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Abstract

Completely positive trace preserving maps of an N-level system are character-
ized and the external maps explicitly constructed. The parametrizations are natural
and enable one to compute the volume measures on this set of maps. Completely
positive trace preserving maps are shown to be constructions of unitary maps of
extended systems. The inverse problem is posed and solved.

1 Introduction to Dynamical Maps

Linear quantum stochastic processes may be identified with the linear conntraction map-
pings of the set of density matrices into the set of density matrices. This is to be
contrasted with the Hamiltonian evolution of such density matrices which are time de-
pendent unitary transformations. While these form a group, the dynamical maps form
only a semigroup. A unitary evolution is characterized by a unitary matrix with N2 — 1
independent real parameters. Both such unitary evolutions and the stochastic evolutions
can depend arbitrarily on time, it would be simpler to consider a time-independent law

of evolution. In the unitary evolution

p(t) — p(t") = U, t)p(t)UT(t', ) (1)
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made steady by having
Ut t)=U(t"—1t) (2)

which becomes

Ht'—t)=(t' —t)H. (3)

In a similar fashion if we introduce the superoperator A(t!,¢) which linearly map the

density matrices into themselves:
p(t) — p(t) = A(t', t)p(t) (4)
which for a steady evolution becomes
p(t) = A(t'—1)-p(t) (5)
= exp(i(t/primet)e)p(t) (6)

where € is the dissipative generator-superoperator.
Unlike H, which is hermitian, the superoperator ¢ is nonhermitian and has a neg-
ative “imaginary part” indicating dissipation and generates a semigroup.

In explicit matrix notation in an arbitrary basis we have, respectively,

U(t) > Yn(t) = ol (t't)e —1'(2) (7)
p=15(t) = pry(t) = OraArsrw(t't) - prow(t) (8)

Uprs () Uperrt (") = Upp (1) (9)
Argrgt () Aprg prgn (t —8") = Apgpngn(t't"). (10)

The super operator A has the “hermiticity” and trace-preserving property:

Ars.r's' = (A:'s"rs
Ar’r,r"s" = 6’:"’3" (11)



These dynamical maps p — Ap form a convex set for A7 and A,
Alcos’a + A sin®a = A(a) (12)

is also a dynamical (positivity and trace-preserving) map. Since they operator on N x N
nonnegative matrices with unit trace, the set of superoperators is itself a compact convex

set.

The “hermiticity” property of A can be best exploited by defining a related super-

operator B using the correspondence
B st A (13)
The superoperator B so defined implements the dynamcial map
Prs = Prs = Ot 3 Brys woprig (14)

which preserves the positivity and trace of the density matrices and is a linear map. Thus

B, ¢ s has the symmetry and trace properties

(B‘r'r’,s",s)f = Bss",r’,r (15)
Brr’,r‘,s = 6:"3 (16)
p=20—p 20-. (17)

Since the matrix B so defined is a finite dimensional hermitian matrix, it can be diago-

nalized with real eigenvalues.
Brr.ws = 0= B(r)Cr(n) (Cow(n)* . (B(n))* 2 0- (18)
In terms of the eigenmatrices C'(n) the mapping becomes

p—p = 0.8(n)C(n)pCt(n). (19)
o B(n)C1(n)C(n) = (20)
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These are the generic dynamical maps. The positivity preserving property does not imply

that 3(n) is positive. The simplest example is given for the map of 2 x 2 matrices:

1 :
p—p =p"=35(1-p-1+01-poy = 03psigma, + 03p03) (21)
with
11 11
i 2o 22
Bn) =155 —3 3} (22)

When all the eigenvalues (n) are nonnegative, we call the dynamical map completely

positive. A completely positive dynamical map is then implemented by

NZ
p—p= Z_‘,l D(n)pD™ (n) (23)
with
D(n) = +/B(n) - C(n). (24)
Then
N2
Zl D*(n)D(n) = (25)

Our aim is to characterize those completely positive dynamical maps|2] and provide a

natural parametrization.

2 Completely Positive Maps

We now study the set of completely positive dynamical maps in terms of the matrices
B and D. The completely positive dynamical map of N x N density matrices into

themselves is a convex set:

B = Blcos’a + B sin’a (26)

is a completely positive dynamical map if B/ and BII are. Since these N2 x N? matrices

are compact the convex set can be generated by convex combination of extremal maps.



