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Abstract

Stochastic quantum dynamics is studied both with regard to the convex set of
dynamical maps of density matrices and their generic construction as contractions of
extended systems. The analytic continuation of this dynamics to dual analytic spaces
is carried out and the dominant metastable modes are identified. The behavior of
dissipative systems under Galilean and Lorentz transformations are also studied. The
various generalized spaces, often used indiscriminately in the literature, are defined
and distinguished. The concept of the age of a decaying system obeying a semigroup
is introduced and illustrated.

1 Introduction: Quantum Kinematics, Convex Set
of States

The generic state of a quantum system is specified by its density distribution which may
be viewed as a linear nonnegative normalized number valued linear functional [2] on the
operators. In the more restrictive form in which it is identified as a trace class operator [3]

in the Hilbert space, it has the canonical decomposition
p=Y"GCithialu. 5 Cum0; ) Ci=1. (1.1)
1 1

with
g=yl. (12)
The set of density distributions can be enlarged provided the dynamical variables for which
expectation values are sought are restricted. Conversely, if the set of density distributions is
restricted a wider set of dynamical variables may be constructed [2].
The conditions of positivity and normalization still allows the formation of normalized

convex combinations:

p = p1cos? 0+ pa sin®6 . (1.3)



They do not form a vector space. For several purposed including that of the stochastic
dynamics of density distributions, it is advantageous to consider the vector space generated
by the density distributions; the additional distributions so obtained may not satisfy either
the positivity or the normalization or both. We will see that metastable (decaying) “states”
are realized by such pseudodensity distributions.

Given the convex set of density distributions we could seek the boundary elements and
more specifically the generating extremal elements. The latter are those density distribu-
tions whose (normalized) convex combinations generate all the density distributions but
which themselves have no nontrival decomposition. Trace class operators in Hilbert space
are a compact set under the Hilbert-Schmidt norm and the extremals are one-dimensional
projections. For more general definitions of the density distributions we should investigate
the question in each case.

If the dynamical variables undergo a unitary transformation their expectation values

change: this is equivalent to a linear transformation on the density distributions:
pu(A) = p(TAU) . (1.4)
If the unitary transformations concerned form a group so do the linear transformations

p— pu (1.5)

furnish a realization of the same group. On the other hand if we consider the linear trans-
formations on the density distribution we have new possibilities. This is particularly true
for time evolutions. For simple Hamiltonian systems there is a one-parameter group of
transformations on the density distributions; but we have the more general possibility of
non-invertible dissipative transformations. Whenever such a dissipation is involved the in-
verse transformations cannot act on all density distributions. Instead of a time translation
group the best we can obtain is a semigroup of dissipative evolutions. In either case we refer
to the generator of the group or the semigroup as the Liouvillian.

The generic time evolution is a study in stochastic dynamics [1], and has been the subject
of systematic study over the last four decades [4]. Special cases like the relaxation of a spin

systems in an external magnetic field was studied in terms of the Bloch equations half a
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century ago [5]. But the convex set of dynamical maps has an intricate structure even for

2 x 2 density matrices [6].

One way of arriving at stochastic dynamics is by considering the system as being embed-
ded in a larger system with a time translation group and then contracting out the extraneous
degrees of freedom. When one does this one arrived at a subclass of stochastic dynamical
maps, namely those of the completely positive type [7]. Conversely given a completely posi-
tive dynamical map we can realize it constructively in terms of the contraction of an extended
Hamiltonian time translation [8].

Stochastic dynamics thus involves a sense of time and this is a breaking of time symme-
try. In the contraction procedure the time symmetry breaking is explicit. It has been of
continuing interest for more then a century whether the breaking could occur spontaneously,
without an explicityly assymmetric procedure and without a restriction on the initial states.
On the other hand if the dynamical laws are time symmetric it would be expected that the
time reversed states would have a time reversed semigroup. What, then, selects the forward
semigroup for time evolution? In other words what is the ingredient that is implicit in dy-
namics or involved in the choice of physical states that assures the time symmetry breaking
second law of thermodynamics? With the increasing recognition of the role of deterministic
chaos and the relevance of the Poincaré catastrophe for Large Poincaré Systems [9] the simple
objections of Loschmidt and Zormelo to the Boltzmann H-theorem appear less compelling.

This paper is an attempt to clear up this issue by a careful characterization of the various
families of states, of the varieties of dual pairs of states and dynamical variables. It appears
from this analysis that the states exhibiting dissipation and hence break time symmetry are
to be selected from an extended set of states. There are the time reversed states which
exhibit negative dissipation and are hence not acceptable as physical states obeying the

second law of thermodynamics.



