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We introduce several possible generalizations of tomography to curved surfaces. We analyze different types
of elliptic, hyperbolic, and hybrid tomograms. In all cases it is possible to consistently define the inverse
tomographic map. We find two different ways of introducing tomographic sections. The first method operates
by deformations of the standard Radon transform. The second method proceeds by shifting a given quadric
pattern. The most general tomographic transformation can be defined in terms of marginals over surfaces
generated by deformations of complete families of hyperplanes or quadrics. We discuss practical and concep-
tual perspectives and possible applications.
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I. INTRODUCTION

Most of classical applications of tomography are based on
light propagation along optic rays �implicitly assumed to be
straight lines�. Standard Radon transform theory guarantees
that a measurement of the absorption of light beams traveling
in dielectric media in straight lines allows the complete re-
construction of the matter density of these media. Indeed, the
original Radon transform �1� maps functions of two variables
in the plane onto functions of one real variable on a line and
one variable on a circle. The crucial property is that the
transform is invertible and continuous �2,3�.

There exist several generalizations of the Radon trans-
form. See, e.g., �4� and �5�. Further generalizations can be
motivated by physical observations: for instance, if the func-
tion on the plane is a probability density, its Radon compo-
nent is a family of probability densities of one random vari-
able on the line, parametrized by a variable on a circle �6�. A
tomographic approach in a similar framework was applied to
a free classical particle moving on a circle �7�, where the
phase space is a two-dimensional cylinder.

In quantum mechanics, the Radon transform of the
Wigner function �8� was considered in the tomographic ap-
proach to the study of quantum states �9,10� and experimen-
tally realized with different particles and in diverse situations
�11–13�. Other experiments have been proposed �14� and the
whole field is in continuing evolution, also in view of its
relevance in genuine quantum mechanical problems and
quantum information related topics. Good reviews on recent
tomographic applications can be found in Ref. �15�, with
emphasis on maximum likelihood estimations �16�, which
enable one to extract the maximum reliable information from
the available data.

A further development, extending the analysis to incorpo-
rate more general symplectic transforms, was presented in
�17�, and the mathematical mechanism at the basis of the

mapping of true density states onto tomographic probabilities
was elucidated in �18�. There is an interesting relation be-
tween the Radon map of Wigner functions and the formalism
of star product quantization �6,19�: symplectic tomograms
are indeed the Radon components of the Wigner function,
and this enables one to define a procedure aimed at deter-
mining the marginal probability densities along straight lines
in phase space. The knowledge of all these marginals makes
possible the reconstruction of the Wigner function in the
quantum case and of the probability density in the classical
case.

The generalization of tomographic maps to curved sur-
faces opens new perspectives in the applications of tomog-
raphy to both quantum and classical systems. Some attempts
to study marginals along curves other than straight lines were
introduced in Ref. �20�. Very recently, optical “accelerating”
Airy beams were observed �21�: these beams could be used
to perform a tomographic map over parabolas in phase
space. A generalization of tomography to this kind of appli-
cation requires a generalization of the Radon transform.

The aim of this paper is to study generalizations of the
Radon transform to multidimensional phase spaces and to
marginals along curves or surfaces. Most of the generaliza-
tions of the Radon transform proceed by considering geode-
sic submanifolds of a given Riemannian manifold. We de-
velop here a different approach, which can be applied to the
Radon components of the probability densities of classical
particles in phase space, and construct the corresponding to-
mographic maps.

This paper is organized as follows. In Sec. II we review
the standard tomographic application of the Radon transform
on the plane. In Sec. III we consider the generalization to
arbitrary dimensions. A deformation of the Radon transform
with applications to elliptic and hyperbolic problems is pre-
sented in Sec. IV. In Sec. V we introduce a transform involv-
ing hyperbolic, elliptic, and parabolic quadrics. The trans-
form is defined by translations of a basic pattern. Finally in
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Sec. VI we discuss the relevance of our results for future
applications.

II. TOMOGRAPHY ON THE PLANE

Let us consider a function f�q , p� on the phase space
�q , p��R2 of a particle moving on the line q�R. The Radon
transform, in its original formulation, solves the following
problem: reconstruct a function of two variables, say f�p ,q�,
from its integrals over arbitrary lines.

