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Radiative transfer theory, wave optics and paraxial optics including Fourier
optics can be treated uniformly and without any approximation in terms of
generalized pencils of rays. This development is reviewed and the role of the
groups SL(2,R), Sp{(4,R) for paraxial propogaticn elaborated. The problem of
polarization is studied with special care and correctly treated where explicit
use of the Polncaré group is made. Higher order correlations are teken up within
the generalized pencil formalism; the differences between quantum and classical
wave optics are highlighted. The effects of Bose quantization on ray-ray
correlations is calculated and displeyed. Many of these developments build on

the work by Leonard Mandel and Emil Wolf and were inspired by their work



1. Introductioen

The rectilinear propagation of light with constant speed is the 1mmediate
recognition of "e& bodv continuing 1n its state of uniform motion”. To the extent
one had a corpusculur theory of light, this would be viewed as a special case of
the First Law of Motion It 1s true that careful examination of the shadow cast
by &an opaque object showed a diffraction pattern that was most naturally
explained i1n terms of the wave theory of light, but then the diffraction pattern
1tself 1n the far (Fraunhofer) zone exhibited "scaling” and had linear dimensions
grow with the distance 1n proportion characteristic of rectilinear propagation.
The same scaling obtains for interference patterns as well. We are therefore led
to look for light rays that travel 1n straight lines, but generalized in such a
fashion that they could be used to generate interference and diffraction

Some further necessary property of such generalized light ray reali.ation of
a field of 1llumination may be deduced from the crucial experiment done to
discriminate between corpusculur and wave theories. According to Lthe wave
picture the speed of propagation in our optically denser medium i1s less than
that 1n an optically rarer medium For a point particle the situation would be
the opposite Experiments done by Fizeau and Foucault! showed that light
travelled more slowly :n water than 1n air, and this was taken as evidence ruling
out Lhe corpusculer theory But & more careful analysis shows that an extended
object would behave just like the (extended) wave, so as to bend towards the
normal 1n & medium 11 which 1t trevels more slowly. Thus, the generalized light
rays must constitute a pencil with finite extension: single light rays are mere
1dealizations, and any realization 1s of a pencil. .

When we consider & cecllection of freely moving particles propagating in
space, we would see that each particle 18 characterized by a position and a
momentum 1 e by a point 1n phase space For a large collection of particles we

would use with advantage a phase space density. On the other hand if we consider
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a wave, the phase is constant on the wavefront which may be locally approximated
by a plane but the momentum is normal to this plane. This would correspond to an
ordered streemline motion of particles. But if we have particles moving in many
directions at each point, we should make many wavefronits at each point adding
incoherently. Therefore an assembly of multidirectional pencils is to be viewed
in correspondence with an ensemble of waves.

Whether we desl with an assembly of randomly moving free particles or an
ensemble of waves propagating freely, the propagation over distances large
compared to the original assembly tends to select those which move in the
particular direction of propagation. Given & ball of gas of molecules in random
free motion, after a large distance of propagation there 1i1s a definite
correlation between the direction of propagation and the position of individual
particles, the subset selected in this manner develops streamline motion This
must obtain for cecllections of light rays also. after propagation over distances
large compared with the primary source dimensions the light rays appear to be
practically parallel at least over small areas. In relation to ensembles of
1ssues this corresponds teo & small group of waves with very similar orientations
being selected, so that over small areas of illumination one finds coherence.
This is the essential content of the van Cittert-Zernike theorem on the
development of coherence by propegation.

The problem of radiative trensfer has had a long history. For the sun as
well as for other stars it 1s clear that the energy that eventually emerges as
radiation is generated by nuclear and gravitational processes in the interiors
and 1s transmitted through material media In the process there is a spatial
redistribution of energy. momentum and angular ‘momen{hm. Once the radiation
leaves the star this redistribution 1s continuous At very large distances from
the sources simple radiometric and photometric laws will be expected to hold for

the rediant intensity. But the propagation involves more than the intensity
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alone, and the additional correlations involved also propagate by laws that could
be derived and displayed While many celebrated authors including Kirchhofi
Planck, Schwarzschild, Milne and Chandrasekhar have contributed to this fieldz.
much of the modern work was imitiated and inspired by Emil Wolf3 whom we
celebrate on this occasion

In a wave theory the primary quantity 1s the wave amplitude which as a
relatively simple equetion of propagation. However, in the case of radiative
transfer (at opticel frequencies) the amplitude itself is not a measurable
quantity but belongs to a statisticel ensemble. The measurable quantities are
the expectation (mean) values of product of the amplitudes. For most cases of
interest the mean of the ampiitude vanishes, and the relevant quantity is the
mean valued of the bilinear quantity made up of the product of the field

amplitude and its hermitian adjeoint This quantity is variously called the

two-point correletion function or the mutual intensity IN{(x,y):

rix,y) = <¢+(x) a(y)> _ 11

It obeys the wave equalion

2 2 2 2
{_Q.E (_QE + _3_5 i %}} r(x,y)
axo axl axz 3x3
4 2 2 2 2
- (a—2 % ('a—g + 'i"z" + ﬁ_)} (x.y) =0, 1.2
aYD 3)’1 3)’2 83’3

in regions free of sources. On the other hand by identifying x with y, M (x,Y) is

the specifie 1ntensity of 1llumination at the point x at time X, -
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Even though we have writien a scalar wave equalion for simplicity, we could
equally well write Maxwell equations for the tensor two-point correlation

function

o TEIF) =2 Wl (23 B, S5 5 1.3

which will satisfy Maxwell’'s equations with respect to either set of variables.
We will then have a complete description of the cerrelation behaviour including
the polarization aspects., at the two-point level.

In the study of +the coherence, propagation and fluctuations of light
considerable simplification obtains when we restirict our attention to "analytic
signals” which are positive frequency parts of ¢(x) or Faﬁ(x) and their complex
({hermitian) conjugetes. In quantum field theory this choice is obviocus since it
corresponds to restriction to the annihilation part of the field; and equally
well 1f the field quantity 1s thought of as the Schrédinger wave function (apart
from normalization'!') the time dependence should be restricted to positive
fregquency. In classical theory the arguments are much more subtle: one could
appeal to the elimination of the redundancy of both signs of frequency, or the
need for first order equations so that the two-point correlation at one time
defines it for all times, or to the positivity of the classical "photon density”.
It 1s remarkable that the 1dea of analytic signals introduced by D. Grabor4 and
developed by E. Wolf5 in the classical context was precisely the natural
framework for; quantum optics as developed by R. J. Glauber® and by E.C.G.
Sudarshan7 to create the quantum theorv of partial coherence in particular and
quantum optics in general. This theory has the immpdiate result [called the
Second Fundamental Theorem of Quantum Optics]a that the.equations of motion and

propagation laws of quantum optics in free space or homogeneous media is the same



-5-

as 1in classical optics but the initial specification of the ensemble density
exhibits a more subtle positivity than simple classical pointwise positivity.

According to the First Fundamental Theorem of quantum opticsg, both
classical and quantum descriptions lead to identical predictions at the two—point
function level,. However, the situation becomes different when one considers
phenomena involving higher order correlations. A well known early application of
the four -point functions occurs in the intensity interferometry of Hanbury-Brown
and Twiss'Y Several inequalities which will be expected to be valid for

classical higher order correletion functions are violated by quantum correlation

functions!!. Much of modern interest in quantum opitics has centered around
nonclassical behaviours like antibunching, squeezing and sub—poissonian
statistics and the nonlinear phenomena which give rise to thesela. Pioneering

contributions, both theoretical and experimental, have been made in these areas
by Leonard Mandel whom we celebrate todayla.

The above considerestions regarding the coherence, propagation and
fluctuations of light raise the following important questions:

1 Can the phenomencological radiative transfer theory built on the notion of
pencils of light rays be traced to the fundamental electromagnetic theory? Can
the notion of light pencils be generalized to obtain an exact ray picture of
light fields including the associated interference and diffraction behaviour?

2. It has been known for long that the symplectic groups 3p(2,R), Sp(4,R)
play en 1mport§nt role in first order geometrical optics. 1t has also been known
that the metaplectic groups play an identical role in the context of first order
Fourier optics. Can these symplectic metaplectic structures be traced to
something more fundamental 1like the Poincare invard;nce of the basic wave

equation (Maxwell equations)? What 1s the framework in which a direct action of

the sympiectic group, exact within wave optics, obtains?
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3. Since electromagnetic excitations are vector waves, any complete
description of the correlations must handle both coherence and polarization. It
is clear thet the usual descriptions of (partial) polarization apply only to
plene waves in free space, and not applicable in the presence of even a simple
optical system like a thin lens Can one develop a procedure by which
description of the action of lens systems and other optical systems on vector
electromagnetic waves be obtained in a manner consistent with Maxwell system of
equations” Does the symplectic structure survive such a vectorization procedure?

4. Can the description in terms of pencils of generalized rays be extended
to cover higher order correlation functions, both classical and quantum? How can
the Bose symmetry be implemented in such a ray picture? How will the nonclassical
aspects manifest themselves in this new description?

These are but a few questions: one can raise many more. Much progress has
been made 1n recent years towards obtaining answers to many of these questions.
Today as we felicitate Leonard Mandel and Emil Wolf, we are convinced that the
most fitting manner in which to honour them on the occasion 1s to present an
outline of these developments since, as will be seen, much of these develcpments
have been 'nspired by their own works. And we do hope this review will plrase

them ,



2. The Connection Between Radiative Transfer Theory and Electrodynamics:
Generalized Light Rays.

Radiative tiransfer theory2 is bullt on the phenomenclogical notion of
pencils of rays, and shares several formal similarities wiith Boltzmann's
transport theory. The basic object in this theory is the specific intensity
Im(L.é) which gives the distribution of the pencils of frequence w in position
and direction, very much like the phase space distribution of particles in the
transport theory; all other guantities of interest are derived from this obj)ect.
The specific intensity can be operationally defined through the expression

dE, = 1_ (r.s) cos ¢ do d0 dw dt, 2.1
and represents the radiant energy transported per unit time per unit frequency
range per unit solid angle in the direction represented by the unit vector s per
unit area normal to s 1in the neighbourhood of the point r. In & medium with a
distribution of sources, scatterers &nd absorbers the specific intensity 1is
governed by the so-called equation of transfer which is an integro—differential
equation similar in form to the Boltl :mann transport-equation, for free space this
equation of transfer reduces to the fact that the light pencils travel in

straight lines.

