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For systems described by finite matrices, an affine form is developed for the maps that describe evolution of
density matrices for a quantum system that interacts with another. This is established directly from the Heisen-
berg picture. It separates elements that depend only on the dynamics from those that depend on the state of the
two systems. While the equivalent linear map is generally not completely positive, the homogeneous part of the
affine maps is, and is shown to be composed of multiplication operations that come simply from the Hamil-
tonian for the larger system. The inhomogeneous part is shown to be zero if and only if the map does not
increase the trace of the square of any density matrix. Properties are worked out in detail for two-qubit
examples.
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I. INTRODUCTION

From the beginning, our understanding of quantum me-
chanics has involved both the Heisenberg picture �1,2� and
the Schrödinger picture �3,4�, and the relation between them
�5,6�. Full understanding has been for a quantum system that
is closed, which means there is no need to consider that it
might interact with anything else. An open quantum system
is a subsystem S of a larger system and interacts with the
subsystem R that is the remainder, or rest of the larger sys-
tem �which could be a reservoir�. The evolution in S is con-
sidered to be the result of unitary Hamiltonian evolution in
the larger system of S and R combined. The Heisenberg pic-
ture for S is clear. A matrix that represents a physical quan-
tity for S �an observable� is changed by the unitary transfor-
mation that changes every matrix that represents a physical
quantity for the larger system. The Schrödinger picture for S
has not been fully described.

The state of S is generally not a pure state, even when the
state of the larger system of S and R combined is a pure state,
so there is no Schrödinger wave function and no Schrödinger
equation for S. There is a density matrix that describes the
state of S. We can expect �7–16� that evolution in the
Schrödinger picture for S will be described by linear maps of
matrices applied to the density matrix for S. Attention has
been focused on the particular case where the initial state of
the larger system is described by a density matrix that is a
product of a density matrix for S and a density matrix for R.
Then the evolution in the Schrödinger picture for S is de-
scribed by linear maps that are completely positive. They
have been studied extensively �7,10,17–23�.

Recently, we considered the general case where S and R
may be entangled in the initial state, so that the density ma-

trix for the initial state of S and R combined is not a product.
We worked out examples for entangled qubits in some detail,
and for any system described by finite matrices we showed
how the evolution in the Schrödinger picture for S can be
described by linear maps �14�.

There are observations to be made of properties and struc-
tures in what has been found. They show us new features of
the Schrödinger picture for open quantum systems. Our first
observation �14� was that the maps generally are not com-
pletely positive, and apply in limited domains �13,24�. An-
other observation �15� is that putting the maps in an affine
form �23,25�, with homogeneous and inhomogeneous parts,
can separate elements that depend only on the dynamics
from those that depend on the state of entanglement. This
gives a picture that is simpler in some respects and may be
easier to use. We develop that picture here, show directly
how it relates to the Heisenberg picture, and find some new
properties of the affine form. We then work out a new larger
set of examples for two entangled qubits.

We do not consider equations of motion. A simple equa-
tion of motion would require that when the map that de-
scribes evolution for a time t1 is followed by the map that
describes evolution for a time t2, the result is the map that
describes evolution for the time t1+ t2. The maps for open
quantum systems generally do not have this semi-group
property. To assume that they do is to make an approxima-
tion �26–31�. We want to simply describe the Schrödinger
picture before considering approximations to it.

II. FRAMEWORK

We consider two interacting quantum systems S and R,
both described by finite matrices: N�N matrices for S and
M �M for R. We use the matrices F�0, F0�, and
F�� described in our previous paper �14�. The F�0 for
�=0,1 , . . ., N2−1 are N2 Hermitian matrices for S such that
F00 is 1S, the unit matrix for S, and
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TrS�F�0F�0� = N���. �2.1�

This implies that the F�0 are linearly independent, so that
every matrix for S is a linear combination of the F�0. For
example, the F�0 for �=1,2 , . . ., N2−1 could be obtained by
normalizing standard generators �32� of �SU��N�. The F0�

for �=0,1 , . . ., M2−1 are M2 Hermitian matrices for R such
that F00 is 1R, the unit matrix for R, and

TrR�F0�F0�� = M���. �2.2�

Every matrix for R is a linear combination of the F0�. We use
notation that identifies F�0 with F�0 � 1R and F0� with
1S � F0� and let

F�� = F�0 � F0�. �2.3�

Every matrix for the system of S and R combined is a linear
combination of the F��.