In the �q , p� plane, a line is given by the equation

X − �q − �p = 0, �1�

with �� ,��� �0,0�. Thus, the family of lines has the
manifold structure R�S, with S the unit circle,
d=X /��2+�2�R, and � /�=tan �, ��S �see Fig. 1�.

It is possible to write the Radon transform in affine lan-
guage �tomographic map� �1,5� as

� f�X,�,�� = ���X − �q − �p��

= �
R2

f�q,p���X − �q − �p�dq dp , �2�

where � is the Dirac function and the parameters X ,� ,��R.
The inverse transform of �2� reads

f�q,p� = �
R3

� f�X,�,��ei�X−�q−�p�dX d� d�

�2��2 . �3�

The positive homogeneity of � f�X ,� ,��,

� f��X,��,��� =
1

	�	
� f�X,�,�� , �4�

∀ ��R, ��0, is a direct consequence of �2�. If the func-
tion f�q , p� is a probability density function on the phase
space of a classical particle, i.e.,

f�q,p� 	 0, �
R2

f�q,p�dq dp = 1, �5�

the function � f�X ,� ,�� is also nonnegative and is called
symplectic tomogram or Radon transform of the distribution

function f�q , p� �in analogy to the Fourier transform of a
function�. The Radon transform contains the same informa-
tion on the state of the particle evolving on the phase space
as the initial distribution function. In summary, the tomo-
grams

� f�X,�,�� 	 0, �
R

� f�X,�,��dX = 1, ∀ �,� , �6�

form a family of density functions that depends on the two
real parameters � and �.

III. TOMOGRAMS ON HYPERPLANES

The above construction can be generalized to higher-
dimensional spaces in a straightforward way. Let us consider
a function f�q� on the n-dimensional space q�Rn. Is it pos-
sible to reconstruct the function f from its integrals over
arbitrary �n−1�-dimensional linear submanifolds? The an-
swer to this question is positive and provides a generalization
of the original Radon transform.

A generic hyperplane is given by the equation

X − � · q = 0, �7�

with X�R and ��Rn \0. Due to homogeneity, this family of
hyperplanes is an n-dimensional manifold diffeomorphic to
R�Sn−1, because any hyperplane can be characterized by its
unit normal vector � / 	�	 and its distance to the origin
	X	 / 	�	. Note that this manifold is not diffeomorphic to Rn

because the sphere Sn−1 is compact.
The Radon transform is given by

� f�X,�� = ���X − � · q�� = �
Rn

f�q���X − � · q�dnq . �8�

When n=2 Eq. �2� is recovered.
The inverse transform of �8� reads

f�q� = �
Rn+1

� f�X,��ei�X−�·q�dX dn�

�2��n . �9�

The homogeneity of � f�X ,��

� f��X,��� =
1

	�	
� f�X,�� , �10�

∀��R, ��0, is a direct consequence of �8�. If the function
f�q� is a probability density function on Rn,

f�q� 	 0, �
Rn

f�q�dnq = 1, �11�

the tomograms � f�X ,�� are also probability densities,

� f�X,�� 	 0, �
R

� f�X,��dX = 1, ∀ � � Rn, �12�

and the family of tomograms depends on the n real param-
eters �. In quantum mechanics this construction was applied
to Wigner functions providing a center of mass tomography
�22�.

p

q

θ
d

FIG. 1. �Color online� Tomography on the plane;
�q , p��R2 , d�R , ��S �unit circle�.
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IV. TOMOGRAMS ON HYPERSURFACES

A simple mechanism that allows nonlinear generalizations
of the Radon transform is the combination of the standard
transform with a diffeomorphism of the underlying Rn space.
Let us consider a function f�q� on the n-dimensional space
q�Rn. The problem is to reconstruct f from its integrals
over an n-parameter family of submanifolds of codimension
1.

We can construct such a family by diffeomorphic defor-
mations of the hyperplanes �in the x�Rn space�

X − � · x = 0, �13�

with X�R and ��Rn \0. Let us consider a diffeomorphism
of Rn

q � Rn � x = 
�q� � Rn. �14�

The hyperplanes �13� are deformed by 
 into a family of
submanifolds �in the q space�

X − � · 
�q� = 0. �15�

The case n=2 is displayed in Fig. 2: �q , p��R2→ �x ,y�
=
�q , p��R2.