S VEIW(L.S) =0 2.2

Though ihis theecry of light radiation has proved to be successful and
extremely useful, 1t should be noted that wave electrodynamics, quantum or
classical, was . not taken into account 1n 1its formulation. Clearly, since

electrodynamics 1s the fundamental theory of light. to the extent that this



—B—
phenomenological theory has been successful 1t should be derivable from
electrodynamics.

The existence of radiative transfer theory on its own, seemingly independent
of electrodynamics, had no doubt bothered several researchers in the earlier
past. But it is only through the landmark work of Wolf in the mid-seventies that
a systematic attempt to clarify 1ts relationship with elecirodynamics was
initiated.

Implicit 1n the radiative transfer theory is the assumption that energy
assoclated with different frequencies 1is independently propagated. In the
context of the statistical electromagnetic wave theory, this will imply a
time—stationary ensemblels. Hence, we must look for a correspondence between
time-stationary ensembles in wave theory and radietive transfer theory. Because
of stationarity, the analysis for each frequency can be done entirely
independently. The analysis in the following should be understood as for one

such arbitrary fixed frequency w, but « and the associated wavenumber k = w/c
will often be suppressed.

The specific 1ntensity has the dimension of energy density (except for a
factor of ¢) on the one hand and obeys a propagation equation (the equation of
transfer) on the other. The correlation functions and correlation tensors of
electrodynamics are precisely such objects. Let EJ(L,t) and Bjtn,t). )= 1.2.8
be the aenalytic signals representing the components of the electric and magnetic

vectors. Define the two-point function

Mey.kgi 7) = o= [ < Byt +7) « E(gp.t) >

+ B (rg.t+r) . B(ry.t)>]. 2.3

and its Fourier transform r(ia'Iz*“} through



r(Ll'Lg.T) = [ dw r(L1-L2f“)9_le- 2.4
o

By virtue of the fact that E(r.t) and B(r.t) obey the wave equation, the

cross—spectral density r(;l,gz,m) obeys the Helmholtz equation in both Iy and I,

2 2
(vl + k } r(LlaLQ;U) =0
(V2 + ¥°) r(r,.rp:w) = 0 &5
=
By construction F(Ll,gz;m) is hermitian, 1i.e. r{LE' Ll;w) = I (Ll, Le;w). and

positive semidefinite. Its diagonal elements I(r,r;w) give the energy density.
A moment’'s reflection based on these considerations convinces one that the
specific intensity, if it is compatible with electrodynamics, should be a linear

3

functional of F(Ll,gz;w). Wolf's original choice” corresponds to the linear

functional
Qw(ng) = [ r(L-L+Lf.w)e_ik;°£' asrl. é 6

It 1s clear that Qw(;.;) is complex in general. One attractive feature of lhis
linear functional is that 1t gives a distribution over a five dimensional
manifold (L.é) as in the phenomenological theory. Yet, it did not meet all the
requirements qﬂ the phenomenclogical specific intensity. Wolf made his analysis
within both éiassical and quantum electrodynamics end demonstrated that in both
cases one obtains identical resulis. This, of course, was to be expected in view
of the fundamental theorem of quantum optics reierred.to earlier: this too was
peinted out by Wolf (Recall that one 1s dealing here with phenomena at the level

of the two-point fumctions and no higher order!)
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A linear functional which respects the reclilinear propagation condition was
subsequently 1ntroduced by Sudarshanls. This corresponds to the Weyl-Wigner

ordering of operators and 1s given by Lthe Wigner-Moyal transform of the

cross—spectral density

k —1kpe. l
W (c.p) = (513 J a%0 e71RRC r(p 4 S L.E =g, w). g9

1
emn 2

Sudarshan!® who introduced this function Wb(;,p) nemed it the Wolf function in
honour of Emil Wolf.

The Wolf function is real for &ll values of r, p; this follows from the
hermiticity of the cross—spectral density. The Helmholtz equations (2.%) aply

the following equations for the Wolf function:

p « V. W(r.,p) =
L ( ’ ) 0 »
and

v2 w(z.p) + k2(1-1p1)%) W(r.p) = 0 2.3

e

Rectilinear propagation is ensured by (2.8), but there are two new features now.
Unlike the phenomenclogical specific intensity, W(r, p) takes negative values for
some values of (r,p). That is, now we have both bright and dark pencils.
Further, Iromf(2.9) it is seen that p is not a unit vector. Thus, whereas the
phenomenological pencils were distributed over a five dimensional manifold (r, s)

the Wolf function ié a distribution over & six—-dimensicnal region. This

phenomenon is called ray-dispersion. It turns out.18 that absence of
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ray—dispersion and absence of dark rays are mutually equivalent, and equivalent
to the radiation field under consideration being statistically homogeneous.

Thus one is led to the following question: Is there a linear functional of
the cross—spectral density which will respect all the requirements on the
phenomenologicel specific intensity® It can be shown'? that there does not exist
one, and consequently the rlienomenological theory is not compatible with
electrodynamics in a strict sense. Yet, the concept of rectilinear pencil gives
such a useful and appealing graphicel picture of the propagation process that one
would certainly like to have an exact description of wave fields in terms of such
pencils, generalized suitably but without sacrificing the rectilinear property.

Since interference phenomena involves addition of light to light producing
darkness, it is clear that we cannot retain the pointwise positivity of Iw{g. s)
1f we are to have exact correspondence between wavefields and assemblies of
rectilinear pencils. Given this, all the other requirements can be satisfied by
taking the Wolf function to represent the density of generalized rays in the
six—dimensional phase space (r, p). It should be noted that, even though the
Wolf function can assume negative values, any measured intemsity corresponds to a
suiteble phase space integral of W(r, p) and this 1s always guaranteed to be
nonnegative. This is so because W(r, p) meets certain integral positivity
condition inherited from and equivalent to the positive semidefiniteness of the
cross—spectral density through the Wigner-Moyal transform. That the description
in terms of the generalized rays represented by the density W(r, p) 1s exact
follows from the fact that the Wigner-Moyal transform is invertible.

r + i )
] eikpe(ry-rs) | 2.10

r{ey.e5) = [ a3p w(——=

z R)

Explicit calculations in the context of Young's double-slit arrangement and



= e
diffraction by a single slit shows that the Wolf function indeed gives an exact
generalized ray description of interference and diffraction phenomenazo.

With application to radiometry in mind, the generalized pencils, due to
partially coherent planar sources have been computedgl. It turns out that, as a
consequence of the straight line propagation property, the Wolf function exhibits
a scaling behaviourlg’21 sufficiently away from the source. This leads to a
generalization of the far-zone (Fraunhofer) renge criterion to partially coherent
sources: naturally, this criterion now involves not only the linear dimension of
the source but also the coherence length across the source. Further, a

e

generalization of the van Cittert-Zernike theorem [originally derived for

incoherent sources] to partially coherent socurces results as a direct consequence
of this scaling behavlourel. Finally, most of the results on modern radiometry
with partially coherent sources can be shown to be simple manifestations of this
behaviourlg‘al.

Turning now to the Wigner-Moyal transform (2.7) one may be tempted to say
thaet the Wolf function is nothing but a Wigner distribution [except for a real
positive multiplicative factor corresponding to the trace of f(r.r’) But there
exists a subtle eand important difference]. It is true that both the
cross—spectoral density and the quantum mechanical density matrix are herm. ti1an
positive semidefinite. In the guantum mechanical case we require unit tirace, but
any real positive trace is allowed for the CTOSS“Spect;al density. The Wigner
distribution which is by definition the Wigner-Moyal transform of the density
matrix is real by virtue of the hermiticity of the density matrix. Since any
hermitian positive semidefinite operator of unit trace is a legitimate density
operator, it follows that any phase space distributlon‘whose integral over the
entire phase space is unity is a Wigner distribution provided it satisfies the

integrel positive semidefiniteness condition mentioned ebove in connectiocn with

the Wolf function. A Wolf function on the other hand has to satisfy the



additional condition (2.8), (2.9). Since the cross—spectral density has to
respect the Helmholtz equations (2.5) [The density matrix on the other hend 1is
purely kinematicel, &end there is nothing like a Helmholtz equation it has to
satisfy!]. Thus, every Wolf function [normalized to unit phase space integral]
is a Wigner distribution, but the converse is not truezs.

Motivated by the popular use of smoothed Wigner distributions®? in quantum
mechanics, one may be tempted to "“smooth” the Wolf function by convolving it with
a standard Wolf function with the aim of getting rid of the dark rays. This,
however, 1s not an attractive proposal. Even in the case of the Wigner
distribution, while the convolution of two Wigner distributions is a pointwise
nonnegative phase space distribution the result is not a Wigner distribution in
general as has been shown recentlyzs. In the context of the Wolf function the
situation becomes even more restricted. In view of the already noted theorem
that ebsence of dark rays is equivalent ito the field being statistically
homogeneous and in view of the fact that the Wolf function 1s necessarily a
Wigner distribution [apart from & multiplicative constant, irrelevant for tihe
present context], we find that the convolution of two Wolf functions is a Wolf
function only 1f the resuit 1is independent of the position variable r?.
Consequently, the only standard Wolf functions which can be used as kernel in the
convolution process are the ones which depend only on p. Such Wolf functions
correspond to homogeneous fields, and the result of the convolution will
correspond to a homogeneous field for every input Wolf function.