We follow common physics practice and write a product
of operators for separate systems, for example a product of
Pauli matrices � and � for the two qubits considered in Sec.
VIII, simply as ��, not � � �. Occasionally we insert a �

for emphasis or clarity.
The matrices F�0 for �=1,2 , . . ., N2−1 and F0� for

�=1,2 , . . ., M2−1 are generalizations of Pauli matrices �and
like the Pauli matrices they have zero trace�. We use them to
describe density matrices the way we use Pauli matrices to
describe density matrices for qubits. If � is a density matrix
for the system of S and R combined, then

� =
1

NM
�1 + �

�=1

N2−1

�F�0�F�0 + �
�=0

N2−1

�
	=1

M2−1

�F�	�F�		
�2.4�

and the density matrix 
 for the subsystem S is


 = TrR� =
1

N
�1 + �

�=1

N2−1

�F�0�F�0	 �2.5�

so that

�F�	� = Tr�F�	�� �2.6�

and in particular

�F�0� = TrS�F�0TrR�� = TrS�F�0
� . �2.7�

If U is a unitary matrix, then

U†F��U = �
�=0

N2−1

�
	=0

M2−1

t��;�	F�	 �2.8�

with the t��;�	 elements of a real orthogonal matrix, so that
t��;�	
−1 is t�	;��. Since U†1U and U1U† are 1,

t00;�	 = �0��0	, t�	;00 = ��0�	0. �2.9�

III. AFFINE MAPS OF DENSITY MATRICES

Suppose that in the system of S and R combined the ma-
trices C that represent physical quantities are changed to

U†CU by a unitary operator U. This is the Heisenberg pic-
ture. The mean values are changed to

�C�U = �U†CU� = Tr�U†CU�� = Tr�CU�U†� . �3.1�

The result is the same if the matrices C are left unchanged
and the density matrix � is changed to U�U†. This is the
Schrödinger picture.

Let A be a matrix for the subsystem S. In the Heisenberg
picture it is changed to U†AU so its mean value is changed to

�A�U = �U†AU� = TrS�A TrR�U�U†�� . �3.2�

The Schrödinger picture for the subsystem S is that the den-
sity matrix 
 for S is changed to


U = TrR�U�U†� = L�
� + K , �3.3�

where

L�Q� = TrR
UQ �
1

M
U†�

K = TrR
U�� − 
 �
1

M
	U†� . �3.4�

The L is a completely positive linear map that applies to any
matrix Q for the subsystem S, density matrix or not. It has
the property that L�1� is 1. The map L depends on U but does
not depend on the state of R or on the state of entanglement
of the subsystems S and R.

The K is the only part of 
U that can depend on the state
of R or on the correlations between S and R. With the same
K, Eq. �3.3� defines a map that applies to different density
matrices 
 representing different states of S. The state of S
can be changed without changing K. That is evident from Eq.
�3.4�. Since � and 
 � 1 /M are density matrices that give the
same mean values for any matrix A for S,

Tr�A�� = TrS�ATrR�� = TrS�A
� = Tr
A
 �
1

M
� ,

�3.5�

their difference does not need to change when the state of S
is changed. Explicitly, from Eqs. �2.4� and �2.5� we see that

� − 
 �
1

M
=

1

NM
�
�=0

N2−1

�
	=1

M2−1

�F�	�F�	, �3.6�

which does not depend on the �F�0� that describe the state of
S.

When we define a map, we consider all the �F�	� to be
independent. The �F�0� describe the state of S. The �F�	� for
	 not 0 are considered to be parameters of the map that
describe the effect of the dynamics of the larger system of S
and R combined that drives the evolution of S. Different
�F�	� for 	 not 0 specify different maps. Each map applies to
different states of S described by different �F�0�. For each
map there is one N�N matrix K. We explained this with
examples in our previous paper �14�. We also mentioned
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there that an alternative map can be used in the special case
of a product state where �F�	� is �F�0��F0	�; we will not
consider that here.