2 Stochastic Quantum Dynamics

For a finite dimensional system the density distributions are nonnegative density matrices

of unit trace:
p#EB : p=1 : dmp=N. (2.1)

The extremal generating elements of the convex set of density matrices are projections of
rank one:

p=My=yp , d=yl. (2.2)
There are an infinite number of such external elements. For a time-independent (hermitian)

Hamiltonian H the time evolutions form a unitary one parameter group:
p(t) = exp (—ilt)p = e "H petith (2.3)
Here L is the Liouville superoperator
Lp=Hp—-pH. (2.4)
A much more general evolution is given by a parameterized map:

P A(t}f) : ,Or-s(t) = Z Ar.s,r"s’ (t) Prist . (25)

,’.I‘gf
Clearly, since the properties of a density matrix must be preserved by the mapping we must

have

S Arpe =t 5 Amarn = Al -- (2.6)
If we deﬁr%e the new N? x N? matrix B with elements
Byt st = Apsiprst (2.7)
then these properties of A may be used to deduce [1]
Burm =By 5 3 Brwpw = b (2.8)

If the matrix B is non-negative then we say that the dynamical map p — Ap is strictly
positive. Not all maps need be strictly positive [7]: the simplest, not strictly positive map,

is the map
p—pt. (2.9)



In all cases, since B is hermitian and finite dimensional, it can be diagonalized; for the strictly
positive maps all eigenvalues are non-negative. In this case we obtain
p— VeV 5 TViwve =1, (2.10)
" j
where the sum over g in general runs from 1 to N2

The dynamical maps themselves form a convex set since
B = B, cos® ¢ + By sin® ¢ (2.11)

is also an acceptable map if B, and B, are. If B, Bs are both strictly positive so is B. The
question naturally arises of finding all generating extremal elements of all dynamical maps
and of all strictly positive dynamical maps. The first problem is very complicated and has
been done completely [6] only for N = 2. For N > 2 we know many external maps like
unitary, antiunitary and “pin” maps but a complete characterization is still to be done.

For completely positive maps these have been completely done. The extremal cases may
be separated into families [7] of rank R, where 1 < R < N. The R = 1 case corresponds
to unitary maps while R = N correspond to the pin maps. Moreover we have a simple
construction algorithm for finding all the external maps [10].

The strictly positive maps obtain by a unitary evolution of an extended system consisting
of the N— dimensional system of interest and an auxiliarly R— dimensional system which
is then contracted by taking partial trace with respect to the auxiliary system. Moreover it
can be shown that any strictly positive map may be displayed as a contraction of a rank one
map of an‘extended system.

In this context we note that these maps can be multiplied by performing them in se-
quence. The result is again a dynamical map. The dynamical maps therefore form a forward
semigroup. In particular the strictly positive dynamical maps form a forward semigroup.
However these maps are in general not invertible to form a group; they will take the set of
density matrices into indefinite matrices (of unit trace!).

Given a unitary map we could consider it being generated by a Liouvillian derived from a
Hamiltonian. We can then talk of a continuous group with a generator £. We could ask for

a continuous parameter semigroup for the generic semigroup of completely positive maps.



In view of the fact that any such map can be obtained by contraction of a unitary map we
may look for clues to the structure of the generator of a dissipative semigroup in such a
procedure. By expanding the unitary matrix to second order where dissipation first obtains
we get

_ (it)*

Applying it to the extended system and then taking partial trace we obtain
p—+p—itlh, gl Lt [LQ, [LLPH . (2.13)

It is possible to show that this is the generic generator of a completely positive semigroup [?,
11] It is noteworthy that for a finite dimensional system there is no self adjoint Hamiltonian
which could lead to dissipation for an isolated system and the Liouvillian eigenvalues are
the differences of the Hamiltonian eigenvalues, but if it is coupled to an auxiliary finite
dimensional system the contraction map can exhibit dissipation. For the time evolution to
obtain as a continuous one-parameter semigroup we may have to take limiting cases of weak
coupling and scaling of time.

When the number of dimensions of the vector space becomes denumerably infinite but
the Hamiltonian has still a discrete spectrun the situation is not changed dramatically. The
only essential change is that there are dynamical maps of arbitarily high rank; and that these

can be obtained from not only unitary but also isometric operators in the extended space.

