressed” system and environment are weakly
that the assignment map and the issues of positivity coupled. In such cases complete positivity for the dy-

and complete positivity that come with it can be cir-
cumvented altogether if we consider E4) as a map
from the overall staté&k to the statep of the system
rather than using it to find a map fromto p. This
map is just a combination of a unitary transformation
and the partial trace operation; both of which are com-
pletely positive.

If we now bring back the witness which is entan-
gled toS but not interacting with it (without changing
the entanglement betweehand R), all that happens
is that the domain of allowed states S§fis further
restricted. How precisely the compatibility domain is
restricted depends now of the nature of the tripartite
entanglement betweefl, R and W. In this context
we remark that even though finding the compatibil-
ity domain of large-dimensional systems entangled in
specific ways to similar environments and witnesses is
a well posed problem, it is technically and computa-
tionally very demanding. But what we do know about
the new compatibility domain in the presence of the
witness is that it must be subset of the compatibil-
ity domain without the withesSo® ® 1y on all the
statesRsrw such thatp = trgw[Rsrw] IS positive
even for not positivep. In short, the presence of the

namics of the new ‘system’ becomes a good approxi-
mation. On the other hand, the direct approach of us-
ing not completely positive maps to describe the open
quantum evolution of the original system may provide

a clearer understanding of its dynamics at least in sys-
tems with small-dimensional Hilbert spaces. We have
shown that there is no reason to shy away from such
a direct approach based on claims that not completely
positive evolution has no consistent physical interpre-
tation and meaning.

It must be emphasized here that once the require-
ment of complete positivity is relaxed then the posi-
tivity of the reduced dynamics has no special signif-
icance. Initial correlations with the environment can
lead to open quantum dynamics that can be not posi-
tive also. The mathematical literature on map< &t
algebras that are not necessarily completely positive
is extensive and rich (see, for examp]22,23] and
references therein). Translating these results into the
context of quantum systems interacting with and en-
tangled to external systems can lead to further insights
into the nature of decoherence, dephasing and entan-
glement itself.

witness does not create any new issues with respect

to the physical interpretation of not positive reduced
dynamics ofS. So it appears that there is no reason

to restrict the reduced dynamics of an open system to

being exclusively completely positive in natufgot
completely positive maps are just as good
4. Conclusions

We find that the arguments that are put forward
to often justify considering only completely positive
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