In the Schrödinger picture, K accounts for the parts of
mean values �A�U that in the Heisenberg picture come from
matrices U†AU not being matrices for S. Without K, a mean
value �A�U calculated in the Schrödinger picture would be

�A�0
U = TrS�AL�
�� = TrS�A TrR
U
 �

1

M
U†�


= Tr
U†AU
 �
1

M
� , �3.7�

which is obtained in the Heisenberg picture by replacing �
with 
 � 1 /M, which cuts off the part of U†AU that is not a
matrix for S. The full mean value �A�U is obtained by adding

TrS�AK� = Tr
U†AU�� − 
 �
1

M
	� . �3.8�

This equation �3.8� follows directly from Eq. �3.4�. In par-
ticular, we have

TrS�F�0K� = Tr
U†F�0U�� − 
 �
1

M
	� �3.9�

for �=1,2 , . . ., N2−1, so, because TrS K is zero,

K = �
�=1

N2−1

TrS�F�0K�F�0

= �
�=1

N2−1

Tr
U†F�0U�� − 
 �
1

M
	�F�0. �3.10�

This is how we actually calculate K, as in the examples for
two qubits described in Sec. VIII. We do not need to calcu-
late U�U† for the whole system of S and R combined. We
just calculate U†F�0U for the basis matrices F�0 for S, take
the mean values of the parts that extend outside the matrices
for S, and get K from Eq. �3.10�.

IV. PURITY DECREASE

A property that depends simply on the presence or ab-
sence of K is that

Tr��
U�2� � Tr�
2� �4.1�

for all density matrices 
 if and only if K is zero. Here is a
proof. If K is zero then from Eqs. �2.5�, �3.7�, and �2.8�


U = L�
� =
1

N
�1 + �

�=1

N2−1

�F�0�0
UF�0	 , �4.2�

where

�F�0�0
U = Tr
U†F�0U
 �

1

M
� = �

�=1

N2−1

t�0;�0�F�0� �4.3�

because Tr�F�	 
 � 1 /M� is zero if 	 is not zero and t�0;00 is
zero when � is not zero. Let

��	 = �F�0� for � = 1,2, . . . , N2 − 1, 	 = 0 �4.4�

and ��	=0 for other �, 	, and let

���� = �
�=0

N2−1

�
	=0

M2−1

t��;�	��	. �4.5�

Then, �F�0�0
U is ��0� and

�
�=1

N2−1

��F�0�0
U�2 � �

�=0

N2−1

�
�=0

M2−1

����� �2 = �
�=0

N2−1

�
	=0

M2−1

���	�2

= �
�=1

N2−1

�F�0�2, �4.6�

which implies the inequality �4.1�.
Suppose K is not zero. Then �4.1� fails for at least one

density matrix 
. Let

K = �
n=1

N


n�n��n� , �4.7�


 =
1

N
=

1

N
�
n=1

N

�n��n� . �4.8�

For this 
, we have


U = L�
� + K =
1

N
+ K = �

n=1

N � 1

N
+ 
n	�n��n� �4.9�

and, since

�
n=1

N


n = TrK = 0, �4.10�

Tr��
U�2� = �
n=1

N � 1

N
+ 
n	2

= �
n=1

N � 1

N
	2

+ �
n=1

N

�
n�2 � �
n=1

N � 1

N
	2

= Tr�
2� . �4.11�

For this proof we assume that the inequality �4.1� holds
when 
 is 1 /N. A map generally is meant to apply only to a
limited set of density matrices 
, where it represents the re-
sult of the unitary Hamiltonian dynamics in the larger system
of S and R combined. The examples worked out in Sec. VIII
show there are maps that are not meant to apply when 
 is
1 /N. In such cases, the assumption that the inequality �4.1�
holds when 
 is 1 /N is a mathematical statement that does
not have a direct physical interpretation.

V. MAP OPERATIONS

The map L can be done with multiplication operations
simply related to U. Let

U = �
�=0

M2−1

G���F0� �5.1�

with the G��� matrices for S. Then,
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L�Q� = �
�=0

M2−1

G���QG���†, �5.2�

�
�=0

M2−1

G���†G��� =
1

M
TrR�U†U� = 1S, �5.3�

and

L�1S� = �
�=0

M2−1

G���G���† =
1

M
TrR�UU†� = 1S. �5.4�

Altogether,


U = �
�=0

M2−1

G���
G���† + K . �5.5�

The matrices G��� depend on U and depend on the choice of
basis matrices F0�. Making that choice to conform with U
can simplify the set of matrices G���, as the examples de-
scribed in Sec. VIII will show. The matrices G��� do not
depend on the state of S and R. They can be calculated from
U and used for any states.

