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Abstract

The arguments that are often put forward to justify the singular importance given to completely positive maps ov
generic maps in describing open quantum evolution are studied. We find that these do not appear convincing on clos
nation. Positive as well as not positive maps are good candidates for describing open quantum evolution.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The most general evolution of a quantum m
chanical system is by linear transformations that m
density matrices to density matrices. It follows fro
the properties of density matrices that the mappi
must preserve Hermiticity, trace and positivity[1].
When certain approximations hold[2,3] and the linear
maps form a semi-group, a Markovian master eq
tion called the Kossakowski–Lindblad equation[4–6]
can also be used to describe open quantum dynam
The maps on density matrices and quantum ma
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equations along with other approaches like the
fluence functional method[7] are significant piece
in the effort to understand and characterize the
namics of open quantum systems and their ev
tion [8].

There has been a substantial amount of interes
studying a sub-class of linear maps on density ma
ces called completely positive maps (see, for exam
[9–14]). Such maps do not exhaust all possible dyna
ical behavior an open quantum system may exh
In spite of this, the more general possibilities allow
in open quantum dynamics have received only l
ited attention[15–17]compared to completely positiv
maps. The aim of this Letter is to examine closely
arguments that have been put forward to favor co
pletely positive maps over more general maps as
.
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sible descriptions of the evolution of quantum syste
subject to external influences.

2. Choi’s theorem, complete positivity and the
witness

Choi, in his seminal work on completely positiv
maps[18], describes the distinction between posit
and completely positive maps onC∗-algebras. Choi’s
definition of a completely positive map may be pa
phrased as follows: Consider a linear mapΦ :A →
B between twoC∗-algebrasA and B. The mapΦ

is positive if Φ(A) � 0 for all positive A ∈ A. Let
Mn be the collection of alln × n complex matri-
ces andMn(A) = A ⊗ Mn be the C∗-algebra of
n × n matrices overA; meaning alln × n (block)
matrices with the elements of the matrices being
ements ofA. Now defineΦ ⊗ 1n :Mn(A) → Mn(B)

by Φ ⊗ 1n((Ajk)1�j,k�n) = (Φ(Ajk))1�j,k�n. Here
(Ajk)jk denotes a block matrix withAjk ∈ A occu-
pying thejk-th block. We say thatΦ is n-positive if
Φ ⊗1n is positive. The set of alln-positive linear maps
onA is denoted byPn[A,B].
Φ is said to becompletely positiveif Φ ∈ P∞[A,B].
Choi goes on to prove several theorems on positi
and complete positivity including the useful result th
if a map Φ :A → Mn is n-positive then it is com-
pletely positive, wheren is the dimensionality of the
Hilbert space on which theC∗-algebraA is defined.

2.1. The witness

Let us leave Choi’s definition of complete positivi
aside for a moment and look at the “physical arg
ments” given for accepting only completely positi
maps as describing the evolution of open quantum
tems. The following passage is representative of s
lar arguments seen widely in the literature.1

A completely positive map is not only a reaso
able map from density operators to density op
ators forS, but it is extensible in a trivial way to

1 We have taken the liberty of making the mathematical nota
uniform in the passages quoted in this Letter.
a reasonable map from density operators to d
sity operators on any larger systemS + W . Since
we cannot exclude a priori that our systemS is in
fact initially entangled with some distant isolat
systemW , any acceptableΦ had better satisfy thi
condition.

The reduced dynamics of the systemS described by
the mapΦ is induced by the coupled unitary evolutio
of S and a suitable environmentR. At this point there
is no restriction of complete positivity on the map. T
trick by which complete positivity is imposed onΦ
is to introduce an auxiliary system called thewitness
W that is separate fromR. The witness is assumed
be ‘blind’ in the sense that it does not interact withS

and ‘dead’ in that it has no free evolution of its ow
Pechukas, in[15], was one of the first to question th
implications of introducing the witness that is stat
tically coupled toS but otherwise inert. In Pechuka
own words:

One may reasonably doubt this argument. It is v
powerful magic:W sits apart fromS + R and does
absolutely nothing; by doing so, it forces the m
tion of S to be completely positive with dramat
physical consequences such asT2 � 2T1 for expo-
nential two-state relaxation.

The motivation for introducing the witness is cle
From Choi’s result it appears that to keep the action
Φ ⊗ 1W positive on the states ofS + W , Φ must be
completely positive. ExpectingΦ ⊗ 1W to be positive
is perfectly reasonable because just the mere pres
of W cannot suddenly make the dynamics ofS + W

unphysical.