3 Liouville Dynamics with Continuous Spectrum

The Liouvillian dynamics of a system with a continuous spectrum furnishes richer possi-
bilities. If v is a point in the continuous spectrun, o < v < co, then the density matrix may

be parameterized by vy, v,

H p(v,1e) = vy p(ny, va
plry, w)H = wp(n, 1) . (3.1)
Then
ﬁp(”]\”?):(ul_vz)p(vls V2)' (32)
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and we could relabel the density matrix in the form
1 1
()(U;E)Ep(E+§v,E—-2-V) , —2BE<v<2E. (3.3)
The unitary time evolution is
e~ p(v; E) = e¥*p(v; E). (3.4)
The trace is invariant under this evolution
tr (e“‘:‘p(v; E)) = /dEp(D; E) (3.5)
and the positivity is preserved
p(V;E)>0—e*tp(; E) > 0. (3.6)
These are equivalent to the statement
/ /H o v B)f (E+§u)f(E—§u) dEdv>0. (3.7)

For any energy E or any finite range of energy 0 < E < E, the time dependent density
matrix is an entire function of ¢ and always obeys a group rather than a semigroup. But

under suitable conditions the survival probability [12]

P(t) = tr(pe'p) = / [ p(=v, E)e=*p(v, E)dvdE
= [ [Pl B)ep(v, By dv a (3.8)

may exhibit appropriate exponential behavior. Clearly P(t) is real and bounded by unity;,

Since the density distribution p may be expressed in the form
o1, 1) = Erata )l () (3.9)
with 0 < vy, 1p and 0 < 7, < 1, it follows that
(f’v*iﬂf’) (vi,v2) = . T'aff"i(u‘_Vg)tTﬁa(Ul)'ﬁbI(V:z)
o«

S rathalm)e ™ (galm)e) (3.10)

X
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Hence, the survival probability has the decomposition
o0 ; 2
Pe) =T arPut) 5 B =|[ wlwe v, (3.11)
0

so that P,(t) are the absolute values squared of functions of ¢ analytic in the lower half

plane. Then by Paley-Weiner theorem

/’ log P (t)

T dt

€0 (3.12)

But this is not possible if their convex sum exponentially decreases with ¢ for ¢ > 0. This is
a slight generalization of a result derived four decades ago by Khalfin [13].

It would at this stage be useful to clarify the kinds of density distributions that we may
consider and their analytic continuation and extension of the set of density distributions.
But preliminary to this we note that given any set of dynamical variables we may consider
the density distributions as their duals. If we consider too wide a class of distributions we
restrict the set of observables and vice versa. Finally if we consider analytic continuations of
the dynamical variables the density distributions themselves should be analytically continued

[14] initially. The dual correspondence should be maintained.

4 Varieties of Statistical State Spaces
Given the density distribution p(v; E) the time evolution can be displayed as
. (e7) (v B) = e p(; E) (4.1)
and the survival probability in the form
P(t) = / T dE /’ZE dve="*(v, E) p(v, E) (4.2)
Jo Jo2g T ’ o '

The integration over the finite segment —2F < v < 2E may be deformed to run along some
path in the complex plane provided the function p(v, F) is analytic in v in a suitable domain

in which the new open contour C' from —2F to 2F lies

P(t) = [dE P E);

P(t,E) = /('p*(z*,E)e“—“,a(z,E)dz. (4.3)
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We may now define various spaces associated with density distributions p(z, E). As a prelim-
inary we observe that the density distributions constitute a convex set, not a vector space.
We can however relax the positivity condition and define the vector space spanned by the

density distributions. We distinguish the following:

1. The space B of integrable distributions where the v integration goes over the bounded

range —2F < v < 2F.

2. The space C of square integrable (and integrable) distributions. This is the analogue

of the classical Coopman phase space densities.

3. The space D of distributions which are boundary values of functions analytic in a
domain providing the analytic continuations for complex contours in the variables v

and E (with 0 and oc being the limits of integration in &).
4. the space &£ of distributions extended from —oo to +oo for the variable E.

5. The space F of distributions analytic in a half plane for v except for an essential
singularity at infinity and suitable analyticity in the variable £ so that we can develop

a forward semigroup in time.

6. The space A of distributions analytic in a half plane for v and suitable analytical in
the variable E.

That these spaces are different is clear. The space C contains the space B; and A is contained
in the space F. The space B is contained in the space £. As sets D and B are dense in each
other but there are elements in B which have no counterpart in D.

For an isolated system the total energy £ is bounded from below; but for a system which
s open to dynamical interaction wnth other systems this may not be an essential requirement;
it is only under this provision that the spaces £, F and A are relevant.