VI. LINEAR MAPS OF MATRICES

We fill out the Schrödinger picture with a linear map of
matrices Q for S that gives 
U when applied to a density
matrix 
. It is

Q → Q� = L�Q� + K Tr Q �6.1�

or, in terms of the basis matrices,

1� = 1 + NK, F�0� = L�F�0� �6.2�

for �=1,2 , . . ., N2−1. This is the only linear map that
can give 
U for a variety of density matrices 
 described by
Eq. �2.5�. Since K is the same for all 
, it cannot come from
the terms with variable coefficients �F�0�. It can only be part
of 1�.

We described this map in our previous paper �14�. We
approached it differently there. We considered first the map
of mean values �F�0� for the basis matrices for S and then the
consequent maps of density matrices 
 and of the basis ma-
trices 1 and F�0. By working out examples of two entangled
qubits, we found that this linear map �6.1� is generally not
completely positive, that there is a limited domain in which it
maps every positive matrix to a positive matrix, and that
there is a limited domain in which it represents the effect of
the dynamics of the larger system. We call these domains the
positivity domain and the compatibility domain, respectively.
We considered the description of the linear map �6.1� by

Qrs� = �
j,k=1

N

Brj;skQjk �6.3�

and by

Q� = �
n=1

p

C�n�QC�n�† − �
n=p+1

N2

C�n�QC�n�†. �6.4�

Here we only make two comments. From Eq. �6.1� we see
that K contributes Krs� jk to Brj;sk in Eq. �6.3�. From Eqs.
�6.1� and �5.2� we have

Q� = �
�=0

M2−1

G���QG���† + K Tr Q . �6.5�

In our experience with examples, the matrices G��� and K in
this equation have been significantly simpler than the matri-
ces C�n� in Eq. �6.4�.

VII. QUANTUM PROCESS TOMOGRAPHY

How is such a map found? Is it observable? What can be
seen in experiments? Is the map determined �23� by the ef-
fect of the dynamics on different density matrices 
? It is if
the compatibility domain contains an open set of values for
the �F�0�. Then, for each � from 1 to N2−1, there are states
of S, with density matrices 
 described by Eq. �2.5�, that
differ only in the value of �F�0� for that one �. Between two
of these states, the difference in


U =
1

N
�1� + �

�=1

N2−1

�F�0�F�0� 	 �7.1�

is just

�
U =
1

N
���F�0��F�0� . �7.2�

This determines F�0� . The map is specified by 1� and these
F�0� for � from 1 to N2−1. When all the F�0� are known, 1�
can be found from any 
U. If the compatibility domain con-
tains the state where �F�0� is zero for all � from 1 to N2−1,
so that 
 is �1/N�1, then 1� is determined by


U =
1

N
1� �7.3�

for that state, but as examples described in Sec. VIII show,
the compatibility domain does not always include that state.

The compatibility domain is the set of density matrices 

that can be affected by the dynamics for the states being
considered for the larger system of S and R combined. If
there are enough density matrices in the compatibility do-
main that are accessible to experiments, the map can be de-
termined experimentally. The choice of the density matrices

 to be used �23� will depend on the particular situation.
Density matrices that are handy for one situation may not
even be in the compatibility domain for another situation.

VIII. TWO-QUBIT EXAMPLES

We consider two qubits described by Pauli matrices �1,
�2, �3 for S and �1, �2, �3 for R, so that Fj0 is � j and F0k
is �k, which implies Fjk is � j�k, for j ,k=1,2 ,3. The density
matrix for the two qubits is
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� =
1

4
�1 + �

j=1

3

�� j�� j + �
k=1

3

��k��k + �
j,k=1

3

�� j�k�� j�k	
�8.1�

and the density matrix for S is


 = TrR � =
1

2
�1 + �

j=1

3

�� j�� j	 . �8.2�

We let

K =
1

2�
j=1

3

� j� j , �8.3�

with

� j = TrS�� jK� . �8.4�

We write ��� � for the vector with components ��1�, ��2�, ��3�
and �� for the vector with components �1, �2, �3, and write

���� �� and ��� � for the lengths of these vectors. We write �� for
the vector whose components are the matrices �1, �2, �3.