2.2. The significance ofS andW being entangled

The first step in analyzing the effect of introduci
the witness onΦ is to understand the role of the enta
glement betweenS andW in imposing complete pos
itivity. We do this by working out explicitly a couple
of simple examples. We assume that the systemS is as
simple as it gets and is aqubit with density matrixρ.
Since the mapΦ acts on a two-dimensional Hilbe
space, it is sufficient to show thatΦ is 2-positive in
order to show that it is completely positive. With th
in mind we choose the witness to be a qubit also w
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density matrixρW . Let us keep the initial states of th
system and witness completely general and choos

ρ = 1

2
(1+ ajσj ) = 1

2

(
1+ a3 a1 − ia2

a1 + ia2 1− a3

)
,

(1)

ρW = 1

2
(1+ wkτk) = 1

2

(
1+ w3 w1 − iw2

w1 + iw2 1− w3

)
,

whereσj andτk , j, k = 1,2,3, are two sets of Pau
matrices. Let

α =
√

a2
1 + a2

2 + a2
3 and ω =

√
w2

1 + w2
2 + w2

3.

For ρ andρW to be states, we require−1 � a,w � 1.
If we assume that there is no entanglement betweeS

andW then from the way the witness is defined, w
know that the initial state ofS +W is a simple produc
state

Rsep= 1

4
(1+ ajσj ) ⊗ (1+ wkτk).

The eigenvalues ofRsepare

λ1 = 1

4
(1− α)(1− ω), λ2 = 1

4
(1− α)(1+ ω),

(2)

λ3 = 1

4
(1+ α)(1− ω), λ4 = 1

4
(1+ α)(1+ ω),

which are all positive semi-definite. Starting from th
valid two qubit state, let us apply a map onρ which
we know to be positive but not completely positiv
An easy choice is the transposition mapT. The action
of T on ρ is to changea2 to −a2 and leavea1 and
a3 unchanged. This transformation does not changα

and hence does not changeλi . In other words, we find
thatR′

sep= (T ⊗ 1W)Rsep is also a positive matrix.
Another example is a map that Choi introduc

in [18] as one that is(n − 1) positive but notn pos-
itive:

ΦC(A) = {
(n − 1)(trA)

}
1n − A.

The action ofΦC (with n = 2) onρ is

(3)ρ′ = ΦC(ρ) = 1

2

(
1− a3 −a1 + ia2

−a1 − ia2 1+ a3

)
.

In other words,aj → −aj , j = 1,2,3. Again, this
transformation does not changeα and therefore
RC

sep = (ΦC ⊗ 1W)Rsep is a positive matrix for all
possible choices ofρ andρ .
W
We see that two not completely positive mapsT
andΦC pass the “witness test” and appear to be va
descriptions of the evolution ofS if we assume tha
there is no entanglement betweenS andW . For the
transpose map in the two qubit case this, of cou
makes a lot of sense becauseT ⊗ 1W is just the Peres
partial transpose criterion[19] for detecting entangle
ment. The partial transpose is indeed positive pres
ing on all separable states and ceases to be so
on entangledR. Similarly Choi shows thatΦC is 1-
positive and not 2-positive by considering its action
the matrix(Ejk)1�j,k,n which, up to a normalization
factor, is the fully entangled two qubit state. It also
a (block) matrixM ∈ M2 with each of its elements i
turn being 2× 2 matrices belonging to theC∗-algebra
of single qubit operators. SpecificallyM11 ∼ 1 + σ3,
M12 ∼ σ1 + iσ2, M21 ∼ σ1 − iσ2 andM22 ∼ 1− σ3.

We see that the device of introducing the witnessW

that does not interact withS is inadequate to restric
the dynamics ofS to completely positive transforma
tions if there is no entanglement betweenS and W .
This fact is not always emphasized when the witn
is introduced even if it is pretty well known. The actio
of a given mapΦ, when extended toΦ ⊗ 1n can fail
to be positive on generic elements ofMn(A) while at
the same time being positive on allρ ⊗ ρW .

3. Effect of initial entanglement on the reduced
dynamics

The problem at hand might well be the evoluti
of an open quantum system. Still, one has to ass
that system along with its environment can be c
sidered in isolation with no residual interaction
entanglement with anything outside. IfS andW are
entangled—a fact that seems crucial for the witn
test to work—then there must have been some so
direct or indirect interaction between the two at so
point and henceW should really be part of the defin
ition of the environment ofS. The pertinent questio
therefore seems to be the nature of map induced oS

by the coupled evolution of the system and an envir
ment that may possibly be entangled toS and whether
the reduced dynamics allows a consistent physica
terpretation.

Before considering the case whereS and W are
entangled let us briefly review an alternate appro
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taken by Alicki in his reply to Pechukas to try an
show that open quantum dynamics must be comple
positive[20]. This approach introduces the notion
an “assignment map” that will be useful to us in t
discussion that follows.