A piecewise analytic function, or any general measure which belongs to the space can
be arbitrarily closely approximated by boundary values of analytic functions. Similarly
a distribution along a complex contour in C can be approximated by arbitrarily closely

by functions in B though there is no one-to-one correspondence between the vectors [15].
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A specially interesting case is the complex delta distribution which assigns, to a function
representing a vector in the dual space which is analytic in a domain containing the particular
complex point, the value of the function at the complex point. There is no vector in B
which corresponds to this vector in C, but in £ there is a vector which also lies in £ which
corresponds to this vector. This vector would be appropriate for describing the simplest
metastable excitations.

If we take a physical state in D and analytically continue it we can value it as a function
along a complex contour together with one or more isolated poles (or, more generally, branch
cuts). The pole terms control the behavior of the survival probability but it is always
accompanied by a background integral. This background integral is essential and it reproduces
the correct behavior at short (Zeno) times and long (Khalfin) times. The isolated pole (or
poles) by itself would not have a corresponding state in the space D of physical states.

In the space F the situation is quite different. There exist states in F which correspond
precisely to a discrete complex point (or points). For a single complex point these are the
familiar Gamow-Breit-Wigner states with a unique exponential dependence of the survival
probability. These correspond to unique vectors in F. The correspondence between F and
its analytic continuation is a correspondence of complete spaces, not merely dense sets.

A special subset of these functions are analytic in an entire half plane. Such function
constitute the Hardy class functions [16] with many interesting properties and are often
taken to represent nascent metastable states. But the Hardy class property is not preserved
by time evolution since -

p(v; E) — e "p(v; E) (4.4)

¥

which has an essential (exponential) singularity at infinity. So after any finite time has
elapsed, a nascent state evolves into a non-Hardy class function. These non-Hardy class

functions are labeled by the index of exponential growth at infinity.
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5 Need for Extended Space: Breaking of
Time Symmetry

If the states having a pure exponential survival probability are to be included as natural
(“physical”) states, the spectrum of energies E are to be extended from 0 < £ < oo to
—o0 < E < oo. This is the space £ and the space F of functions which are the boundary
values of analytic functions, analytic in a half plane except perhaps for an exponential
type singularity at infinity. The extension of the energy spectrum for 0 < EF < oo to

—oo < F < oo is equivalent to lifting the restriction
—2EF<v<2FE (5.1)

and allowing the v integration to run from —oo to +co. So if the survival amplitude is

calculated for positive and negative times we will get two distinct functions.
o0 oo .
/ / p(LE) e - p*(v, E) dv dE = P(t). (5.2)

For t > 0 , e ™' is a convergence factor for the lower half plane (and an exponential

increase for the upper half plane. Hence,
%) o] ;
P(t) = / dE f dv e~ p(v; E) p*(v*, E) (5.3)
J—o0 —c0
can be considered as a closed contour integration with the integration closed in the lower
half plane by an infinite semicircle contribution vanishes. The result is, then,

Pit) = /c: dE - 2mi > p(z; E)p*(z*,E) e™** (5.4)

Residues in the
upper half plane

while for t < 0

P(z):_/z(zg-zm Y o(z,E)pt(z E)esH)  (55)

Hesidues in the
upper hall plane

which furnish two distinct functions of t. In particular if there are no poles in the upper half

plane then

P(t)=> aje* , <0, (5.6)
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For the density functions in the extended space F with no poles in the lower half plane but
poles in the upper half plane P(t) is exponentially decreasing with |¢| for the past (¢ < 0).
These two classes of functions are disjoint except for the constant function, but the

constant function in v leads to an unphysical survival “probability”
P@)=46(t) . (5.7)

In the extended space F there are thus two disjoint set of states, the forward evolving states
with -

12 Pity=% (ptlpl0)) >0 , t>0, (5.8)
These are the states consistent with the second law of thermodynamics [17]. There is a time

reversed set of backward regressing states with
&= PR)=0 ¢ 1x0: (5.9)

These states are not suitable for a system that obeys the second law. The choice of physi-
cal states as forward evolving is the breaking of time symmetry. It is not dependent upon
objective information or the act of isolated measurements but it is a property of thermody-
namically adapted states and is picked automatically and universally. Open systems must
then have this time symmetry breaking of the second law if thermodynamics is to be generally
valid.