Our examples are for different unitary matrices U. For the
first set we think of U as describing the dynamics of the two
qubits. In the second set U describes a Lorentz transforma-
tion of the spin of a massive particle for states with two
possible values of the momentum. This illustrates how the
maps developed for dynamics can be used for other transfor-
mations as well.

A. Interaction Hamiltonians

The first examples are motivated by considering Hamilto-
nians that have only interaction terms, no free Hamiltonian
terms, as in an interaction picture. From � j,k=1

3 � jk� � j�k we
can get � j=1

3 � j� j� j by making a rotation in each qubit �33�
and redefining the � j and �k, so to choose an example we let

U = e−i�1/2���1�1�1+�2�2�2+�3�3�3� �8.5�

�where �1, �2, �3 can be functions of time�. The three matri-
ces �1�1, �2�2, �3�3 commute with each other �the differ-
ent � j anticommute and the different � j anticommute, so the
different � j� j commute�. That allows us to easily compute

U†�1U = �1e−i�2�2�2e−i�3�3�3

= �1 cos �2 cos �3 + �1 sin �2 sin �3

− �2�3 cos �2 sin �3 + �3�2 sin �2 cos �3

�8.6�

using the algebra of Pauli matrices, and similarly

U†�2U = �2 cos �3 cos �1 + �2 sin �3 sin �1

− �3�1 cos �3 sin �1 + �1�3 sin �3 cos �1,

�8.7�

U†�3U = �3 cos �1 cos �2 + �3 sin �1 sin �2

− �1�2 cos �1 sin �2 + �2�1 sin �1 cos �2.

�8.8�

Interchanging U and U† has the same effect as changing the
sign of every � j. Thus, we see that

L��1� = �1 cos �2 cos �3

L��2� = �2 cos �3 cos �1

L��3� = �3 cos �1 cos �2. �8.9�

Taking mean values in Eqs. �8.6�–�8.8� gives the �� j�U, from
which we see that

�1 = ��1�sin �2 sin �3 − ��2�3�cos �2 sin �3

+ ��3�2�sin �2 cos �3,

�2 = ��2�sin �3 sin �1 − ��3�1�cos �3 sin �1

+ ��1�3�sin �3 cos �1,

�3 = ��3�sin �1 sin �2 − ��1�2�cos �1 sin �2

+ ��2�1�sin �1 cos �2. �8.10�

We can construct K from Eq. �8.3� and then get the linear
map from Eq. �6.1� or use Eq. �6.2� to get the

� j� = L�� j�, 1� = 1 + 2K , �8.11�

which determine the linear map. For the description of the
linear map by Eq. �6.3� we find that

B =
1

2�
1 + �3 + C1C2 0 �1 − i�2 C2C3 + C3C1

0 1 + �3 − C1C2 C2C3 − C3C1 �1 − i�2

�1 + i�2 C2C3 − C3C1 1 − �3 − C1C2 0

C2C3 + C3C1 �1 + i�2 0 1 − �3 + C1C2

� , �8.12�

where Ci�cos �i for i=1,2 ,3, and the rows and columns of
the matrix are in the order 11, 12, 21, 22. You can check that

this is correct because it does give �1�, �2�, �3�, 1�, that agree
with Eq. �8.11�.
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The examples described in our previous paper �14� are
obtained as a particular case by letting �1 and �2 be zero,
taking �3 to be �t, and changing the �3 in U to �1. The new
set of examples is much richer. In U there are three param-
eters instead of one. In K there are nine mean values: the
three ��k� and the six �� j�k� for j�k. The maps described
in our previous paper depend only on ��1�1� and ��2�1�.

Different values of the ��k� or �� j�k� in K generally give
different maps. Each map is made to be used for a particular
set of states described by a particular set of density matrices


, or a particular set of ��� �, which we call the compatibility

domain. It is the set of ��� � that are compatible with the ��k�
and �� j�k� in K in describing a possible initial state for the
two qubits. The increased number of ��k� and �� j�k� in K
means that the compatibility domains are more restricted and
varied. It is difficult to describe general features of the com-
patibility domains beyond the fact that they are convex �14�.

In a larger domain, which we call the positivity domain,
the map takes every positive matrix to a positive matrix. The

positivity domain is the set of ��� � for which ���� �U��1. It
depends on both the � j in U and the ��k� and �� j�k� in K, so
the variety of positivity domains is larger than the large va-
riety of compatibility domains. We have looked at several
examples.