Given a probability density f̃�x� on the x space, the Radon
transform can be rewritten as

� f�X,�� = ���X − � · x�� = �
Rn

f̃�x���X − � · x�dnx

= �
Rn

f̃„
�q�…�„X − � · 
�q�…J�q�dnq , �16�

where

J�q� = 
 �xi

�qj

 = 
 �
i�q�

�qj

 �17�

is the Jacobian of the transformation.
Observe now that

f̃�x�dnx = f̃„
�q�…J�q�dnq , �18�

whence f�q�= f̃(
�q�)J�q� is a probability density. Therefore
the tomograms are given by

� f�X,�� = ��„X − � · 
�q�…� = �
Rn

f�q��„X − � · 
�q�…dnq ,

�19�

with X�R and ��Rn.
The inverse transform follows by �9�:

f�q� = f̃„
�q�…J�q� = �
Rn+1

� f�X,��J�q�ei�X−�·
�q��dX dn�

�2��n ,

�20�

with a modified kernel

K�q;X,�� = J�q�ei�X−�·
�q�� = 
 �
i�q�
�qj


ei�X−�·
�q��. �21�

Therefore, a probability density distribution on Rn,

f�q� 	 0, �
Rn

f�q�dnq = 1, �22�

produces tomograms � f�X ,�� that are probability densities,

� f�X,�� 	 0, �
R

� f�X,��dX = 1, ∀ � � Rn. �23�

The family of tomograms depends on the n real parameters
�. We can now consider different applications of these de-
formed generalizations of the Radon transform.

A. Circles in the plane

In the punctured �x ,y� plane without the origin �0,0�, the
conformal inversion

�x,y� = 
�q,p� = � q

q2 + p2 ,
p

q2 + p2� �24�

maps the family of lines

X − �x − �y = 0 �25�

into a family of circles

X�q2 + p2� − �q − �p = 0, �26�

centered at

C = � �

2X
,

�

2X
� �27�

and passing through the origin �see Fig. 3�. When X=0 they
degenerate into lines through the origin.

The Jacobian reads

J�q,p� = 
 ��x,y�
��q,p�


 =
1

�q2 + p2�2 , �28�

whence the transformation is a diffeomorphism of the punc-
tured plane. The singularity of the transformation at the ori-
gin �0, 0� is irrelevant for tomographic integral transforma-
tions of functions f �L1�R2�, because it affects only a zero-
measure set .

p

q

y

x

FIG. 2. �Color online� Diffeomorphism of the plane:
�q , p��R2→ �x ,y�=
�q , p��R2.

GENERALIZED TOMOGRAPHIC MAPS PHYSICAL REVIEW A 77, 042115 �2008�

042115-3



A few comments on singularities are in order, in particular
in view of possible quantum applications. The standard Ra-
don transform, which is normally used in optical tomography
schemes for measuring quantum states, has known singulari-
ties in the reconstruction formula of the Wigner function
from the optical tomogram of the phase variable. The prob-
lems due to the singularities can be overcome in several in-
teresting ways �see �23,24� and �15� for an overview�. Notice
that the symplectic tomography reconstruction formula has
redundant information, which is contained in the extra pa-
rameter dependence of the tomogram, and does not display
such singularities. In fact, it can be considered as one of the
possible tools to avoid this difficulty, since it reconstructs the
quantum state by making direct use of the experimental data.
The nonlinear tomographic schemes we introduced general-
ize the standard symplectic tomographic scheme �that con-
tain enough extra parameters, providing redundant informa-
tion�, but also avoid singularities in the reconstruction
formula. A new type of singularity might appear in some
cases, due to the presence of vanishing Jacobians, but these
singularities are not generic, affect only sets of data with
zero measure, and are therefore completely harmless from a
physical viewpoint.

Equations �19� and �20� become

� f�X,�,�� = 
��X −
�q

q2 + p2 −
�p

q2 + p2��
= �

R2
f�q,p���X −

�q

q2 + p2 −
�p

q2 + p2�dq dp

�29�

and

f�q,p� = �
R3

� f�X,��
ei�X−�q/�q2+p2�−vp/�q2+p2��

�2��2�q2 + p2�2 dX d� d� .

�30�

B. Hyperbolas in the plane

In the �x ,y� plane the family of lines

X − �x − �y = 0 �31�

is mapped into a family of hyperbolas

X −
�

q
− �p = 0, �32�

with asymptotes

q = 0, p =
X

�
, �33�

by the transformation

�x,y� = 
�q,p� = �1

q
,p� . �34�

For ��0 the hyperbolas are in the second and fourth quad-
rants, while for ��0 they are in the first and third quadrants
�see Fig. 4�. When �=0 or �=0 they degenerate into hori-
zontal or vertical lines, respectively.