We now consider in detail the correspondence between the states of open systems in the
space F with the states of closed systems in the spaces C and D. Clearly given any element

of F we can restrict it to the domain
-2E<v<2FE , 0<E<o (5.10)

and this yields an element of D. However given an element of D we cannot automatically

extend it to F since analytic continuation to the negative real axis may not be possible.
Despite this there is o natural splitting of any vector in C or in D into two vectors in F'

with differing domains of analytic continuation. Given the function F (v, E) for a vector in

C which vanishes outside the range —2E < v < 2E , 0 < E we define [14]

g, E) = ﬁfw g L2 E) (5.11)

mi J—2E v — e
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This integral, if it exists, defines a function for all values of v and is analytic in the lower half
plane and hence it is a suitable member of F appropriate for describing an open system with

forward (dissipative) evolution. A companion state with backward (dissipative) evolution is

given by
_ 1 rE f(/,E)
h,(V, E) = ; _/;2}_-',' m 5 (512)
Clearly
9(v, E) + h(v, E) = f(v,E) (5.13)
and hence
h(v,E) = —g(v,E) , |v|>2E. (5.14)

The functions g(v, E) obtained here belong to the space A of functions analytic in the
upper half plane, more restrictive than the space F where we could have essential singularities
of exponential type at infinity. This class of functions are the Hardy class and are sometimes
used for describing these states.

However if f(v, E) behaves like exp(—v7) at infinity for 7 > 0 the definition of g(v, E) is
unaltered, except that it too will behave like €** at infinity. These dependences are therefore
quite appropriate for describing forward dissipative evolution. But these are not in the Hardy
space A but in the space F discussed above.

This behavior of the density distribution is automatic with temporal evolution. Given

p(v, E) at time ¢t = 0, at time ¢, the density distribution function becomes
p(v, E)e™™* ' (5.15)

which beltl‘mgs in the space F but not in the Hardy space A. Each such state is labeled by
a parameter 7 labeling the rate of exponential growth at infinity. This parameter increases
linearly with time evolution and may therefore be called the age of the state [18]. The

nascent state introduced before corresponds to states of zero age.

6 Dissipative Semigroups and Moving Frames

When we pass from one inertial frame to another inertial frame the dynamical operators of

energy (H), momentum (P) and angular momentum (J') corresponding to time translation,
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space translation and rotation change. The operation of changing to a moving frame is
the “boost”. For nonrelativistic systems these boosts (G) together with seven operators
H, P,J and the neutral element mass M constitute the extended Galilei Lie algebra with

fundamental commutation relations [19],

H,F] = 0 ; [HJ]=0 , [HG;=1iF;;

[P, Be] = 0 ;5 [Py, Ji] = —iejePe ; [Py, Gi] = 16 M

i = ierede ; [Jj, Ge) = tejweGe s [G,Ga] = 0;

[H,M] = 0 ; [P,M]=0 ; [J;;M]=0; [G;;M]=0. (6.1)

This is an eleven-parameter algebra which can be integrated to an eleven-parameter extended
Galilei group. All its representations are known [20].

Just as the Hamiltonian generator H has associated with it the Liouvillian vector field £
we may introduce the eleven Liouvillians (vector fields) associated with the extended Galilei

algebra.

[EP,- . _Cﬂ_} =) = [ﬁH,EPj] =03 [I:H,f,]}.] =il [,ij,ﬁpk} = t€kelp, ;
[f,JJ,,EJk] = 1€l ; [.Cc;j,.cy] =Lp_;; [ﬁc.'j,EPk] =03
[E.ijﬁc'.‘;,.] = i€jke Ly, [&':;:C(;k] =0. (6.2)

The vector field corresponding to the neutral element M vanishes identically; so the Liou-
villians constitute the ten-parameter Galilei Lie algebra. -

A dissipative system has an effective nonselfadjoint Liouvillian Lg. If the antiselfadjoint
part is invariant under the Galilean vector field then we will have a Galilean system in which
the dissipation is the same in all inertial frames.

For an irreducible realization of the Galilei algebra, that is for an elementary system,
the dissipative part must be a constant. This is a generalization of the “internal energy” U
which is a Galilean invariant that can be added to the Hamiltonian.

P2
U=H- oM (6.3)
When this is complex we have dissipation. For a reducible representation, appropriate for

a composite system [/ may be a function of the relative variables. This is what we would

14



expect as far as the relative coordinates are concerned; but Galilean invariance requires that

the momentum dependence should be through the relative velocities
,U;.h - (P;/MJ) _ (P_:J/M}) (64)

only. This is again a minor generalization of the result for Galilean mutual interactions [21].
Thus, in Galilean systems the dissipation is independent of the frame. There need not be
any dissipative terms in the generators other than Ly.

When the boost transformation is treated as a Poincaré boost the commutation relations

involving this boost K are [22]

[P; }"\’k] == —I(SJ;: H 3 [H, R’k] - _ka H
[.}J’, I(A:] = 'l:ﬁjkg,{{g H [I{j, I(k] - '—?:éju‘}g : (65)

The Liouvillian vector fields Lp, Ly, L;;, Lk; satisfy the same ten-parameter Poincaré alge-
bra. The Hamiltonian vector field cannot have a dissipative additive term without either
the boost vector field Lk, or the displacement vector field Lp, being modified by virtue of
the Lie algebra relation

Lk, Lr) =idu Ly - (6.6)
This complicates the inclusion of dissipation into a relativistic theory.