These examples exhibit new features. For the examples
described previously �14�, the compatibility domain is not
changed by reflection through the origin in the space of the

��� �; if ��� � is in the compatibility domain, then so is −��� �.
The origin, the zero ��� �, is always in the compatibility do-
main. We can see from Figs. 1–3 that these properties do not
hold as a general rule. Another property of the examples
described previously �14� is that the compatibility domain is
the intersection of all the positivity domains for the same
values of the ��k� and �� j�k� in K. We can easily see that
this also is not generally true. There are simple cases where

the zero ��� � is in every positivity domain but not in the
compatibility domain.

For example, suppose ��1� and ��3�1� are positive and
all the other ��k� and �� j�k� for j�k are zero. Then

�1 = ��1�sin �2 sin �3,

�2 = − ��3�1�cos �3 sin �1,

�3 = 0 �8.13�

and

��� �2 � sin2 �3 + cos2 �3 = 1. �8.14�

This implies that the zero ��� � is in all the positivity domains

for different �1, �2, �3, because ��� �U is �� when ��� � is zero.
We can see from Fig. 3 that for cases of this kind there are

compatibility domains that do not contain the zero ��� �. We
can easily show that there are many such cases. First we
show that there is a substantial compatibility domain for any
values of ��1� and ��3�1� short of the limit where ��1� or

��3�1� is 1. We find a set of ��� � for which the matrix

� =
1

4
�1 + ��1��1 + ��2��2 + ��3��3 + ��3�1��3�1

+ ��1��1� �8.15�

is positive �which implies that it is a density matrix and the

set of ��� � is in the compatibility domain�. Let

FIG. 1. �Color online� The compatibility do-
main for ��1�, ��2�, ��3�, ��1�2�, ��1�3�,
��2�1�, ��2�3�, ��3�1�, and ��3�2� all equal to
1
4 . �A� The whole compatibility domain inside the
unit sphere. �B� The section of the domain in the
��1 ,�2� plane. The sections of the domain in the
��1 ,�3� and ��2 ,�3� planes are identical.

FIG. 2. �Color online� �A� Sections in the ��1 ,�2� plane of the
compatibility domain �dotted region� and the positivity domain
�thick curve� for ��1�, ��2�, ��3�, ��1�2�, ��1�3�, ��2�1�,
��2�3�, ��3�1�, and ��3�2� all equal to 1

4 and �1=2�5, �2=2�3,
�3=2�2. �B� Sections of where the map takes the compatibility
domain, the positivity domain and the unit sphere �thick curve plus
the dashed curve�. The dotted circle is the section of the unit sphere.
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� =
1

4
�1 + ��1��1 + M� . �8.16�

We see that M commutes with �1. There is a basis of eigen-
vectors of �1 and M that diagonalizes �. From

M2 = ��1�2 + ��2�2 + ��3�2 + ��3�1�2 + 2��3���3�1��1,

�8.17�

we see that the magnitude of the eigenvalues of M is

���1�2 + ��2�2 + ���3� ± ��3�1��2 �8.18�

when the eigenvalue of �1 is ±1. The eigenvalues of � are
all non-negative if

��1�2 + ��2�2 + ���3� ± ��3�1��2 � �1 ± ��1��2.

�8.19�

These inequalities say that ��� � is in the intersection of the
two spheres of radii 1± ��1� with centers at ���3�1� on the
3 axis. There is a substantial intersection, so there is a sub-
stantial compatibility domain, for all values of ��1� and
��3�1� short of the limit where ��1� or ��3�1� is 1. For
example when ��1� and ��3�1� are equal, the intersection is
just the smaller sphere.

Now we show that the zero ��� � is not in the compatibility
domain when ��1�+ ��3�1� is larger than 1. We show that
then there is no density matrix

� =
1

4
�1 + ��1�1��1�1 + ��2�2��2�2 + ��3�3��3�3

+ ��3�1��3�1 + ��1��1� �8.20�

because then no matrix of this form can be positive. Let

� =
1

4
�1 + ��2�2��2�2 + ��3�3��3�3 + ��1��1 + W� ,

�8.21�

where

W = ���1�1��1 + ��3�1��3��1. �8.22�

Because W2 is ��1�1�2+ ��3�1�2, the eigenvalues of W are

±���1�1�2 + ��3�1�2. �8.23�

The matrices �1 and W commute and make a complete set of
commuting 4�4 matrices. Their eigenvalues label basis vec-
tors for the four-dimensional space, one for each of the four
combinations of the two eigenvalues of �1 and the two ei-

genvalues of W. In particular, there is a nonzero vector �
that is an eigenvector of �1 and W for the negative eigen-
values of both. Since �� ,�2�2�� and �� ,�3�3�� are zero,
it gives

��,��� =
1

4
���2�1 − ��1� − ���1�1�2 + ��3�1�2� ,

�8.24�

which is negative if ��1�+ ��3�1� is larger than 1.