A map is extremal if it has no nontrivial decomposition of this type. One such set of

dynamical maps is the set of unitary maps with
Brr',s's = Urs UtU = (27)

We have already shown that antiunitary maps are one-to-one invertible maps, but they

are not completely positive. Another set of extremal maps are the pin maps
p—p°=tr(p)-p° (28)

Prs = Prs = Zpigp”pry (29)

where p° is a pure density matrix.
(0°)? = p°. (30)
To study the generic extremal map we note that the set of matrices D(n) define

the completely positive map

p— 3 D(n)pD*(n) (31)
This can be an extremal map only if the set of matrices D*(m)D(n) are linearly

independent: that is

Z fmﬂD+(m)D(n) =0 (32)
implies
fmn =0 (33)
In that case
p =AY D' (m)pD'(n) + (1 - X)X D7(n) (34)

would imply that A = 0, 1. To prove this we observe that the set of matrices D(n) should

span the matrices D'(n) and D'/(r), so that
D'(n) = Z.G.,D(m)
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D'(n) = BuwG,,D(m)

Then
EmDt(n)D!(m) = Z,nwGi Gl Dl (n)D(n') =
EnDM(m) = SawGilgll, Di(n)D(r') =

and

> (gtg - hi(n)D(n) = 0 (35)

n,n'

Thus the map p — X,,D(n) is not extremal. But if v4,, is a unitary matrix D’(n) defined
by
D(n') =Y VmnD(n) (36)

generates the same dynamical map as D(n). If G, H have the double polar factorizations

G=uGulh=v+1 (37)
then
Gg = h'h (38)
implies
Unga’u; = Uy (39)
or
G? = ubw, (40)

Since G? and H? are both nonnegative real matrices, u v, must be a permutation matrix
in the generic case; in case G2 and 772 have degnerate eigenvalues there can be a nontrivial
matrix. But is easy to verify that in neither case does it alter the dynamical maps. So it

follows that the two maps are the same; and the apparent linear combination is trivial.
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In case we have a nontrivial linear relation between the matrices Df(m)D(n) the

map is not extremal. We see that the map
p— Y D(m)pD'(m) = p' (41)
is the convex sum of
¢ £ €F,,,D(m)pD'(n) (42)

for a sufficiently small e. Then the map p — p’ is not extremal.
Thus if and only if condition of linear independence of Df(m)D(n) hold do we have
an extremal map. But clearly if m,n > N this linear independence is not possible. So

M < N are the individual matrices for extremal maps.

3 Parametrization of Extremal Maps

With this understanding that M < N for extremal maps we may extend the unitary
and pin maps (which correspond to M =1 and M = N respectively)[4] to intermediate

values of M. In particular for M = 2 we have

p—p' = D(1)pD'(1) + D(2)pD'(2). (43)
we could write
(44)
D(1) = UQ)D° )V (45)
D(2) = U@Q)D°Q)V (46)
(47)

and make D°(1) and D°(2) diagonal. Let the eigenvalues of D(1) be cos 6, costs:

cos 6, 0
D) = U(l)( o o 02)V

Then



D'(2)D(2) =
so the matrix D(2) has the form

D(2) =U(2) ( Yy ::;1 6?2 ) =U(2)8V

for an arbitrary unitary matrix U(2):
One could generalize this for higher values of M.

For the generic case of M matrices[5] satisfying

M
> D'(n)D(n) =
nl

(49)

(50)

we have the polar decompositions D(n) = U(n)H(n) with H(n) hermitian. We can

choose to diagonalize H(1) using a unitary matrix V:
A(1) = C(1) = diag(cos,b,...)

Let the diagonal eigenvalues be cos;y, ..., cos . Then we have
H*(1) + H*(2) + ...+ H}(M) =

Now define
H(n) — S(E)H(l)(ﬂ) 2 =n< M

Then
2y Hfy(n) =

We can diagonalize H,(2):
Hqy(2) = VARV, A(2) = C(2) = diag(costbyr)

Then
Huy(n) = S(2)Hg)(n); M >n > 2
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where S(2) is diagonal with eigenvalues for fy,.
These H(y)(n) satisfy
T¥Hi(n) = 1. (57)

Diagonalize H2(3):
H2(3) = V(2)AB)VY,  A(3) = C(3)diag(cos b3,) (58)
In this manner we find the generic formula
D(1) = UMWHQ)=UWHVAVYVEAD = C(1) = diag(cosby;)
D(2) = U@2)H(2) = U@)S1)ViyA@)Vly: A2) = C(2) = diag(cos ba)
D@B) = UEB)SHV)SR)WAB)VLVY), AB) = C(3) = diag(cosbs,)  (59)
We still have the choice of forming orthogonal transformations in the matrices:
D(n) — Y R,nD(m)- R'R= (60)
By such transformations we can make
cosby =1 , sinf;;=0 (61)

and sequentially
equation?? (62)
Thus there need be only %M (M—1) angle parameters; the unitary matrices U(1),V(2)---,U(M—
1),V(1),V(2),.--,V(M — 1) are additional parameters that characterize the dynamical
map. The rotation matrix Rp,,,, are irrevalant parameters. Since we know how to

compute the volumes for unitary matrices and we may choose
equation?? (63)

we can determine the volume of the set of dynamical maps, or the set of extremal dy-

namical maps.