Finally, 'any description of electromagnetic wave fields should necessarily
pay attention toc their polarization properties as well. This had indeed been

-

28 every penci]l was assumed lo be

done even in the phenomenclogical theory
transversely polarized, and then its state of (partial) polarization was

described by four Stokes parameters.
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But the generalized rays we have talked so far vere defined ignoring the
polarization aspect It is possible to define generalized pencils endowed with
16 7o this end one must use in place of the two-point function

pelarization

(2.3), the two-point electric tensor

o1 *
rij(Ll.Lz;T} = - <E (£y. t+7) E;(35.1)>, 2.11

and then form the associated cross—spectral density tensor Tij{zl‘ £2iw) by
Fourier transformation as in (2.4). Thus, one will be led to the Wolf tensor
wij(L’ p) in place of the Wolf function W(r.p):

_ (.K,3 3 _—ikpeo 3 _a
Wij(,n.n)—(zﬂj [ 40 e Fijle + g e -2

z). 2.12
The state of polarization of the penci]l with position r and propagating in the
direction of p is now given by the 3x3 hermitian matrix wij(g,p) [the strength of
this pencil is given by the trace of the Wolf tensor evaluated at r,p}. It will
be seen that whereas the nondispersive rays with |p|] = 1 are transveisely
polarized, the dispersive rays are not. Combining this result with equivalence
of dispension and statistical inhomogeneity, one concludes that the lransverse
pelarization of the phenomenclogical thecory obtains feor the generalized pencils
only for the statistically homogeneous fields.

By expandiﬁg the 3x3 polarization matrix in a complete set of nine hermitian
metrices [the SU(3) generators plus identity, for example], it can be seen that a
set of nine generalized stokes parameters are needed fo specify the state of
polarization of the generalized pencilslgA Further, the Wolf tensor itself

satisfies the rectilinear propegation condition (2.8), hence as a generalized
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pencil undergoes reclilinear propagation it carries with it, unaltered, the nine
generalized Stokes parameters describing its state of polarizationlg.

To summarize, it 13 possible to give an exact ray picture of the
electromagnetic light field in terms of generalized light rays. Whether or not
one takes the polarization aspect 1nto account, the phenomenological theory
obtains only for the =statistically homogeneous fields. This should be

interpr-ted as delimiting the validity of the phenomenological theory within the

framework of electrodynamics.
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3. Generalized Rays and First Order Systems

At optical frequencies it turns out that many problems are paraxial [All
beam propagation problems are paraxial by definition]. An important class of
paraxial problems goes under the name of first order opticse7. The method of
generalized rays provide an extremely powerful and elegant framework for handling
these problems.

In the system approach to optics, the optical system effects a map from the
input plane to the output plane. The quantity being mapped is the ray [or more
specifically the phase space coordinates of the ray] in geometrical optics, and
the field emplitude or the cross—spectral density in wave optics; 1n the
generalized ray method it is the Wolf function. Even free propagation will be
conveniently viewed as a map of this kind. We will arrange the coordinate system
in such a way that the z-axis is along the axis of the system. Then x = {(x,y) =
(xl,xa) forms a coordinate system in any transverse plane.

A first order system is represented by a numerical symplectic matrix s

acting on the transverse phase space coordinates of the (geometrical optic) rey

arranged into a column

Here s 1s the transverse part of the momentum vector of the ray: x, s are

B

2-vectors. The symplectic group is the three—parameter group Sp(2,R) SL(2,R)
in the axisympétric case, and it is the ten-parameter group Sp(4,R) for systems
not invariant under reotation about the system axis. The group Sp(2,R) consists

of all 2x2 real matrices S such that detS = +1. But Spf4.R) consists of all 4xz4

real matrices S which obey
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sThs = n
0 0 1 0
0 0 0 1
n = -1 0 0 0

In the case of Sp(2,R) systems it is impcrtant to remember that x,s in ¢ should
be interpreted as single entries so that ¢ becomes a 2—-element vector.

Free paraxial propagation through distance z, action of thin lens of focal
length f, linear magnifier with magnification strength m and scaled Fourier
transformers with scale factor ¢ are examples of Sp(2,R) first order syslems with

ray-transfer matrices.

(2) L s, (1) ’
S _ (z) = £) =
S, (m) m 0O S..(c) 0 c %
m) = s c) =
M 0 m—l F —c*l s
L

Whereas f 1in SL(f) can take both positive and negative values, z in Sp(z) can
only be positive for physical free propagations. Thus one could wonder whether
all elements of Sp(2,R) can be realized by thin lenses separated by free
propagation s;ctions. A careful analysis shows that this is so; indeed every
Sp(2,R) system, including inverse of free propagation, can be synthesized with at

28 The inverse free propagation is en exemple of SL(2.R)

most three thin lenses
= Sp(2.R) system which only a three lens, and no two lens, configuration can

realize. For completeness 1t should be noted that even in the Sp(4,R) cease,

every group element can be realized using astigmatic thin lenses separated by



free propagation sections, and one needs only a finite, and in fact a small,
number of lenses.

The first order system which acts in geometrical optics through the
ray—-transfer matrix S belonging to Sp(2,R) or Sp(4,R) as the case may be, acts in
wave optics through the corresponding unitary metaplectic operator U(S) [the
generalized Huyghens integralz] in the Hilbert space of field amplitudes. It

follows that the metaplectic group is relevant to first order Fourier optics in

just the same way as the symplectic group is for geometrical optics. This
important fact was first pointed out by Bacry and Cadi]hacso, and has been
further elaborated by Nazarathy and ShamirSI. In simple terms, the metaplectic

group 1s « unitary group which is a double cover of the symplectic group since
U(S) and U(S) correspond teo the same $30

We are interested in time-stationary ensembles, and hence the field in a
transverse plane is best described by the cross—spectral density l(x,x') where,
as usual, we have suppressed w. For the plane-to-plane-map system problems it 1s
convenient to consider the restricted Wolf function W(x,.s) which gives the
distribution of generalized rays in the four-dimensional treausverse phase space,

rather than in the full phase spacegz:

it i d ’ g
W(x.8) = [Ei 2 j dex'e iks.x Mx + éx', X - % x') . 3.4

One immediately sees that the total irradiance A in the transverse plane 1s given

by the 1ntegrél of the Wolf function over the entire transverse phase space:

A = Ir(x,x)dzx = ]dzxdst(E.ﬁ)

Jatiw(e), : 3.5
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where we have combined ¥ and s intc a column ¢ as in (3.1) and, with an abuse of
notation, written W(x.s) = W(¢).

It is 1important to note that I (x,x') with x, x' two-vectors 1in the
transverse plane 1s hermitian positive semidefinite. Any function of x,Xx°’
possessing these two properties is a valid cross—spectral density over a plane:
1t does not have to satisfy any further condition like the Helmholtz equation,
which it had to in the full three dimensiocnal case. This I{(x,x') is equivalent
to the configuretion space density matrix of a system with two degrees of
freedom, except for a trivial trace normalization factor. 1t follows that, but
for this trivial real multiplicative constant, the Wolf function in this context
is identical to a Wigner distribution. Thus, in the context of (x,x') over a
plane the terms Woli function and Wigner distribution c¢&an be used
interchangeably.

When the first order system S5 acts on the field amplitude through the

unitary metaplectic operator U(S) transforming the cross—spectral density
r-r =10(s) r us) P . 3.6

the Wolf function trensforms in the following simple wayo2- 59,

W(E) » W (¢) = W(sT1g). 3.7

The output Wolf function evaluated at the phase space point ¢ is the same as the
input Woli function evaluated at S~1$. Thus, the generalized rays in the first

order system follow the same trajectories as the rays of geometrical optics:

¢+ ¢ = B¢ 3.8

Since detS=1, we see from (3.5) and (3.7) that the total irradiance is conserved
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under first order action. This is consistent with the fact that first order
systems act unitarily on the field emplitude. It is 1mportant to realize that,
whereas S acts on the cross—spectral density through U(S) which is an integral
transform, it is on the Wolf function that its action, exact within wave optics,
is most direct.

The power of the Wigner distribution approach is best 1illustrated by
applying it to the study of the passage of Gaussian Schell-model (GSM) beam534

through first order systems. These beems have played an important role in the

modern study of radiometry of partially coherent planar sources which was started

by Walther35. and extensively developed by the schools of Wolf36, Baltesa? and
Gori3®. The cross—spectral density of a GSM beam in & transverse plane has the
for'm32
it B vy 2
1 4 1 (x—
M(x.,X') = Ae=e—— exp| x7ix' 7L (xmx') ]
o° U2 2 o2
1 I g
1k 2 .2
+ ex e = 3 3.9
Pl s (x° ~ x°°)] _

Here A, oy, g and R are respectively the total irradiance, beam width,
transverse coherence length and radius of phase curvature of this rotationally
invariant beam. 1t is clear that these beams are generalizations of the coherent

Gaussian beams to accommodate partial coherence. The Wolf function for GSM beam

is easily eomgﬁted to be
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W(e) = % det G exp (—¢T Ge)
™

2 2 .22
e k7 . S
o  2R® 2R
G =
2 2
~k%y 2 2
% 3 3.10
2R -

It 1s understood that in the exponent of (3.10), ¢ is treated as a two—element
column with x end s treated as single entries. One finds that there 1s a
one—to—one correspondence between ihe three-paremeter family-(the invariant A 1s

not counted) of G3M beams and 2x2 real matrices G satisfying

T =¢
G >0,
0 < det G < k. 3.12

It is further seen that detG = kzye/o? is related to the degree of global

coherence og/oI in an invertable way.

A first order system S acting on a GSM beam transforms it as follows, as can

be seen from (3.7) and (3.10):
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w(Q) = l% det G exp(—fT G¢) - “% det G exp(—¢7G'¢),
" 7

¢’ = (sHT ¢ 571, 3.13

Since G' satisfies all the requirements (3.12) on the GSM parameter matrix, we
see that first order action produces a one—to-one map on the G3M family., and that
the degree of global coherence is an invariant of this map [since detG is].
These considerations suggest that we can, with adventage, label the GSM fields

with the matrix G. Then, under action of S, we have

wG(f) * w(;f(é)

¢t = (sHT ¢ 571 . 3.14

The last equation gives e concise description of the transformation of GSM beams
under first order action. There are two beautiful weays of looking at this
result: we shall outline both°~.