B. Lorentz transformations of spin

These examples are abstracted from Lorentz transforma-
tions of the spin of a particle with positive mass and
spin 1

2 for two possible values of the momentum �34�. Let

U = D1
1

2
�1 + �1� + D2

1

2
�1 − �1� �8.25�

with D1 and D2 the unitary rotation matrices made from �� ,
so that

D1
†�� D1 = R1��� �, D2

†�� D2 = R2��� � , �8.26�

for rotations R1 and R2; each R��� � is simply the three-

dimensional vector �� rotated by R. In the application to Lor-

entz transformations of spin �34�, �� describes the spin of the
particle, �1 is the Pauli matrix for states with two different
momentum values p1 and p2 that is +1 when the momentum
is p1 and −1 when the momentum is p2, and R1 and R2 are
the Wigner rotations for the Lorentz transformation for p1
and p2. Then U describes the Lorentz transformation of the
spin in the system of two qubits where one qubit is the spin
and the other is made from the two values of the momentum
�34�. We would not have thought to consider an example this
simple had it not come to us in an interesting application.

From Eqs. �8.25� and �8.26� we get

U†�� U = R1��� �
1

2
�1 + �1� + R2��� �

1

2
�1 − �1�

=
1

2
�R1��� � + R2��� �� +

1

2
�R1��� � − R2��� ���1,

�8.27�

L��� � =
1

2
�R1

−1��� � + R2
−1��� �� , �8.28�

FIG. 3. �Color online� The compatibility do-
main for ��1� and ��3�1� equal to 1/�3 and
��2�, ��3�, ��1�2�, ��1�3�, ��2�1�, ��2�3�,
��3�2� all equal to zero. �A� The whole compat-
ibility domain inside the unit sphere. �B� The sec-
tion of the domain in the ��1 ,�3� plane. �C� The
section of the domain in the ��2 ,�3� plane. The
compatibility domain does not intersect the
��1 ,�2� plane.
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�� =
1

2
��R1��� � − R2��� ���1� , �8.29�

G�0� =
1

2
�D1 + D2�, G�1� =

1

2
�D1 − D2� . �8.30�

The mean values ��� � are mapped to

��� �U = �U†�� U� =
1

2
�R1��� � + R2��� �� + �� �8.31�

and the density matrix 
 of Eq. �8.2� is mapped to


U =
1

2
�1 + ��� �U · �� � =

1

2
�1 +

1

2
�R1��� � + R2��� �� · �� + �� · �� 	

=
1

2
�1 + ��� � ·

1

2
�R1

−1��� � + R2
−1��� �� + �� · �� 	 = L�
� + K

=
1

2
�1� + ��� � · �� �� �8.32�

with

�� � = L��� �, 1� = 1 + 2K . �8.33�

If �R1��� ��1�= �R2��� ��1� then K is zero and the map is
completely positive. In fact, the map is the same as it would

be if ��� �1� were zero. If ��� �1� is zero then

���
1

2
�1 + �1�� = ���

1

2
�1 − �1�� . �8.34�

In the application �34�, the mean value of the spin is the
same for both momenta p1 and p2.

If �R1��� ��1�� �R2��� ��1� there are positive matrices

1

2
�1 + a� · �� � �8.35�

that are mapped to matrices

1

2
�1 + a�� · �� � �8.36�

that are not positive. To see this, it is sufficient to consider
the case where R1 is the identity rotation and R2 is an arbi-
trary rotation R. The general case can be recovered by taking
R to be R1

−1R2 and joining the same rotation R1 onto both the
identity and R1

−1R2 to restore R1 and R2. The overall rotation
R1 will just rotate a�� and not change the nonpositive charac-
ter of the matrix �8.36�. Hence, we consider

a�� =
1

2
�a� + R�a��� +

1

2
���� − R��� ���1� . �8.37�

Let a� be along the axis of R so that R�a�� is a� . Then

a�� = a� +
1

2
���� − R��� ���1� . �8.38�

Choose the direction of a� so that

a� ·
1

2
���� − R��� ���1� � 0. �8.39�

Then �a���� �a� �. When �a� � approaches 1, the matrix �8.36� is
not positive.