Following Dirac [22] we may choose the point form or the instant form fo Liouvillian
dynamics. In the first case we will make Lp, and Ly have dissipation teams while L,
would not have any. This is accomplished as follows: define the quadratic form in the
generator {23]

M? =Py Py + H?. (6.7)
This form corresponds to the square of the mass and in an invariant under the Poincaré
vector fields. A dissipative mass operator is constructed either phenomenologically or form
an underlying dynamical theory and identified with the square of the Hamiltonian in the
center of mass frame. For any frame which moves with a velocity (in units of the velocity of

light) w in relation to the center of mass, the generators are defined by

Bjeoiat W, 3 = (6.8)



The vector fields Lp, and Lg may now be constructed for each value of w. We could of

course retain the relation
Pi=u; H. (6.9)

So if M is dissipative so would be H and P;. While a complex momentum seems strange it
is consistent with the picture of a decaying metastable excitation [24]: if it was created at
time 0 at time t = 7 its probability density at the origin would decrease as exp(—y7). But
the density at the wave front will be large since they are from the undecayed excitation at
t = 0. So the spatial dependence should represent an amplitude modulation appropriate to
a complex momentum.

The instant form treats the center of mass behavior in the same fashion, except that we
may, if we choose, construct a dissipative mass operator rather than a (mass)? operator. The
momentum in the moving frame is considered as a real quantity with no disspation. This
means that the boost must contain some disspation by virtue of the special commutation
relation between energy, momentwn and boost. The dissipation in the energy is now frame

dependent

H =P+ M? (6.10)

and hence Ly depends on P?. But unlike in the point form, the dissipation does not simply
scale.

There is a third possible way of looking at the problem and that is to retain the Lorentz
transformations only for their effect on the Liouvillian L and ignore the translation vector
fields Lp,. This becomes a reasonable way of approach when we recall that a state approxi-
mating a t:hermodynaunjc state is infinitely extended and the total momentum (or its vector
field the displacement operator) are not relevant in such cases. The dissipation, to the extent
that it is intensive (that is proportional to the volume) will change from frame to frame. In
the geometrical language of the Minkowski space all these generators are in the future light
cone with negative definite dissipative terms. Since these infinitely extended states have a
preferred frame of the center of mass and the boost of an infinitely extended object is not

possible, global Lorentz invariance itself is broken for these states.
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7 Dynamical Processes and Dissipative Evolution

The discussion so far has been about generic systems. We have not yet talked about
interactions, scattering and explicit dissipative evolutions. Let us start with a generic system

with “total Hamiltonian” H which may be written
H=Hg+V (7.1)
where H¢ is isospectral with H and is a simple structure, say a collection of “ free Hamilto-
nians.” If |E,7) are a set of (ideal) eigenstates of He with degeneracy label r and |E,r >
a corresponding set of (ideal) eigenstates of H, then there would be, by definition of the
isospectral property of H and H¢, a one-to-one correspondence and with the same degen-
eracies. Apart from normalization this correspondence may be written
|[E> = |E)+(E—H¢+ie) 'V|IE>
-1
= [l=(E-Hc+i)'V]| |E). (7.2)

This can be formally expanded in the perturbation series
|E >=|E)+ > _{Gc(E)V}" |E) ; Gc(E)=(E - Hc+ie)™". (7.3)
1

This corresponds to the “in” state appropriate for the initial state of scattering; with the
energy denominators chosen with —ie will furnish the “out” states. Both the solution and
the perturbation expansion can be extended from the Hilbert spaces to the analytically
continued spaces [26]. No substantial change is needed if the spectrum condition is relaxed
to include arbitrarily large negative energy continua.