First, the symmetric matrix G cen be expanded in terms of the Paul: matrices

0y, Og and the unit matrix:

G = o, i+ a0, + ag0g . 3.15

The fact that detG is an invariant reads, im terms of the real parameters Oy, Oy,

02 as /

ag o a? = ag = jnvariant. . 3.16
It follows that GSM beams can be represented as vectors in a 2+1 dimensional

fictitious Minkowski space, the first order systems acting as Lorentz

transformations in this space. This geometric picture immediately shows that
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under first order action the three—parameter family of GSM fields divide into a
continuous family of hyperboloids, each invariant under all Sp(2,R) first order
if and only if their representative points are on the same hyperboloid. It iz
elso seen that for every GSM field there is a one-parameter group of first order
systems which leaves it invariant. Clearly, these are Lorentz transformations
about the lLorentz vector representing the GSM field under consideration.

Secondly, the transformation law (3.14) for the GSM parameter matrix G

implies the following transformation for the symmeiric variance matrix V = G_l:

V » V' = SVsT. 3.17

In terms of the GSM field parameters, V reads

2
l k|
2 2R
V =
2 2
a i
1
Eﬁ ;39 —“% & 3 18
k%% 2R
Let
det V = o5/(k%%) 0%, 3 19

with 0 > 0. Since eny S ¢ Sp(2,R) satisfies

o¥n 0 l) . a b)
nd =9, N = - = ' e 3.20
-1 0 e d ,

we can rewrite (3.17) in the following form:



D

V' 4+ iom = S(V + i0p) ST 3.21

By the definition of 0, V' + i0lp and V + i0in are both singular and hence each of

these hermitian matrices can be written &s the outer product of a complex vector.

We have
. s g T
\V +-1£T)f7 = Y
. 6 7 \
Y = e \/{sz (ﬁ%}
' (Vi 1))/ Nas
g = ;/ﬁyg = f2 v
Czrf - (\\A:L“_i.f7#2//\/“ 3.22
where © is real arbitrary, and similarly for V' + i0n. Thus, the equation of

transformation (3.17) for the variance matrix becomes

vy o osyy'sT 3.23

Since S is real, this equation is seen to imply

Y' = Se'?, 3.24

where ¢ is an arbitrary phase. Writing out this two-vector equation as two

scalar equations, and dividing one by the other we get
q" = (84 + b}/(cq + d). 3.25

One immediately sees that this 1s Kogelmik's abcdnlawsg, but now generalized to
the partielly ccherent GSM fields. From the last of the equations in (3.22) we

have
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i = § 2 . 3.26
R kycl

The complex radius of curvature q, which transforms according to the generalized
abcd—-law (3.25), i1ndeed goes over to the conventional complex radius of curvature
of coherent Gaussian beams in the coherent limit e and hence y -+ o;: our
abecd—law (3.26) is a generalization of Kogelnik's law.

It turns out that a grand generalization of the abcd-law in a form which
will apply to every partially coherent beam can be derived®”. To this end let us
define the variance matrix V in the general case as follows: Vll = < X~ >, a
measure of the square of the beam width; sz = X ;2 >, a measure of the square of
the angular spread,; and V12 = V21 = < X¢8 > = £ 8.Xx >, the position direction
correlation. Here < ..> implies phase space average of the quantity inside. It

1s clear that for the variance matrix V thus defined, we have

v= [ ate(ee) wie) 3.27

For the GSM beams, this new definition {(3.27) reproduces the matrix V as (3.:28),

but (3.27) itself applies to every beam.

Under first order action W(¢) =+ W(S“lé). end since det S = 1 it follows from

(3.27)

V » V' = SVST, 3.28

Since (3.28) has the same form as (3.17) the arguments following (3.19) can be

-

used to write 1t in the form of a abc—-law. We can define using (3.22) a complex

quentity
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GQ :Jhmﬂn“kllﬂyxgﬂ =:<&£"§?3/k§f> 3 i'ﬁi/£:§%> i 3.29

Then as the (arbitrary) beam passes through a first order system S, it can be

seen that Q transforms as follows

Q@+ Q' =(aQ + b)/(cQ + 4d), 3.30

while A = (clet’\!)lf2 remains invariant. Equation (3.30) represents our grand
generalization of the abcd-law and applies to every partially ccherent beam. For
the GSM beams, V goes over to V, Q goes over to q and (3.30) goes over to (3.25).
Needless to say, for the special case of coherent Gaussian beams Kogelnik's
original abcd-law obtains.

So far we have considered (isotropic) GSM becms and their transformation by
Sp(2.R) systems. It 1s possible to generalize the analysis to general
anisotropic Gaussian Schell-model (AGSM) fields and their behaviour under action
of Sp(4,R) first order systems, leading to richer results and mathematical
structures

The most general AGSM form consistent with hermiticity is*!

M(x,x) = expl—F - % -z Lz

kz_x‘)‘rM{'Z*i/) -+ -§L_- (I’I'I)TK(I_*’Z‘)‘:[ i

. o 3.31

NI—

where the 2x2 matrices L,M,K are real with L,M symmetric. What additional
conditions need to be imposed on AGSM parameter matrices L ,M,K so that T will be
positive semidefinite and hence a bonafide cross~spectr§l density?

Finite irradiance (trace) condition will require L to be positive definite,
and Schwarz inequality will require M to be positive semidefinite. But that is

not all. While the symmetric part of the phase matrix K has no role to play in
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determining the positive semidefiniteness of [, the antisymmetric part has =a

tricky one to play through subtle combination with L, M. A complete solution to

33,41

this problem is accomplished by going over to the Wolf function We have
W(Z) = exp(-¥'GY)

(;; = (‘/\ C \

e |

el -

—1
A = 2L +4 KT{L+W K

' 3.32

B =4 (Lew C=—4 K (kM) .

W

The conditions L > 0, M > 0 are equivalent to the condition G > 0. What
additional conditions should be imposed on G to make 7 positive semidefinite or,
equivalently, for a Gaussian distribution 1n a four—dimensional phase space to be
a Wigner distribution?

The crucial fact to use 1s that first order systems act unitarily on T.

Under action of S we have

o(s) rogs)T |

ﬂ
4
~
il

G+ 6 = (512 gs1,

WG(E)*W(';(H:WG-(H . 3.34

Thas F is positive semidefinite <> T’ is positive semidefinite.
Equivalently, W, is a Wolf function =— We. is a Wolf function. Now since G is
!

positive definite, a classic theorem due to Williamson?? guarantees the existence

of an S(G) ¢ Sp(4.R) which will take 1t to the standard diagonal form G  through
. -1y T <(cy" -
G— G, =(s(¢ ) G s(Q 7,

b1

(F" O \

= | b,
?

\ B
\ A /

QD



To compute the values of 8,, f, we need not construct S(G) explicitly. they can
be determined in terms of the Sp(4.R) invariants of G.

In the diagonal form the positive semidefiniteness requirement is trivial to
implement: both By Bs should be less than or equal to k. Since positive

semidefiniteness is unitary i1nvariant, we see that

[ positive semidefinite == §£,;, f; € k. 3.35
3 1, -
With  as in (3.2), let the Sp(4,K) invariant traces be Sy == Ek 5 tr(nG)2
and 52 = ék"4 tr{nG)4. Then the condition for positive semidefiniteness becomes
142, 1
S, <2, Sy - > ST + 5 S, € 1. 3.36

Writing (3.36) explicitly in terms of L,M,K it will be seen that the symmetric
part of K does not enter these conditions whereas the antisymmetric part does in
an 1mportant way33'43. In particular, it turns out that if M=0, then (3.36)
requires K to be symmetric. That is, an antisymmetric phase factor can not be
imparted to an otherwise fully coherent anisotropic Gaussian beam. Finally,
(3.36) and the positive semidefiniteness of G are inequalities on the real
symmetiric 4x4 matrix G. Hence the AGSM fields form a ten—parameter family, three
parameters each coming from L and M and feour from K. The AGSM beams studied by Li

45 are subsets of this family.

and Wolf44, and others

Just as in the GSM case, it turns out that the action of the ten-parameter
group of Sp(4,R) first order systems on the AGSM fields can be described with
advantage through a geometric picture41. The idea 1is ‘to use the fact that
Sp{(4.R) is a double cover of the pseudo-orthogonal group S0(3,2), in just the
same way as Sp(2,R) is for SO(2,1). Thus, the AGSM fields can be represented by

antisymmetric second rank tensors in a space-time of 342 dimensions. Then
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Sp(4.R) systems act as de Sitter transformations in this space. A detailed
analysis of this picture will be found in Ref. [41]. The structure of the
orbits in the Lie algebra of SO(3,2) plays an i1mportant role in this analysis46‘
There are two invariants, and these can be related to the degrees of global
coherence in two orthogonal iransverse directions. Under Sp(4,R) action AGSM
fields separate into two families. In Family | the two invariant degrees of
global coherence ere equal, and fields of this family are related to the GSM
fields through Sp(4,R) action. In .Family 11 these are unequal, and as a
consequence it is not possible to convert a AGSM field of this family into GSM
beam by Sp(4,R) actions.

When AGSM beams are acted on by Sp(4,R} systems Lhe relevant geometric
picture 1s the 2+1 dimensional space41 Each AGSM field is represented by three
Lorentz vectors and one Lorentz scalar. The optical system again acts as Lorent:z
transformations. It is clear that now there are seven invariants: the Lorentz
scalar, the norm of the three Lorentz vectors, and the three Lorentz
inner—products between pairs of Lhese vectors It turns out that the
transformation on the two Lorentz vectors corresponding to the diagonal blocks of
the 4x4 symmetric G can be reduced {o abecd-laws, but the one corresponding to the
of f-diagonal block cannct be reduced to an abcd-law 1n general, since 1t need not
be positive semidefinite.

As a final comment on AGSM fields we note the following: From (3.7) it may
be tempting to see if this action on the Wolf function can be extended to the
larger group SL{(4,R) > Sp(4,R). It turns out that for every St SL(4,R) but
outside of Sp(4,R) there exists an AGSM cross—spectral density which when mapped
using (3.7) will lose its positive semidefiniteness?!.  Thus, Sp(4.R) and not

SL(4,R) 1s the group relevant to optics: this, of course, we know from

geometrical opties and dynamics.