The origin of a dynamical mapΦ acting on the state
ρ of S can always be traced back the coupled unit
evolution of S and a reservoir (environment)R [1],
i.e.,

(4)ρ → Φρ = trR
[
URU†],

where trR represents the partial trace over the res
voir, U a unitary transformation onS +R andR being
a generic initial state ofS+R. The mapΦ may now be
treated as the composition of three operations, nam
the partial trace, the unitary map and anassignmen
mapΛ :ρ →R that assigns to each stateρ of S a state
R of S +R. Since the partial trace and the unitary m
are positive, the character ofΦ depends on the natur
of the assignment map.

Alicki assumes the following three reasonab
properties for the assignment map:

(1) Λ is linear so that it preserves mixtures:

Λ
∑

i

piρi =
∑

i

piΛρi with
∑

i

pi = 1.

(2) The assignment map is consistent in the sense
trR[Λρ] = ρ.

(3) Λ maps everyρ to density matrices:

Λρ = R� 0; Tr[R] = 1; R = R†.

With all three conditions it is possible to show that t
only allowed assignment map isΛ :ρ → ρ ⊗ ρ∗

R ≡ R
that assigns to everyρ a stateR by taking the tenso
product ofρ with the samestateρ∗

R of the reservoir.
There are several ways to now show that any m
Φρ = trR[Uρ ⊗ ρ∗

RU†] constructed as the contractio
of the unitary evolution of asimply separable initia
stateof S +R is always completely positive. One wa
is to start from a tensor product state of the sys
and the environment and show that the evolution
the system is given by a transformation of the form

(5)ρ →
∑
α

C(α)ρC(α)†

which is characteristic of completely positive ma
[1,9,21].
t

The system and the environment being in a sep
ble tensor product state initially is not an unreasona
assumption in a wide variety of realistic situation
For instance, for quantum information processors
can safely assume that there is sufficient control o
the system to be able to initialize its state to one t
is decoupled from its environment. The point here
that it is perfectly reasonable to assume that in m
situations there might be initial correlations betwe
the system and its environment. In such situations
cannot rely on completely positive maps to model
open system and a better understanding of not c
pletely positive maps are called for.

The easiest way of understanding the subtletie
the arguments using the assignment map and add
ing them is to consider the question of what ha
pens whenS andR are initially in an entangled state
This question was considered in detail in[16,17] and
here we reproduce the essential aspects of an exa
worked out in[17].

We take bothS andR to be qubits and couple the
through a Hamiltonian of the formHSR = 1

2ωσ3τ3.
The initial state ofS + R is taken to be one that i
generically entangled:

(6)R= 1

4
(1+ ajσj + bkτk + cjkσj τk).

The state ofS is completely determined byaj . The
unitary evolution ofR by U = e−iH t for a time t in-
duces the following transformations onaj

a1 → a1 cosωt − c13sinωt,

a2 → a2 cosωt + c23sinωt,

(7)a3 → a3.

We note here that certaininitial correlations in R
(c13 andc23) appear in Eq.(7) as parameters definin
the transformation onS. The choice ofH determines
which correlations appear. Now imagine that the
signment mapΛ is such that it assigns to everyρ anR
with specificfixedvalues for the correlations that a
pear as parameters in the reduced dynamics ofS. This
assignment map along with the unitary evolution a
the partial trace operation induces the dynamics g
by Eq.(7) on S. The dynamics ofS treated as a map
far from being completely positive, is not even po
tive. To see this, consider the transformation indu
on an initial stateρ = 1/2(1 + a σ ) of S. This state
1 1
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gets transformed to

ρ′ = 1

2

(
1 a1 cosωt − c13sinωt

a1 cosωt − c13sinωt 1

)

with eigenvalues

ν1 = 1+ a1 cosωt − c13sinωt

and

ν2 = 1− a1 cosωt + c13sinωt.

The new stateρ′ is not positive for all possible choice
of a1 and c13. For instance, ifa1 = −1 andc13 = 1
thenν1 = 1− √

2� 0 for ωt = π/4.
To make sense of the fact that unitary evolut

of the initially entangled state of the system and
reservoir induces not positive reduced dynamics oS,
one has to look more carefully at the assignment m
Λ :ρ → R. The point is that ifR is entangled then no
all states ofS are allowed. For example, trR[R] can-
not be apurestate ofS. The assignment map applie
blindly to all states ofS with the restriction that cer
tain correlations inR are to be kept fixed will map
some of the states ofS to negative matrices. This, i
turn, makes the dynamical map induced onS not pos-
itive. In the discussion that follows we refer to su
maps only asnot completely positiveto include both
positive (but not completely positive) as well as n
positive ones.