In plm:,e of discussing the problem of the correspondence between the (ideal)eigenstates
of H and H¢ we could make the comparison in terms of (ideal) density distributions in

relation to the Liouville operators £ and L¢

LR(v;E) = vR(vE);
LoRo(v;E) = vRe(v,E). (7.4)

Here R(v, E) and Re:(v, E) are the (ideal) density distributions

1 1
R..(v;E) = |E+ ShT > < E - 5V s
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1 1
Re, (v;E) = |E+ ¥ r) (E— ¥ s| . (7.5)

They are related by

Riw(v; E) = {1 - Ge (E + %u + tt) V}dl Re(v; E) {1 _ Gl‘ (E B %u +i£) V}—l
Raw(viB) = (1= Ge (8450 ~ic) V}wl Re(w B) {1 - GL (B = v —ie) V}_fzs)

The scattering probability for ideal states is

tr {Rj:l‘!lt“ (Us E) Rillrr_,,r (Vr: E’)}

1 1 1 1
= E — = v, 5, out|E' — :—z-j',s’, in> < E'+ §u’,r’,i11]E - ST out > (7.7)
But

1 1 1
< E - éy: sout|E’ — %u’, d,in>=26 (E ~F - v+t —21/) S. (E -3 u) (7.8)

is the scattering matrix. So the scattering probability can be expressed in the form
: - " 1 1 1
5(E — BY6(v — /) 5., (E —= u) sl (E +3 ,,) . (7.9)

With the proper understanding of the adjoints and duals, these considerations apply not
only to the real spectrum representations but also to analytic continuations. Of course, as
long as one deals with the real spectrum representation, no metastables per se occur in the
scattering probabilities; rather, the resonances manifest themselves by characteristic “reso-
nant shapes” of the probability distributions. If we want to consider the role of metastable
states and the scattering of metastable excitations we should consider the analytic continu-
ations which would uncover the resonant states as members of complete set of states.

The (unnormalized) states | E >> can be normalized by suitable state sensitive multiplica-

tive changes. When this is done we denote
| B i ==, | By 3 |B,riin ==~ B,2) . (7.10)
with Qinr s as a unitary operator. Then, if Fe is any invariant for the Hamiltonian He,
[Fo,He] =0, (7.11)
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then there is an invariant of H given by
F=QF:Q! [F,H| =0 (7.12)

by virtue of
H = QH:Q'. (7.13)

But there is no guarantee that if the matrix elements of F are smooth nonsingular functions
of E, the matrix elements of F' are nonsingular functions. In cases where there is nontrivial
scattering the .rnatrix elements of F' will definitely be singular functions. F' and F¢ are
unitarily equivalent and are respectively constants of motion for H and H¢. If H and He
share some symmetry properties, the corresponding operators are regular constants of motion
for both He and H; these are analogous to the traditional constants of motion for the total
Hamiltonian in classical dynamics. But there are additional constants of motion.

Let us now consider time evolution. For the Hilbert space, the time evolution is the
exponential of a hermitian Hamiltonian and, as such, is unitary (norm preserving) whether
the energy spectrum is bounded below or not. When we generalize to dual spaces, there is
no longer a norm for the state. We must rather consider the invariance of the scalar product

bilinear in the vector of the two dual spaces. If 1, ¢ are such vectors, we have
¢ — dt)Y(t) = pet ey =gy . (7.14)

If H has complex eigenvalues for ¢/ there are ¢ which the seme complex eigenvalues, and
therefore the product of the two remains constant. But it is no longer true that ¢ (¢) has the
same “length” as 1(0); the notion of the “length” of a vector is not defined in dual spaces.
But if there were complex eigenvalues of H, then it is clear that ¢(¢) can be a complex
multiple of 4(0). But ¢(t) would be the inverse multiple of ¢(0).

Similar considerations apply for the spaces spanned by density distributions. In this
case, there is always an invariant state with normalized trace; and all the other states
are pseudodensities with zero trace. The evolution is “unitary”, that is, preserving scalar
products between duals.

A measure of this scale change is provided by the survival amplitude
At) = (0) 9(t) = e~ Hip . (7.15)
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As 1) change so does A(t). In particular, if the state ¢ is dominated by a complex pole at z,

then the survival amplitude has the dependence
A(t) = A(0)e ™. (7.16)

When
Qrgl, 120, |A(t)] < |A(0)] . (7.17)

Thus, in this sense, the complex energy state is a decaying state.

From the vectors 4, ¢ in the dual spaces we can construct pseudodensity distributions
— i T — H-I- g 7 18
p=tnYy , o=0did2 (7.18)

which generate dual spaces.[2] With these we can calculate the survival probability

P(t) = tr(op(t) = tr (o pett")
(éﬁﬂ_mttb) (’tpTeth&T)
=A@l (7.19)

I

Therefore, if we know the survival amplitude, the survival probability can be computed.

When the states contain a superposition of eigenvectors of H, the behavior is
- Gis 3 2
P@) = |Sdsvse ™ — | [ ¢ EW (B aE] . (7.20)

As long as ¢(E) and ¢*(E*) are boundary values of functions analytic in the lower half plane
except for poles (or “short” branch cuts), we could evaluate the integral over E by closing
the contour with an infinite semicircle in the lower half plane (for ¢ > 0). If there is only
one pole in the lower half plane, the entire survival amplitude is as if there were only one
complex “energy” point eigenvalue contributing to the integral. More generally it will the
superposition of several such and possibly an integral over them.