_30_

All the results presented here in connection with AGSM fields are relevant
to quantum mechanics as well: 1n fact in the context of quantum mechenics these
results undergo a useful generﬁllzationss. First order action corresponds in
quantum mechanics to evolution under Hamiltonians quadratic in the positions and
momenta. AGSM cross—spectral densities correspond to configuration space density

matrices of thermal states and their transforms under these Hamiltonians47'

Consider a quantum mechanical system with n-degrees of freedom evolving under a
gquadratic Hamiltonian. Then the thermal state density matrix and its transforms
under quadratic Hamiltonians are described by density matrices whose
configuration space kernel has the form (3.31) with Xx,X' now n-dimensional
vectors and L, M, K known matrices. In the place of Gaussian Wolf functions we
will now have Gaussian Wigner distributions in a 2n-dimensional phase space. 11
is clear that the relevant symplectic group is Sp(2n,R). We may ask: Given a
Gaussi1an phase space distribution in a 2n—-dimensional phase space, how to test if
it is a bonafide Wigner distribution? The solution to this problem (Littlejohn's .
prob}em4a) is a generalization of the corresponding sclution in the n=2 AGSM
cases. The Gaussian Wigner distribution is again characterized by a symmetric
positive definite 2Znx2n matrix G. Williamson's theorem and the unitary action of
Sp(2n,R) enable us to take G to its standard diagonal form C = diag.
(61,52...ﬁn,ﬁ152...ﬁn). and the scolution to Littlejohn’s problem reads as
follows. the Gaussian phase space distribution is a Wigner distribution if eand
only if Bj g‘ﬁ—l, 1 =1,2,...n. These conditions can again be written in terms of
the n independent Sp(2n,R) invariant traces of G. The details can be found in
Refs. [33,43)] and will not be discussed here any further.

The Wolf function (Wigner distribution) method can be used to advantage for
a description of Gaussian pure states, of quantum mechanical systems with n
degrees of freedom, and their evolution under guadratic Hamiltonians?®. In the

context of classical system optiecs with n=1,2 this analysis will apply
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respectively to isotropic and anisotropic coherent Geaussian laser beams and
their transformation on passage through first order optical systems.

In the context of quantum optics it will become clear that it applies to
coherent states and squeezed coherent states of n-mode systems and their
evolution under quadratic Hamilloniansse. A special orbit in the Lie algebra of
Sp(2n,R) plays an important role in such an analysis. We state here without
proof only the important results. Details of the analysis can be found in Ref.
[49].

The normalized Geussian pure state of a system with n degrees of freedom can

be labelled by twe nxn real symmetric matrices U, V with U positive definite:

b, (@) = "7k 0 ep-axTL-ME] L

It is convenient to combine U and V and construct a complex symmetric nxn matrix

q such that
G el A S o 3.38
Since the imaginary part of q_1 is positive definite, it follows that the

imeginary part of g i1s negative definite.

Clearly, such Gaussian pure states form a n(n+l)-paremeter family, n(n+1)/2
parameters each coming from U &and V. Under first order symplectic action
corresponding tb Se¢ Sp(2n,R), the Gaussian states are mapped into Gaussian states

S

in a one—to—one manner, and it turns out that this map can be concisely described

through i

q+q = (Aq + B) (Cq + D)7, 3.39
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where the nxn real matrices A B.C,D are blocks censtituting S:

This is recognized as & matrix generalization of the Mobius transformation.
Thus, the family of symmetric complex matrices with negative definite imaginary
part is invariant under Sp{2n,R) action. The same is true for the family with
positive definite imaginary part as can be seen by taking the complex conjugate
of (3.39) (remember S is real!) This can be viewed as a generalized matrix form
of the invariance of the lower/upper half of the complex plane under Sp{(2,R) =
SL(2,R) action. Further, (3.39) can be viewed as a generalized Kogelnik matrix
ABCD-law on the one hand and as a generalization of a recent result of

53 on the other.

Bialynicki—Birula

The special orbit in the Sp(2n,R) Lie algebra relevant to this symplectic
dynamics of Gaussian pure staies has dimension n{n+1), numerically equal to the
number of 1ndependent pearameters in the Gaussian family. It turns out that V,
U"! indeed form a coordinate system for this orbit wh;ch.is both global and
canonical. As a consequence of this important fact, it turns out that the
quantum symplectic evolution of Gaussian pure states can be given an elegant
classical Poisson bracket description on this special orbit. The details of such
a derivation 1s, however, beyond the scope of this review and will be found in
Ref. [49].

To concldhe this section we note that even though we have been principally
concerned with coherent and partially ccherent Geussian beams &and their
transformation by first order systems in the context of classical optics, it is
clear that the technology presented and the resulis derived are equally

applicable to gquantum mechanical pure and mixed states with Gaussian wave

functions and density matrices, &and their transformation under action of



quadratic Hamillonians. In particular they are applicable to multimode squeezed
states and to the squeezing operation. At the level of single mode system (n=1)
this has been shown in Ref. [54], but the validity is general and applies to

systems with arbitrary number of modes.
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4. Polarization and Front Form Analysis
There have been several methods in use for the description of the state of

pelarization of the radiation field and its change under the action of optical

systems. Fully polarized (pure) states can be described by the Jones vector55 or
by points on the Poincare Sphereﬁﬁ whereas the coherency matrix56 and the Stokes
vectors? can describe both fully polarized eand partially polarized (mixed)
states. Deterministic systems are described by the complex ZxZ2 Jones malrices

acting on the Jones vector cor the coherency matrix, but the real 4x4 Mueller
matrix which acts on Stokes vector can handle both deterministic and
nondeterministic systems. An interesting gquestion in this connection which has

o8 is the following: Given the Mueller matrix

drawn considerable interest recently
of a system (experimentally measured one, say) how to test 1f the system was
deterministic or otherwise?

Implicit in all these methods is the assumption that the field is polarized
transverse to the exis of the system (2 = axis) at all points in the input
(transverse) plane and that the action of the optical system under consideration
is such as to preserve ithis property. Thus, they are applicable only to plane
wave fields and to systems like polarizers and phase plates which map plane waves
into plane waves with no change in the wave vector. But one is often interested
in finite beam fields (a Gaussian beam, for example) which cannot always be
treated as a plane wave, and their transformalion by lens sysiems.

Study of }he dependence of the field quantity (over trensverse plenes) on
the transversé coordinates and the mapping of this dependence encompasses
virtually the entire systems optics. In these situations one invariably settles
down for a scalar field description of the vector (elec{fomagnetic) light field.
Thus, while describing polarization the spatial veriation is completely ignored
and while describing the spatial radiation as in the case of imaging systems the

polarization aspect (vector nature) is completely ignored. This is a highly
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unsatisfactory situation, and a c¢riticism of this position with particular
reference to Gaussian beams can be found in an early paper by Lax, Louisell and
McKnight 9.

It cannot be argued that the scalar function used to describe the radiation
field in the so-called “scalar optics” represents the amplitude of the field
vector polarized in the same direction at all points. The field vectors in the

free radiation field have to respect the Maxwell system of equations.

1 3

= g -V . B=20 4.1a
gl i

X @ B+V E =0, 4.1b
c 3t 2

¥oE = 0, 4 lc
VeB = 0. 4.1d

The first two are true equations of motion for E, B but the last {wo are
equations of constraint to be obeyed at each time. The former preserve the
latter in time: if the constraints are obeyed at the initial iime, the equat:ions
of motion ensure that they are obeyed at all times. Now, V.E = 0 implies that
the electric vector cennot have any spatial variation im its direction of
polarization. As a consequence, even in a simple case like the Gaussian beam,
the electric field cannot be polarized in the same sense at all points. That is,
the equations pf constraint couple the polarizaition and the spatial dependence of
the field veéiors in an intimate way and, therefore, any attempt i{o analyze or
affect one without due regard for the other aspect will at best be inconsistent
with the Mexwell system of equations. Thus it is desirable to lock for =&
procedure which will handle polarization and spatial modulation in a unified and

systematic manner. It turns out that such a procedure can be derived through an

analysis of the paraxial propagation problem in the front formﬁD’Sl of
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relativistic description. Such an analysis traces, as a bonus, the symplectic

structure of first order optics to the basic Poincare invariance of the Maxwell

equations/wave equation.
The most familiar description of the generators of +the Poincare
60

(inhomogeneous Lorentz) group GJ is in the so-called instant form wherein one

uses a complete set of dynamical variables describing physical conditions at all
points of the three—dimensional space at a common—time. The generators of Q) are
then listed as folluwsﬁz: four generators P* corresponding to space-time
translations; three generators J = {Jl'JE'J3} corresponding fo speatial rotations
about x;,.X5.%q; and three generators K = (KE’KE'KB) corresponding to pure Lorentz
transformations slong the three orthogonal directions.

3

We have shown recently6 that for problems of paraxial wave optics a more

convenient way to displey the action and generators of é) is in the front form.

In place of the usual time and space coerdinates x° = ct,x one introduces
the combinations
o= =(x° + 33) , o =x° - 2. x = (XI‘ xz). 4.2

A front is a hyperplane consisting of all space-time points for which 7 is a
constant-we may call it "the front 7. Corresponding to the choice (4.2) of

space—time coordinates, one rearranges the Poincare generators as follows:

33; G..i. e (Kl 5 .]8:}/2, (K2 + Jl}/z; 1:':1.~

M= (P° + P%)/2; Ky - 7(P° - P?), 4.3a

o . . B
Jo=P P°; HJ,_ =K, + 3 Ko — 3, . 4.3b

The seven generators ofép listed in (4.8a) give rise to transformations that map
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the front 7 onto itself, the remaining ones in (4.3b) generate transformations
that move the front. In pariicular the combination g{j shifts a front parallel
tc itself.