For these maps, K depends only on ��� �1�, not on ��� �2�,
��� �3�, or ��� �. The compatibility domain is the set of ��� �
that are compatible with specified ��� �1� in describing a pos-
sible state for the two qubits. It is very similar to the com-
patibility domain for the examples described in our previous
paper. More precisely, K depends on

R1���� �1�� − R2���� �1�� = R1���� �1� − R1
−1R2���� �1��� .

�8.40�

Let the 3 axis be along the axis of R1
−1R2. Then ��3�1� is not

changed by R1
−1R2, so it drops out, leaving only ��1�1� and

��2�1� in K, and the compatibility domain is the set of ��� �
that are compatible with specified ��1�1� and ��2�1� in de-
scribing a possible state for the two qubits. This is exactly
the compatibility domain for the examples described in our
previous paper �14�. The equations and drawings that de-
scribe the compatibility domain there �Eqs. �2.58�, �2.64�,
�2.75�, �2.77� and Figs. 2 and 3 in Ref. �14�� apply here as
well.

The positivity domain is not the same as for the examples
described in our previous paper �14�. It is the domain in
which every positive matrix is mapped to a positive matrix,

or the set of ��� � for which

�1

2
�R1���� �� + R2���� ��� + ��� = ���� �U� � 1. �8.41�

C. The size of the inhomogeneous part

How big can ��� � be? For the Lorentz-transformation ex-
amples described in Sec. VIII B, we find that the limit on ��� �
is 1, but that ��� � can have any value short of that limit �34�.
We do not know if values of ��� � larger than 1 are possible for
the interaction-Hamiltonian examples described in Sec.
VIII A; we have not found any values larger than 1. Here is
a proof that ��� � cannot be larger than �1+�5� /2, which is
about 1.62.

From Eqs. �8.4� and �3.4� we have

� j = TrS
� j TrR
U�� − 
 �
1

2
	U†��

= Tr
U†� jU�� − 
 �
1

2
	� �8.42�

with � and 
 the density matrices of Eqs. �8.1� and �8.2�.
Since the trace of the product of matrices has the properties
of an inner product for the real linear space of Hermitian
matrices, it follows that
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��3�2 � Tr��U†�3U�2�Tr
�� − 
 �
1

2
	2�

= 4�1

4
	��

k=1

3

��k�2 + �
j,k=1

3

�� j�k�2	 . �8.43�

From

1 � Tr��2� =
1

4
�1 + �

j=1

3

�� j�2 + �
k=1

3

��k�2 + �
j,k=1

3

�� j�k�2	 ,

�8.44�

we get

��3�2 � 3 − �
j=1

3

�� j�2. �8.45�

This holds for any unitary matrix U, so it holds when U is
replaced by UV with V a unitary rotation matrix made from

the Pauli matrices U†� jU that rotates U†�� U to V†U†�� UV so

that the only nonzero component of �� for V†U†�� UV is �3
and ��� �2 for U is ��3�2 for UV. Thus, we conclude that

��� �2 � 3 − ���� ��2. �8.46�

We consider mean values �� j�, ��k�, �� j�k� that describe
a possible initial state for the two qubits. Then also,

��� � = �TrS��� K�� = ��U†�� U� − TrS��� L�
��� � 1 + ���� ��
�8.47�

because ��U†�� U���1 and, as in Eq. �4.6�,

�
j=1

3

�TrS�� jL�
���2 = �
j=1

3

��Fj0�0
U�2 � �

j=1

3

�Fj0�2 = �
j=1

3

�� j�2.

�8.48�

As a function of ���� ��, the bound �8.46� decreases and the
bound �8.47� increases. The two bounds allow the largest ��� �
when they meet. Then ���� �� is �−1+�5� /2 and the largest ��� �
allowed is �1+�5� /2. As the limit of large ��� � is approached,

the room for variation in ���� �� decreases, so room for the
compatibility domain decreases, as our examples have
shown.
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