The question is whether we should treat such
completely positive evolution ofS as being unphysi
cal? The evolution in Eq.(7) is positive on a subset o
states ofS. In [17] we have shown explicitly that thi
subset is precisely the set of states which arecompat-
ible with two qubit statesR containing certain fixed
correlations. In other words, if the observed dynam
of a system is not positive on some of its states t
that must be treated as a sign of entanglement betw
the system and its environment. Physical consiste
is restored by noting that the states on which the ac
of the map is not positive are precisely those states
cannot be partial traces of the state of extended
tem when certain specific correlations are presen
it. The set of states of the system that can appea
partial traces of physical entangled statesR is called
the compatibility domainof the system. For the ex
ample we have considered the compatibility dom
can be worked out explicitly following the calculation
in [17] and is given by the inequality

(8)a2+ + a2− + a2
3 + c2+3 − a2+c2+3

1− a2
3

� 1

with

(9)a+ = c13a1 + c23a2√
c2

13 + c2
23

, a− = c23a1 − c13a2√
c2

13 + c2
23

,

and

(10)c+3 =
√

c2
13 + c2

23.

The action of the map in Eq.(7) can be verified to
be positive on all states in the compatibility doma
and not so outside. A caricature of the compatibi
domain with the choicec13 = c23 = 1/2 is drawn in
Fig. 1.

The third condition on the assignment map is
necessary. The interpretation of the assignment of
physical states of the extended system to some o
states ofS is clear if we letS andR be entangled whe
the assignment is made. The meaningful thing to
is to confine the domain of action of the map to t
compatibility domain. We see from the example th

Fig. 1. The compatibility domain for the case wherec23 and c13
are both1

2 . The unit sphere (the Bloch sphere) that represent
possible states of the system is shown with dotted lines.
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mic

th.
the specification of the nature of the entanglement
tween the system and the reservoir, that is built into
definition of the assignment map, is sufficient to del
eate the domain of action of the map. We note h
that the assignment map and the issues of posit
and complete positivity that come with it can be c
cumvented altogether if we consider Eq.(4) as a map
from the overall stateR to the stateρ of the system
rather than using it to find a map fromρ to ρ. This
map is just a combination of a unitary transformat
and the partial trace operation; both of which are co
pletely positive.

If we now bring back the witness which is enta
gled toS but not interacting with it (without changin
the entanglement betweenS andR), all that happens
is that the domain of allowed states ofS is further
restricted. How precisely the compatibility domain
restricted depends now of the nature of the tripar
entanglement betweenS, R and W . In this context
we remark that even though finding the compatib
ity domain of large-dimensional systems entangled
specific ways to similar environments and witnesse
a well posed problem, it is technically and compu
tionally very demanding. But what we do know abo
the new compatibility domain in the presence of
witness is that it must be asubset of the compatibi
ity domain without the witness. SoΦ ⊗ 1W on all the
statesRSRW such thatρ = trRW [RSRW ] is positive
even for not positiveΦ. In short, the presence of th
witness does not create any new issues with res
to the physical interpretation of not positive reduc
dynamics ofS. So it appears that there is no reas
to restrict the reduced dynamics of an open system
being exclusively completely positive in nature.Not
completely positive maps are just as good.

4. Conclusions

We find that the arguments that are put forwa
to often justify considering only completely positiv
maps as possible descriptions of open quantum
lution do not stand up to closer inspection. The tr
of introducing the witnessW that is entangled to th
systemS to impose complete positivity on the reduc
dynamics ofS really does not precludeS from under-
going not completely positive evolution with a co
sistent physical interpretation. An alternate appro
that is sometimes utilized to force complete posit
ity on the reduced dynamics is to re-define the s
tem and the environment in a suitable manner so
new “dressed” system and environment are wea
coupled. In such cases complete positivity for the
namics of the new ‘system’ becomes a good appr
mation. On the other hand, the direct approach of
ing not completely positive maps to describe the o
quantum evolution of the original system may prov
a clearer understanding of its dynamics at least in
tems with small-dimensional Hilbert spaces. We h
shown that there is no reason to shy away from s
a direct approach based on claims that not comple
positive evolution has no consistent physical interp
tation and meaning.

It must be emphasized here that once the requ
ment of complete positivity is relaxed then the po
tivity of the reduced dynamics has no special sign
icance. Initial correlations with the environment c
lead to open quantum dynamics that can be not p
tive also. The mathematical literature on maps ofC∗-
algebras that are not necessarily completely pos
is extensive and rich (see, for example,[22,23] and
references therein). Translating these results into
context of quantum systems interacting with and
tangled to external systems can lead to further insig
into the nature of decoherence, dephasing and en
glement itself.
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