A particular feature of the rearrangement (4.3) of the Poincare generators
is that the six generatiors, JB' Gl’ Pl’ M drawn from (4.3a), along withéﬁf taken
from (4.3b), obey commutation relations corresponding to a two—space one-time
Galilei algebrasz‘ In this algebra:}f; plays the role of "energy" — 1t causes
shift in 7 but not in ¢ or X, - while M is like the "mass”. Now the Galilei
algebra with nonzero "mass” always contains with it, as is well known from
nonrelativistic dynamics, quantities obeying the cenonicel or Heisenberg Lype
commutation relations. These quantities are the (iransverse) spatial translation

generators ?L and the boost generators Gl. divided by the "mass"” M. Thus, if we

def ine

and recall that M commutes with both Gi. and ?L , we find as a consequence of the

Poincaré commutation relations,
[Qy. Ppl =1 64 [Qq. @) = [Py, Pl =0 4.5

It should be !emphasized that the Galilei structure &and hence the canonical
commutation reiations (4.5) are embedded in the overall Poincare structure,; the
front form has only exposed them. From the commutation relations (4.5) it
follows that hermitian and at most quadratic expression; in the four hermitian
generators Q.L' ?L form generators of the metaplectic groupao; exponentials of i

times these quadratic expressions give elements of the metaplectic group.
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Thus, we have traced the symplectic structure of first order optics to the
basic Poincare invariance. The fact that the wave equation of scalar optics and
the Maxwell system of equations of vector wave optics both possess Poincaré
symmetry implies that this symplectic structure has to vector optics the same
relevance it has for scalar optics.

Consider the paraxial propagation of scalar quasi-monochromatic waves about
the xq axis (z — axis). All Poincare generators (4.3) in the front form can be
63

easily computed We have, in particular,

€L 4
P =iV, = (-i=— , -1 =&y | 4.6
31 L 3%, 9xo
Further, as explained in Ref. [63] when the so-called "quasi-henochromaticity”

condition 1s satisfied (most parexial situations do satisfy this condition) the

"mass” M 2 k = w/c, and an optical system located in space in the plane x3 = &

appears, to a good approximation, effectively located at 7 = a in the front form;

and propagation in T appears as propagation in z. A paraxial scalar {ield is

specified by its amplitude w(xl_, zo) over a transverse plane z = 1z . the
propagation equation then gives w(xi';z) for any value of z > z_ . The paraxial
assumption on w{xi‘;zo} demands, of course, that iits Fourier transform E'(KL ;zo)
with respect to}x have appreciable values only for those ki. such that [ki,i <<

k. And there jﬁ no other condition which w(xi ;zo) in the imitial plane has to
satisfy. But the situation is different with vector waves. Let us arrange the

-

components of E, B vectors into & six element column

jea|
—

5!

™3
=N
-2

=
i
o=~ R < 5 |

w N = W
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64 one finds that

When the front form Paincaré generators acting on F are computed
P; has the same expression &s in (4.6) but QL picks up an extre ’'polarization’

operator. We have

where s = < .
_L(‘“SJ— ﬁf) b Q{SL :-‘-Ll I - ’
= <
Q1 \—g, <% —S :
o 6 o = P R S
< - - J b"'ﬂ I
=] ( o o -t | g = O/ T 49
o ( O] —A ¥ @

Here, _ﬁ represents ihe 6x6 identity matrix but this will be suppressed
henceforth. Clearly, for a paraxial beam each component of F in Lhe initial
plane must be paraxial — but that is not enough. These components must be so
chosen that the constraint part of the Maxwell equation (4.1c,d) 1s satisfied, so
that F will indeed represent a Maxwell beam. Then the propaé&tion equation in z
gives F at a later plane, and this evolution preserves the consiraint &s noted
earlier. Now the important point is that the Poincaré invariance expressed in
the front form enables us to disentengle these aspects properly, and leads to a
compact expression for the most general quasi-monochrometic Maxwell beam. Ve
state here only the result, the proof caen be found in Ref. [85]: F in the

initial plane must necessarily have the form

[ \
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where E](XL'} and EB(X‘L) are two arbitrary paraxial scalar functions.

That is, if FT(xi') has the first and the fifth entries identical, second
and fourth equal but opposite in sign, and the third and sixth entries zero then
the matrix differential operator exp[i (éa Ea)] acting on FT(xj_) produces F(Xi.)
which is guaranteed to respect the constraints (4.1c.d).

These results enable one to find description of the action of paraxial
optical elements on Maxwell beams 1n a manner consistent with Maxwell equation.
In the scalar case, an optical system acts through a characteristic operator
w(xy ., Py ) on the field in the input plene to produce the field in the output
plane. In the vector case, even if the system under consideration 1s not
“sensitive’ to polarization in the usual sense, we cannot have w(xjr. Pi.) act on
each component of F to represent the action of the optical system. The reason
for this is easy to see, whereas Pi continues to be a generator of the Poincaré
group for the vector field, KJ is not, and hence the F resulting from such an

action of w(xi_, } will not be a Maxwell field.

P
1
A clue to the generalization of the action of optical systems from scalar

optics to vector optics can be drawn from {4.8): replace xi_ cof the scalar theory

in u{XL Pi‘) by QJ in (4.8) esppropriate to the Maxwell system to get the system

operator Q(x. ,P, )} for the vector case:

4

1
/ ; ) + Ei P .
w(xy,,B)—>LL (,,P) =@ (Zmxh 1) 411

/

Since @ and P, obey the same algebra (4.5) as do x, and P, , it follows that
i 1 Ao +

; i P )
(,of(’-?ﬁ p) w (jci_j)l_) = W ():J__ i A7 4.12



implies

I D
allx ,B)a(x,”) = (%, 2 - 418

Thus, the prescription (4.11) automatically guarantees that the association of
first order systems with elementslof the group Sp(2,R) or Sp(4.R), depending on
their symmetry, is maintained in vector optics also.

The prescription (4.11) can indeed be derived directly from the
representation (4.10) for paraxial Maxwell beams. We allow w(xi.'gl ) te act on
each component of the input FT' Clearly, the result is a valid FT [recall the

comment following (4.10)]:

- () = w(x, ) Er;j,u(x*"‘)' don

t, ouk

Now acting on either side of (4.14) from the left with exp[i {EaPa)] and making

use of the identity

@p[i G, R0, P exp -G R) = w(n, G, R) 418

which incidentally is a direct consesquence of the commutation relations (4.5),

one obtains

SN CARNCRCAN AR NCHE

This completes the derivation of our rule for going from scalar to vector

opticsﬁs. It is useful to illustrate this rule with a simple exampie. For an

ideal thin lens of focal length f we have (the lens is placed at z=o0)

m('&,a) = ep\” Zp n
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and hence

V_ik (~ . fr_:J T""“1{

-C?'(kxioa): S L —}t‘zif \‘X‘L*_”qu') = 4.18
This matrix exponential can be simply evaluated in closed form owing to the
special properties of the polarization matrices 61, 6'2

— ~
: = i} .
[;(;;C1 2 C;‘b i] ’
~ . —~t oz
gf + G:L - t
o B -
QCL Qb(qc = ’
4.19
We have for the thin lens =)
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This matrix applied to the input F made up of components of the input field
vectors Ej’ Bj in the plane immediately before the lens produces the output F
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consisting of the output components Ei, Bi in the plane inmediately after the
lens.

Since we are interested in exhibiting how the prescription (4.11) works, we
shall retain only the lowest order term half in the matrix in (4.20). Further,
for a paraxial beam, to leading order, E; = B2, E, = B1 and E3, By are small
quantities of first order relative to Ea'Ba" Then, we see from (4.20) that the
output field vectors are related to the input ones as follows:

-/ ~ 2 —tigk X ) t: \le5(ﬂ )

Ea(?(J_QO) P( zp &

B r ("f C‘\ ~ Q(T ("”" ) B (J:L)D) )

o~ o “‘f
: L (ot [Eo59 + Ce) B G
(% ;0) = @*p

' ) " x.:0) +(T/p) Ba (215 o .
E'._; (Hy 50 2 ‘E’K}D\\ A,Q - 23 \) LBz( 15 gl »

Es

Thus one find that the action of lens contributes a small additional "axial”

67

component To see a striking effect of this axial component, assume that the

input was an axially propagating plane wave, and consider the Poynting vector

whose components immediately behind the lens are found to be .

4

f "#'- \ 2 {
Re[ B/ (02 B0 V= dePraied) (2,49 .

For a converging lens with f > o we see that at each x immediately after the

1
lens (assuming we consider only paraxial points li_l << f) the outgoing Poynlting
vector points éxactly to the focus (o,0,f), which is just what is expected. To

appreciate this, note that if the terms xaEa. xE,B& in Eé, Bé in (4.21) had been
absent, then the outgeing Poynting vector, like the incoming one, would have been

parallel to the system axis at each point x !

4

Al the level of the field components we see, for example, that the electric

vector E'(x, ;0) and the magnetic vector B‘(xi_;o) are mutually crthogonal and

L

orthogonal to (-x, ,f) which is the vector leading {from (x_L.o) to the focal

i



1
point (o,0.f). Thus, for an incident axial plane wave the lens transformation
(4.21) yields an outgoing wave which locally can be described by a set of vector
plane waves, all directed to the focal point. Thus we have obtained an extension
of the well known Debye integral representation5 of focused scalar fields to the
vector field case.

Due to space limitations, we have presented in detail only the lens action.