The Jacobian reads

J�q,p� = 
 ��x,y�
��q,p�


 =
1

q2 , �35�

whence the transformation is a diffeomorphism in the cut
plane without the axis �0, p�.

Equations �19� and �20� become

� f�X,�,�� = 
��X −
�

q
− �p��

= �
R2

f�q,p���X −
�

q
− �p�dq dp �36�

and

f�q,p� = �
R3

� f�X,��
1

q2ei�X−�/q−�p�dX d� d�

�2��2 . �37�

The tomograms �19�, �29�, and �36� have the homogeneity
property �10�.

C. Hyperboloids in Rn

The generalization to higher dimensions of tomographic
maps that can be given in terms of quadratic expressions is
straightforward. Let us consider for example the following
tomographic map:

� f�X,�,�� = �
R2n

�„X − � · q − ��q,p�…f�q,p�dnq dnp ,

�38�

where p and q are vectors in Rn and

p

q

FIG. 3. �Color online� Deformed circular tomography. All
circles pass through the origin.

p

q

FIG. 4. �Color online� Hyperbolic tomography.
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��q,p� = �
j=1

n

� jqjpj . �39�

This map corresponds to a deformation of the standard mul-
tidimensional Radon transform by means of the following
diffeomorphism of R2n \� j��q , p� :qj =0�:

�qi,pj� � �xi,yj� = �qi,qjpj� , �40�

whose Jacobian is

J�q,p� = 
 ��x,y�
��q,p�


 = �
j=1

n

	qj	 . �41�

The inverse map is given by

f�q,p� = �
R2n+1

dX dn� dn�

�2��2n � f�X,�,���
j=1

n

	qj	ei�X−�·q−��q,p��.

�42�

This corresponds to the higher-dimensional generalization of
the Bertrand-Bertrand tomography �9�.

Note that, when n=2, by interchanging the role of X and
−�, one recovers the same distribution of hyperbolas in the
plane analyzed in Sec. IV B.

Although the above generalizations might be very useful
for light-ray tomograms, all of them involve integration over
unbounded submanifolds. One would like to generalize the
Radon transform to marginals defined over compact sub-
manifolds, which are bounded on a compact domain around
�p ,q�. This case will be investigated in the following section.

V. TOMOGRAMS ON QUADRICS

Let us now look for a different generalization of tomo-
grams. We shall consider marginals along compact quadrics.
This can be achieved by shifting and scaling a given quadric
pattern

X = „q − �,B�q − ��… , �43�

where B is a nondegenerate symmetric operator with respect
to the scalar product �x ,y�=x ·y. A new generalization of the
tomographic map can be defined by

� f�X,�;B� = �
Rn

f�q���X − „q − �,B�q − ��…�dnq . �44�

Equation �44� defines a completely different type of trans-
form, with support on the quadrics defined by Eq. �43�. It is
easy to show that the inverse map is defined by

f�q� =
	det B	

�n �
Rn+1

dX dn� � f�X,�;B�ei�X−„q−�,B�q−��…�.

�45�

Indeed, by applying the definition of tomographic map �45�,

	det B	
�n � dX dn� ei�X−„q−�,B�q−��…�� f�X,�;B�

=
	det B	

�n � dX dn� ei�X−„q−�,B�q−��…�

�� dn
��X − „
 − �,B�
 − ��…�f�
� , �46�

which after integration over X yields

	det B	
�n � dn
 f�
�� dn� ei�„
−�,B�
−��…−�q−�,B�q−����

=
	det B	

�n � dn
 dn� f�
�ei��
,B
�−�q,Bq�+2�q−
,B���

=� dn
 f�
�ei��
,B
�−�q,Bq���n�q − 
� = f�q� . �47�

The meaning of the above tomographic map depends on the
features of B. If we assume that B is strictly positive �elliptic
case�, this map corresponds to averages of f along the ellip-
soids defined by Eq. �43�. In particular, if all the eigenvalues
of B are equal to b2, it corresponds to integration over
spheres centered at � of �squared� radius X /b2, namely,

b2�q − ��2 = X �X � 0� . �48�

Note that, in the two-dimensional case, the distribution of
circles is different from that obtained by the transform de-
fined by diffeomorphisms in Sec. IV. There, the family of
tomograms was defined only on circles passing through the
origin, including straight lines �circles of infinite radius�.
Here, we are taking into account all possible circles of finite
radius in the plane �see Fig. 5�. This corresponds to trajecto-
ries of particles moving in a plane under the action of a
constant magnetic field. From a practical perspective, this
new tomographic map would make possible a different prac-
tical implementation of tomography.