Let us consider the single complex eigenvalue in detail. The state vector

Yw(E)=No(E—-2)"" ; N = i ; (7.21)

and its dual
d(E) = Ny (E = z*)* (7.22)
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give the survival amplitude for £ > 0

Aol) = / bo(E) €B go(E)AE

= Nl;"f (E—z)(E—z*)dE:ﬁ'f—z* Nie =g, (7.23)

A

In this case the analytic continuation of the wavefunction vanishes as z! at infinity. For
t < 0 we get similarly

Aglt) =et=", (7.24)
The survival amplitude as a function of ¢ is therefore the join of two distinct analytic func-
tions, one for ¢ > 0 and another one for ¢ < 0.

Now consider the state

No(E — 2)" e
No(E — 2*)~* (7.25)

- (E)

obtained by a multiplicative transformation. Then the survival amplitude is

Adt) = N [(B=-2)"(BE-2)7 =) eotgp

—2m

= M‘f . e'i.z'r eizi‘. (726)

_z*

which may be written
Ar(t) = Aot + 7). ' (7.27)

In other words, the state 1), may be thought of as having been created at time ¢t = 7. If 7

is positive, we extrapolate, for these states, the semigroup for negative values of t such that

t+7>0. (7.28)

&

This quantity 7 may be called the “age” of the state in the extended space.
Having defined the age and the survival amplitude for the states we could define the age
and survival probability for density distributions. Analytic density distributions in the space

F can be chosen so that we can define the forward semigroup on them. But after the time



evolution for any finite time is considered, the states are no longer in F but are in £. If we

denote a state in F by po(v, E), then
p-(v, E) = e % p (v, E) (7.29)

is not in the space F but remains in the space €. For them, the forward semigroup can be
extrapolated to negative values of ¢ such that ¢ + 7 > 0. These are the metastable states
with an age 7.

In these discussions we have labeled the density distribution p(v, £) with the labels
appropriate to the total energy and total Liouvillian.

In many cases we have a comparison Hamiltonian He and an interaction V' such that
He¢ is isospectral with H and

H=Hc¢c+V. (7.30)

Then we could have an alternate labeling of the states by v, F¢ appropriate to

1
Hep = (Ec + 59(;') P

1

pHe = (Ec —5 Vc:) p. (7.31)

To avoid confusion we use the symbol R for the density distribution labeled by v, Ec so
that
R(ve,Ec) = p (v, E) (7.32)

with ve having the same range as v and E¢ the same range as E. Then

" R,E) = (1 g (E 4 %u) V) R (1 sl (E - %u) V) = (7.33)

It may be that the creation of the state may be most simply described in the comparison
Hamiltonian representation R and then the dependence on the variables v, E would be
governed by the dependence of the wave matrix factors preceding and following Rc. In the
special can of the Dirac-Friedrichs-Lee model [27] of a discrete (metastable) state coupled
to a continnum, the resonant complex pole plus background dependence is immediately
realized if the initial state is the discrete state of the comparison Hamiltonian with the

discrete energy level lowered by continuing in the “mass” parameter of the model. The time
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dependence of the survival amplitude and survival probability have been studied extensively

in the literature [28].

More generally, the wave matrix
Q) = (1—Ge)V)™ (7.34)

has an analytic dependence[29] on £; and as a consequence if R (v, F) is a simple function
of E and v, then R(v, E) will be analytic in both v and E. The singularities of the wave
matrix in the complex variable of energy reappears in the survival probability. While both
the scattering amplitude and wave matrix depend on both the total Hamiltonian H and
the comparison Hamiltonian H, it is known that only the singularities of the wave matrix
appear in the survival amplitude; the redundant poles of the scattering amplitude, if any,
do not contribute. Any way, the survival amplitude depends on both the total Hamiltonian
H and the comparison Hamiltonian He.

The second point to be noted is that when we consider the time evolution, despite the
fact that the (norm)? of the state is not defined directly, we still can talk of affine scale: that
is whether the state gets multiplied by a number e*?*. Such states do not exist in C but do
exist in the extended space £. They may be realized along the real axis but could equally
well be identified as complex discrete energy states. As a consequence, while the product of
a state and its dual is invariant under time evolution, the survival amplitude does depend
on time. For the special state corresponding to a discrete complex pole, the dependence is

purely exponential.
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