A complele analysis of all first order systems and their action on vector waves

can be found in Ref. [65]. Indeed such an analysis has been exitended to
“polarization sensitive” devices like phase plates, optical rotators and
polarizersﬁa. We have presented here our analysis based on the six element
column F consisting of the E and B vectors. It is possible to develop a more

economical description based on a three element column consisting of the

components of the electric vector64‘65’69. In that case, as should be expected,

the polarization matrices Ga become 3x3 matrices. As @& final comment In
connection with our formalism, we note that the analysis of polarization
presented so far is at the field vector level. It 18 possible to extend this
analysis to the two-point tensor level. Use of Wigner-Moyal technique will then
64,65_

lead to polarized generalized ray Details of these aspects, however, will

not be discussed here any further.
We conclude this section with some brief commenis on Gaussian beam solutions

to the Maxwell system of equations?o. In the scalar case, the Gaussian beam has

the form

I . ] A:ﬂa SIZ
y{ X ) = QXp L o ] 4.23
'4 (%L s2) \ 2q® 5
where gq(z) in the complex radius of curvature. We @are interested in vector
Gaussian beams, polarized 1n the xlmdirection to the extent permitted by the

Maxwell equations. Field vectors inm such e beam can be constructed by a slight
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reinterpretation of (4.23). we interpret w(xi ;z) in (4.23) as the result of

passing an axially propagative scalar plane wave through a Gaussian transparency

whole amplitude transmittance is exp[§—¥17 xf}. The vector plene wave with the
q(z
kind of polarizaetion we want 18 given by
1
0
0
-;|‘ =
e 0
1
0 i
/ 424

and the Gaussian transparency in the vector case is represented by replacing %L

by x +

G. in the transmittance function
1 i

ol

Q(xi) = exp [éﬁ (XJ_+ i 61)2]. 4.25

Now, the matrix operator (4.25) has the same form as the lens operator (4.18).
Thus, the Gaussian transparency action {(4.25) when - evaluated will be
represented by {(4.20) with f replaced by —q. The matrix operator {4.25) has to
act on F_ in {4.24) to produce F(xlA,z) corresponding to the Maxwell Gaussian
beam. It follows that in addition to the principel polarization component, there
will be present in the beam an axial component weaker by one order in q(z)_l,
But, unlike tﬁp lens case, these two components will not be in phase since q(z)
is not real.ffThe second order terms in the matrix in (4.20) has a interesting
physical consequence: it results in a cross—polarization component71, along ¥,
for E and along x; for B vector, weaker by one more ‘order in q(z)ml. It is
precisely this cross-polarization component that was observed in an interesting

experiment by Fainman and Shamir71"£‘ Finally, the integrated strength of the
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principal, axial, and the cross—polarization components are individually

invariant under propagation of the beam' !
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5. Families of Bose Rays and Higher Order Correlations

The generalized ray description of wave optics we presented in Sections 2
and 3 was specifically at the level of the two-point functions. At that level
there 1s no distinction between classical and quantum descriptions [recall the
First Fundamental Theorem of Quantum Optics] and hence & partial generalization
of the concept of light pencils, allowing for light and dark rays, did suffice.
The usefulness of such generalized pencils has been established beyond doubt, and
stem principally from their extremely simple behaviour under various conditions.

But a statistical state of the radiation field is decribed by a hierarchy of
correlation functions, y(n'm)(.,.} in classical optics and G(n'm)(...) in quantum
optics, rather than just the two—pocint function. [For simplicity, we deal with
scalar waves and ignore polarization;, Generalization to take into account the
vector nature is straight forwrd, and can be accomplished by replacing the
(n,m)-order correlation functions in what follows by the (n,m)-order correlation
tensor. For paraxiel i1llumination 1t 1is clear that our rule for going from
scalar to vector optics, presented in Section 4, is again valid ] Thus one may
ask:

1. Is it possible to transcribe all the information of a statistical state
contained in the entire collection of classical (quantum) correlation function
if(n’m)i [{G(n'm)i) into & generalized ray language, in an exact manner?

2. What are the differences between classical generalized rays and gquantum
generalized rays, which must exist and which could not be seen at the two-point
level n=m=17?

3. What are the consequences of "Bose statistics” for generalized rays,

-

classical and quantum?

4. While the collections {F(n‘m)}. (G(n,m)} can be neatly handled by

generating funclionals, are there similar characteristic functional methods for
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handling collections of joint distribution functions for generalized rays by
working ""up in the exponent”?

5. When the entire hierarchy of classicel (quantum) correlation functions
are taken into account, what is the most convenient definition of the practically
important paraxial situation?

Some of these questions have been resolved recently using Weyl-Wigner-Moyal
(WWM) methods. We outline here only the principal results: the details can he

73

found in a forthcoming paper in the Schrodinger Centenary special 1issue ol

“"Foundations of Physics".

First some notations and definitions. We will work with a scalar field
¢(x,t) = ®(x), whose analytic signal part we denote by y(x), and distinguish
operators by & caret symbol over the field symbol. Further, we restrict

attention to free space and hence y{x) obeys the free wave equation.

Then ithe classical correlation functions are given by6‘7

(o)
r ) {\I,.,‘Il,__ - X 5 WM, - Jﬂ"rﬂ}

pe
= ‘< xfm,\. e LT YD P> 5.1

There are several choices available in the quantum theory, but we will use the

normal ordered correlation functions:s"

T ~ A M ~
G(‘m 7(..( ; . ﬂ'«m} _ <.k}/+(.‘:!13 o L}, ) ()L o o S s.%{;(,.)>
"".T‘f { ('Ii) I \%(1“‘). () - o,

5.2

The average in (5.1) and (5.2) are made over the classical and quantum ensembles,
respectively. Clearly, r(n.m} and G(n,m} have the =same dimensions. For the

(quasi) monochromatic situation the dependence on the time variables is trivial,
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and hence the space-time coordinates x's and y's can effectively be replaced by
the 3-vector space parts x, y alone. For propagation problems involving
transformation between transverse planes, one simplifies further to x's and y’s
which are 2—vectors in the transverse planei

With these definitions we begin our snalysis by noting the following: It is
impossible to have a classical looking description of quantum mechanics at the
level of the wave function 4, linear in the wave function. While it 1s true that
in the WKB limit classical pictures are useful, any exact classical-like version
of quantum mechanics must use bilinears ww'. Similarly in classical wave optics
the eikonal limit gives an approximate ray picture linear in field amplitude, but
again 1t is the bilinear two-point function that leads to an exact ray picture
through the Wolf function. An extension of this argument leads us to the
following observation, important for our purpose:

A generalized ray description is not possible for all r(n,m} and G(n,m}’ it
can be achieved. at best, only for F(n'n) and G(n.n)‘ Thus, we can restrict our
attention henceforth to the “diagonal” correlation functions r(N-N) ang g(N.N)
M= 18 cus - We will show that for these functions a generalized ray description
18 1ndeed possible.

Before venturing into that, however, the following point should be
clarified:

For a fixed N, is the set {F(N'N)} of all allowed classical correlation
functions F(N'N) the same as the set (G(N'N) of allowed quantum correlation
functions G(N’N)? From the definitions (5.1) and (5.2) it is clear that both
r(N.N) and G(N'N) are (i) hermitian, (1i) positive semidefinite, and (iii) Bose
symmetric. One realizes that (apart from a irace condi{ion} these are precisely
the defining cenditions on the configuration space Kkernel of the quantum
mechanical density matrix p(N) of N identical Bose particles (moving in 3 or 2

dimensions as appropriate). Further, 1t follows from (5.2) that every function
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of 2N vector variables possessing these three properties is a valid G(N‘N) for

some state 5. But the situation 1s different with F(N’N): it has to satisfy, in
addition to these three properties, the additional requirement that its
realizations have to have the special form
.4 * 5 3
v (x1) - e (¥ ez elxy) - :

An example of allowed 6(2‘2) and p(g), but not r(z), is

E*(xl'xg) ¢(x,. xp) where

g(xy. %) = u(xy) v(x) + u(xy) vizg) . 5.4

or

§(xy, x) = u(x; + xp) 5.5
Thus {F{N‘N)} is a proper subset of [G(N'N)} and we have
N o gtNBly - 4Ny 06

pilallg - jgathy,

For the case N=zl, the condition (5.3) becomes void and hence |}
a fact we already know from the First Fundemental Theorem.

It is useful to view the state space of N identical guantum particles as a
subset of the’%tate space of N possibly distinguishable quantum particles. Now
recall that for an N particle guantum mechanical system the WWM technique is
available and it gives a classical looking exact description. Since both F(N'N)
and G(N'N) are hermitian positive semidefinite, we can compare them with quantum
mechanical density matrices for N distinguishable partiéles and then borrow the
WWM technology 1to define N-fold joint quasi-probability distribution of
1-(N.N)

generalized (classical or quantum) rays. When this is done, will lead to
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an N-fold ray distribution function wN(...); and similarly G(N’N) to a function
WN("')' After doing this we must, of course, impose the "Bose condition”. It
will turn out that the Bese condition when implemented on @N(..,) and WN(‘“)
leads Lo certain essentially nonlocal correlations on these multivariate ray
distributions.
With these observations we define the N-fold classical generalized ray

distribution function for one ray with position X and ray vector gl, another

with parameters X,, Ko,.... and the final one wilth X, ky through the
2 2 N N
Wigner-Moyal transform
N h L E&i i\
_ - b i1 - - L2 K .
L)'JN(?EII‘,EI; R L Ehlj'{hl) = (D:h} ! iCl :!bt‘ E)(‘P ( =y =/
i ==y
. /
- (NHN) | ] - ~  A5Xg )
[_ (ll;"‘"}- 1.\"“1}r\i' %'__NE?‘J_F "'ZC‘;:"”— =t 2
5.7
Here n = 3 or 2 as appropriate. Similarly, we define the N-fold joint quantum
mechanical ray distribution function
Wy ks e smedad = (@mr LI Al exp( A2 2 )
— l'x‘-:‘
-~ ) y ] - _i :I. e J-__)‘J
G (=X, e s XTI AR o o 2

It is a prapef&y of the Wigner—Moval transform that wN(WN) will in general not be
non-negative for all values of 1ts arguments. Hermiticity of F(N'N)(G(N’N))
ey reality of wN{WN). Positive semidefiniteness of F(N’N)(G(N'N)) St
(pointwise) product of wN(WN} with any valid wN(W,), when integrated over all the

arguments yields a non-negative number. Further, the fact that wN(WN} gives an
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exact ray description of all the diagonal Y(N'N}{G(N'N)) is obvious from the fact

that the Wigner—Moyal transform is invertible.

Now we implement the Bose symmetry condition on wN(WN). At the

r(N,N)(G(N’N)} level the Bose symmeiry reads

(F(N‘N} or G(N‘N) (Kl.

ot
=
4
©w
<
-
=
}(‘
)
t<
=

= {FN’N) or G(N'N)) (zl,...gﬁ,,.,x o By XpoXos e ¥y) - 5.9

Clearly, there are N(N-1)/2 such conditions. A double application of this
condition and use of the hermiticity of F(N’N)(G(N’N}) leads to

(F(N’N) or G(N’N)} (;1.,.x

Koo Xgo o Ey xl"‘xa"'xﬁ"'XN)

2 (F(N’N) or G{N'N} {31,.,;5,..xa...§N; Kl"'iﬁ"‘xa"‘lN}' 5 10

It is important to realize that (5.9} is the primitive and correct Bose

condition, and {(5.10) is a much weaker one {it applies not only to Bosens but

also to Fermions and to even more general situations!)