When B has both positive and negative eigenvalues this
corresponds to hyperbolic tomography with averages of f
along the hyperboloids defined by Eq. �43�, e.g.,

b2�q1 − �1�2 − c2�q2 − �2�2 = X . �49�

In the case of degenerate B forms we have to consider a
hybrid transform. B can then be decomposed into a nonde-
generate bilinear form and a linear form. In this case the
tomography of the linear components should be treated as

p

q

• µ

FIG. 5. �Color online� Tomography on circles of center � and
�squared� radius X /b2 on the plane.

GENERALIZED TOMOGRAPHIC MAPS PHYSICAL REVIEW A 77, 042115 �2008�

042115-5



the standard Radon transform, whereas the nondegenerate
variables should transform as above. Let us consider for ex-
ample a simple three-dimensional case with

B̄ = �1 0 0

0 1 0

0 0 0
� . �50�

In this case we can define the following tomographic map:

� f�X,�;B̄� = �
R3

d3q f�q��„X − �q1 − �1�2 − �q2 − �2�2

− �3q3… , �51�

with inverse transform

f�q� = �
R4

dX d3�

2�3 � f�X,�;B̄�ei�X−�q1 − �1�2−�q2 − �2�2−�3q3�.

�52�

VI. CONCLUSIONS AND PERSPECTIVES

Let us discuss the main findings of this paper, from both
mathematical and physical perspectives. From a mathemati-
cal viewpoint, the generalizations of the Radon transform
introduced here enable one to consider marginals defined
over submanifolds that are not necessarily geodesic submani-
folds in Riemannian spaces or Lagrangian submanifolds of
symplectic manifolds. These transforms define tomograms
over compact submanifolds and can be more suitable for
physical applications, because the practical implementation
of a tomogram can be achieved only in local terms. In this
framework, the recovery of a local value �of a probability
distribution on phase space in the classical theory, or of a
Wigner distribution in the quantum case� involves only inte-
gration over manifolds that do not reach infinity. In a previ-
ous paper �7�, we considered the tomography of a classical
particle moving on a circle, which required the definition of
marginals over the helices on a cylinder. Now, in the light of
the transforms just introduced, we have the possibility of
performing tomography over compact submanifolds even for
classical systems that evolve in unbounded domains. This is
a significant conceptual step forward.

Physically, the reconstruction formulas enable one to gen-
eralize the measurement procedures of the matter density of

an object. In a material medium with a strongly inhomoge-
neous refractive index, the radiation beams �light beams,
sonic beams or matter waves� would propagate along curved
lines and yet yield complete information on the matter dis-
tribution by means of generalized Radon transforms. For il-
lustrative purposes, our examples focus on two-dimensional
situations �see, e.g., Equations �24�, �34�, and �49��, but the
approach we propose is more general and valid in Rn.

In quantum optics these “nonlinear” Radon transforms
can be easily extended to the quantum domain by using the
Weyl-Wigner map. This will be discussed in a future presen-
tation. The results of this paper show that the reconstruction
of the Wigner function using optical or symplectic tomogra-
phy based on a straight-line Radon transform can be ex-
tended to situations in which the marginals in phase space
are measured for curved hyperbolas or ellipses. In particular,
parabolic tomography could be implemented with the re-
cently observed accelerated Airy beams �21�.

Novel physical applications of tomography have attracted
increasing attention during the last few years. Recent appli-
cations involving neutrinos, e.g., to get a mapping of the
Earth inner density �25�, do not require new concepts of
tomographic maps. However, neutrino tomography of �-ray
bursts and massive stellar collapses �26� might require gen-
eralized tomography. In particular, �-ray tomography that
made possible the discovery of asphericity in supernovae
explosions �27� or imaging of astrophysical sources �28� can
involve nonlinear trajectories of � rays due to strong gravi-
tational lensing effects. In those cases, generalizations of to-
mographic maps like the ones considered in this paper are
necessary.
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