4 Completely Positive Maps Realized as Contrac-
tions

To complete the discussion of completely positive dynamical maps of N x N matrices into
themselves we recognize that such a map of rank M can be realized by considering an
extended system which is the Kronecker product of the states. So the composite density

matrices P are spanned by the products of density matrices:
P = p x xwithxm, = Ea/\aqr‘,,;ﬁ. and (64)

where x are M x M density matrices. A unitary evolution of the composite system will

entangle the two sets of states:
pxx—pxxWt (65)

where W is a unitary matrix in the Kronecker product states in dimension MN x M'N.

If we contract this evolution by taking the y-trace we get
pP=t th(WP X XWT) = Ars,r’s’pf"'.a"

with

equation?

This is a completely positive dynamical map
1.
p— Y_D(n)pDt(n)

n

with D(n) defined by

equation?

Thus the contraction of a unitary evolution of an MN x M N density matrix yields a

compleely positive map which is not extremal if the density matrix x is not pure.

10



Conversely given a completely positive map we can always cast it in the standard

form

p — > D(n)pDt(n).

mn

Now construct an M N x M N unitary matrix W, s with

Wrnr" f— -D ()

rr!

and the other matrix elements arbitary but such as to make W unitary. Then the

completely positive map p — 3, D(n)pDf(n) can be extended to the unitary map
pxx— Wpx xWi. (66)
If the map is extremal, ¥ may be chosen to be the project
Xoisri? = Oert Opiat
For a nonexternal completely positive map of the form
equation?

we could expand the map to the unitary map W,, ., with an impure density matrix
with eigenvalues 77. For the nonexternal maps M may range from 1 to N2

Since the convex set of completely positive maps is compact and locally compact, it
is generated by the extremal maps. Except for the “edges” which are on the boundary of
the compact set, the decomposition in terms of convex combinations of external elements
is not unique.

This is not unlike the decomposition of an impure density matrix as a sum of projec-
tions; there are infinitely many ways of doing this. If we demand that the decomposition
be in terms of orthogonal projections it becomes unique in the generic case. (If the

density matrix has degenerate eigenvalues then there will be corresponding ambiguities. )
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We can use this observation to decompose the dynamical maps. The completely

positive map corresponds to B matrix:
equation?

By a simple change of basis for x we can cast this in the form
equation?

which corresponds to the decomposition of the map as a convex sum:
equation?

Each of the B‘® furnish a completely positive map. In terms of the D matrice, this

corresponds to the decomposition
D(n)pDt(n) = 3 paD(n, a)pDt(n, a) (67)
with the understanding that the D(n, «) can be spanned by D(n):
D(n,a) =) ,D(m')=
The indecomposable (extremal) maps have the D(m)
; Dt(n,a)D(n, a) = 3 by, (@) DH(m)bam () D(m') =
for more than one a. This can be shown to be equivalent to the condition
CinDt(m)D(n) =0 => ¢y =0

The external maps correspond to x being a projection while the generic maps correspond

to x being the convex sum of orthogonal projection.
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5 Summary

In this paper we have analyzed completely positive maps of N x N density matrices into
density matrices. They can all be defined in terms of the eigenvector decomposition of
the N2 x N? dynamical matrix B, s The rank of this hermitian nonnegative matrix
determines the rank of the dynamical map. This class)fication is natural and unique.

A generic rank M completely positive map is displayed in parametrized form(5]
with 1/2M (M) angle parameters lying in the interval 0 < 8 < 7/2, and a set of unitary
matrices of dimensions M, M — 1,--- to dimension 1, modulo permutation of the M
indices.

The extremal elements of the convex set of completely positive dynamical maps
have the matrices D(n) such that the set Df(m)D(n) are linearly independent.

Any completely positive dynamical map is the contraction of a unitary map of an
extended system with density matrix p x x with dimension M N x M N. Conversely given
a completely positive dynamical map we can expand it into a unitary map of an extended
system. If the map is external the density matrix y should be a projection. External
maps have rank M < N. For M = 1 they are unitary maps contracted; for M = N they
are the pin maps.[4]

Many of these results have been known for decades, yet they continue being redis-
covered and presented without reference to existing literature.[6] It is hoped that this
need not happen because of unfamiliarity with the field, especially for newcomers to the
field from quantum computing and coherent atomic physics.

The dynamical maps from a semigroup; since the generic maps are contractive. If
we consider a continuous semigroup labeled by a time parameter which is additive, one
can extract the generator of the semigroup. Complete positivity of the semigroup maps

impose nontrivial. Conditions on the generators of the semigroups, some of which can be
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immediately applied. For example there is an inequality between the longitudinal and

transverse relaxation times in the Bloch equations for spin 1/2 particles.
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