One may be tempted to expect that on mN{WN) the Bose condition manifests as

follows:

(wy or W) (xy. Ky XK zﬁ,hﬁ;...;zN'hN)

5 (wN 9} WN) (zl.zl:.,‘;zﬁ,kﬁ:".; .00 S zN‘hN)-

That is symmetry under interchange of (zl, 31) «—> (x5, kp). {gl,kl) >
(;3, 53), (;2,32) «<—> (x3.k3) etc. While the local relation {5.11) is
is not an exact rendering of

definitely a consequence of the Bose symmetry, it

Bose symmetry In fact it is an exact rendering of (5.10}!
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It turns 0ut73 that the primitive Bose symmetry condition (5.9) leads to the

Cﬁbl(O:hds) L}}Ew .- ;5B¢EM\ 57{igigiér}1 G%%DEE %gﬁxr“fx)'— igﬁiiﬁikiﬂb

- (@aw’

- (LJN K@( L'\)E\j} (’jﬁ-(lk'“"{z“}f‘} ;—L(‘S_a _*,ff;is)?ji Bj*iﬁf\),ﬁ@*l&““w} Y

o

s 1R

and similarly for any other pair of rays. In all there are N(N-1)/2 such
relations, and it is these nonlocal ray-ray correlations that form an exact
rendering of the Bose symmetry. When applied twice, these nonlocal relations

lead to local relations of the form (5.11).

In order to understand these correlations better let us consider the
simplest case of N-2 where the Bose symmetry imposes just one condition on the

bivariate ray-ray distribution W,

h J( A< o'k’ ex P '|_"L *ff' (20 LE" (_%‘v—lilﬂﬂ )

1 (e, -k <-i;_.(?.41-;.4-33‘,:};Kk.”‘fk") ¢ Bl
b TR i 4

W, (= ks me) =(27

- Wg!&hﬁmfju>

-

We have an identical relation for wy. This somewhal! odd-locking relationship

takes a suggestive form if we use the average and relative coordinates

1. 1
x = ”2”(31 tx). k= 5(1_1 + kp)
£ = X, T X2 e Kl - Ee- 5.14
With an abuse of notation we write
5.15

Wz(x- k: ¢, n) = wg(xl-hl; 32» Ez)-
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Then the Bose property demands

- ’ | ‘ | . .,1 i ;—r’
L{\l’l{’{,k ,E’_)zﬂ - (2m h(dmg:dh”} "3’?‘-}0(’“?% - LEF_?)NQ (i(’_k’\?'_’l )

5.186

For each average x, k the distribution in the relative coordinate and ray vectors

£, n has to be self conjugate in the sense that
= n " i il ~ }
(5.9 = @ [dydy epligf-En LG s

This symplectic—invariant partial Fourier transformation would normally take us
from the Wigner-Moyal transform (in the relative coordinates) to the ambiguity
Iunctlon74 in the relative coordinates; but here the two have to coincide.

The functions obeying (5.17) can be completely characterized?s‘ In the
general case of Wy there will be N(N-1)/2 such conditions of invariance under
partial symplectic Fourier transforms. The correlations between light rays that
these conditions represent 1s a manifestation of the inherent Bose symmeiry of
the rays, and is an alternate manifestation of the positive distance correlation
in an 1deel Bose gas75. Since this ray-ray correlation is a consequence of the
symmetry of the (N,N) order correlation functions under permutation of the
argument, it is equally valid for both classical wave optics and quantum optiecs.

Sc much for the allowed set cf (classical or quantum) N-ray distributions
for a fixed N, and the nonlocal manifestation of the fundamental Bose symmetry in
them. Now we tﬁrn our attention to the entire chain of correlation functions of
increasing orders associated with a given (classical or quantum) state. In the

classical case we have 'S .

e (n,m)

gy = L oo FEEDD

L
= 33’+*:D+ PLYO s L}/*{_)J L)/*{-“i‘) \ﬁi"’) = +({”)'5,1a
s
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Here P[ﬁ(.),w¥(.)] is the (non-negative) probability functional completely
characterizing the given classical stale and § is the set of allowed analytic
signal solutions to the free wave equation. In the quantum case too a formally
similar expression obtains: all that one has to do 1s to use Sudarshan’'s diagonal
representation and replace P[W;w‘] by the quasiprobability functional @[w;v']

(recall the Second Fundamental Theorem}:

G m) )
G G P R - S

Sipq/qu/ ERRIIN A Pl Wy -+ 4/(1,4; 5.19

All quantum effects are now buried 1in ¢[@;@‘]. that is in the manner in which 1t
differs from a classical probability functicnal.
Let

- kx| it y '
Og(w( x k) =@® gd“x’ e~ a],/(g_'i{--)\}/*@f%_f: ) YeS,

e
|

5.20

be the random-valued generalized ray distribution (Wolf function) we would have
defined at the level of F(l'l} for a pure state ¥ random valued over 5. Then f.om

(5.18) we have for the classical N-ray distribution associated with the state

Ply:v )
Lw('x,,k.., e, X, k)
Y
S ‘W# Py, $eJ U« }.)5,) P ek
5

LOE\Q”) (-3(1‘! . \<|,_3)>

_—

[ W w (:c‘k ) -

5.21

For the quentum state represented by ¢[w;w‘] we have from (5.19)

W (-Ili({- ,?_"N\‘d)
" T feyl en P U
(Dy24 BTHO, 456 ] 0, x k) <o 6 G kn)
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= @w(%@ cé:‘*(iﬁjk&)>@ : .

Now, from (5.21) it is «clear that in classical statistical optics the
generalizalion 1n the concept of rays that has been necessitated at the level of
dealing with the two-point function F(l’l), leading to bright and dark rays
(recall w(w)(x.h) 1s not poinlwise non-negative), is all that is needed in
generalizing light rays to give an exact description of F(N'N} for ell N
associated with a state, apart from the Bose correlation of reys. In the quantum
case the situation 1s different and we have additional aspects.

First, we have already noted a particular rendering of the quantum nature in
that the set of allowed Wy for a given N > 2 is larger than the set of
permissible wy - Secondly, the quantum nature manifests also in the relation
between the different WN'S in the chain of WN's corresponding to a given state.
Since P > 0, it is seen from (5.21) that 1f we have & nontrivial field of

1llumination so that the classical ensemble has some nonzero vy, then

w (2.k) #0 — woy(x;.k;i.- . xy. ky)# 0 for all N > 2. 5.23

But 1in the quantum case since ¢ is not a true probability functional this does
not obtain: We can have a state with a finite number of photons and then WN

vanish for large N! Thus,

wl(;,g) #'0 jf;’ wN(Kl'hl*"';XN'EN) # 0 for all N > 0. 5.24

The equations (5.21) and (5.22) allow us to set up generating functionals
for wN’s and WN'S quite easily73. Since m(w) as defined in (5.20) is real, it

suffices to introduce a real "external source” functien A»(x,k). Then we have

< o ( ;Kd‘xd“k ANz, coﬁ‘}" (1,‘91>
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Thus the entire chain of classical generalized ray distributions corresponding to
a state P[w;w*] can be handled compactly "up in the exponent”. Taking the
inverse Wigner-Moyal transform of A(x.k) and w{w’{;,g) the expression in the

exponent of (5.25) could have been written as

~ l e
(dedns A(ghyedPep = Gf{@xd®! 2o i 40,

)
(x,2') = |d" RNaz+z), k) erpla k)]

R

5.26
Thus, we could write the generating functional in the alternate form
L \ i e
- ALTN Yo e d s J
- ]J | ‘ -
1o (e SR A Ak o fuk, -2k
) 1# N% “ & i

As for the quantum generating functional, & comparison of (5.21) and (5.22) shows
that we will have to do the averaging in (5.27) with respect to ¢ rather than P;
but in terms of the density ratrix 5 this just means normal ordering. Thus we

have the guantum generating functional

M=t 7

= 'T{ [ :(;"JZ Q)‘-.\og J\\szﬂgdﬂfr c?\d:‘h;\ (x ,&s)‘-fﬁ?l);/(}_')}ﬂ L
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We have shown that all diagonal correlations, classical and quantum, can be
given en exaclt ray decription. It is useful to note that the diagonal
correlations cover all situastions invelving photon counting and intensity

correlation experiments. In bothe the classical and quantum cases Bose symmetry
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menifests itself as some definite nonlocal correlations in the multi-ray
distributions. We have alsc shown how classical and quantum states differ in the
ray description. Finally, we have presented in both cases generating functional
for the chain or ray distribulions associated with a state.

We conclude this section with some comments on paraxial illumination. In
the classical case since P 1s non—negative, it is clear from (5.21) that if a ray
appears 1n w,(x.,k) it does appear in all wy for N > O, and no ray which does not
appear in w,; cen appear in higher order wy. In the quantum case, while a ray
appearing 1n W, need not appear in Wy for N > 2, it is again clear that no new
ray which is not present in W; can be present in higher order Wy. Thus, a beam
described by a state P{w;w'} or ¢[¢;w‘] is paraxial at all levels of correlation
if and only if it is paraxial at the level of the two-point function. This 1s a

simple and satisfying result regarding the definition of paraxial 1llumination.
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6. Concluding Remarks

We have presented an outline of some of the recent developments in relation
to coherence, propagation, and fluctuation of light. As it has turned out, this
review has centered essentially around our own work, and the unifying theme has
been the notion of generalized light rays throughout. Owing to limitations
beyond our control, related works of other authors could not be reviewed. In
particular 1t 1s unpardonable to have made no mention of two recent developments:

Emil Wolf has recently 1ntroduced a new theory of coherence in the

space—frequency domain first at the two-point function le\zfel'?6 and subsequentlly
for the higher order correlation functions?T. This has already found several
'8.47  secondly, our results presented in Sections 3 and 4

useful applications

are based on Lie group methods in an essential way. Very important contributions

80

have been made by the groups of Alex Dragt?g and Kurt Bernarde Wolf in the

context of the application of Lie methods in opticaal. We hope to mend these

omissions elsewhere
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