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The Marcinkiewicz theorem states that the characteristic function of a probability distribution function
cannot be an exponential of a polynomial of degree larger than 2. This theorem is generalized in

the present paper to (i) probability distribution functions of many variables and to (ii) probability
distribution functionals when the stochastic variables are both commuting (Bose) and anticommuting
(Fermi). The consequences of this theorem to certain approximation schemes in many-particle physics,
involving truncation of hierarchical equations, are pointed out. These follow when one observes that the
hierarchical equations such as those of many-particle Green’s functions can be generated from a single
equation for a Green’s functional whose structure is that of a characteristic functional of a probability
distribution functional. The theorem implies that this would exhibit a nonpositive behavior when certain
truncation schemes are employed. Specific examples illustrating our results are drawn from the theory
of an electron gas, turbulence theory, and quantum optics.

1. INTRODUCTION

Marcinkiewicz! proved the following theorem
(henceforth called the M theorem): The probability
distribution function will violate its positive defi-
niteness if its cumulant generating function is a
polynomial of degree greater than 2.

This theorem was proved for single-variable
distribution functions, and for more recent proofs
and discussions of it, one may refer to the works
of Linnik? and Richter.® The importance of this
theorem in the physics of many-particle systems
and field theories was first noted by Robinson.*
One often employs the intuitive notation that the
correlation between 7z events will be negligible if
n is sufficiently large, and so one discards the
correlation functions above some order (usually
small for purposes of being practical) in dealing
with the hierarchy of equations describing a sys-
tem. A direct consequence of the M theorem is
that such theories are inconsistent with the basic
positive definiteness of the “probability distribu-
tion function” from which all the correlations of
interest emerge. Only the “generalized free-field”
model has zero cumulants of all orders greater
than 2, corresponding to the “Gaussian” structure
of the probability distribution. But schemes with
only a finite number of nonzero cumulants are ex-
tensively employed in many-particle physics and
relativistic field theory. Robinson? extended the
M theorem to the case of Bose variables which
obey the canonical commutation relations and
indicated a proof for a relativistic field theory of
the Wightman type. An account of this work may
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be found in a recent book by Emch.® Another in-
teresting consequence of the M theorem for the
Bose fields is that the Bogoliubov transformation
can either be linear or involve an infinite series of
operators, as was proved by ’t Hooft and de Boer.®

In the theory of many-electron systems, the
calculation of the pair correlation function is of
great physical importance. In all the schemes
proposed so far for calculating this there is the
feature that it becomes negative at vanishing inter-
particle separations for interesting regions of
density of the system. If kas been suggested that
this is pevhaps an indication of the failure of these
schemes to maintain the positive definiteness of
the basic many-particle probability distvibution
function.” A similar difficulty in turbulence theo-
ry® appears in the computation of energy density
in modes that are strongly excited at high Rey-
nolds numbers. One usually attributes the failure
of the “truncation” schemes to treat properly the
secular properties of this system.® We may ob-
serve here that all these methods involve cumulants
or linked diagrams of some low orders only and so
the above failures possibly stem from the proce-
dure itself as a direct consequence of the M theo-
rem applied to these theories. It is our aim here
to offer an extension of the M theorem to proba-
bility functionals from which, we may deduce that
the failures alluded to above are a consequence of
truncation. This is in the same spirit as Robin-
son’s work.

In Sec. II we extend the M theorem to probability
functions of finitely many variables, from which
we deduce the corresponding theorem for proba-
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bility functionals. We will also establish the M
theorem for Fermi (anticommuting) variables.

* In Sec. III, a brief discussion of how the usual in-
finite chain of equations are recast in terms of a
“generating functional” is presented and the M
theorem is applied to the problems of many-parti-
cle systems and quantum optics. Section IV sum-
marizes the results.

II. MARCINKIEWICZ’S THEOREM FOR GENERALIZED
PROBABILITY FUNCTIONALS

We present the theorem in two parts—the M
theorem for (i) a several-variable distribution
function, and (ii) a probability functional of Bose
fields and of Fermi fields.

Theorem I. If the cumulant generating function
of a probability distribution in %k variables is a
multinomial of degree greater than 2, then the
probability distribution will not be positive defi-
nite.

Proof. The proof consists in reducing the prob-
lem essentially to the one-variable case. We
first prove this for the case of two variables and
the same technique will be used to establish the
theorem for finitely many-variable probability
_ distribution functions. For simplicity we choose
an infinite domain for the random variables.

The probability distribution function in two vari-
ables, P,(u,,u,), has the property

fm P,(u,,u,) du, =P, (u,), 1)

where P, (,) is the probability distribution of the
variable »,. This is a special case of a more gen-
eral principle. We want to prove that the cumulant
generating function

Ez(xnxz) = I].Pz(ul, uz)

x expli (x,u, +x,u,) du, du, 2)
cannot be expressed as

N, M
exp(Z a”x;xg> with ©>N+M>2. 3)

oJ

Let x, =7, cos6,, x,=7,sin6,, in (2). Then,

Ez(xl’xz)séz(yz’ 6,) = ]7 P, (u,,u,)

x expli7,(cos6,u, +sinb,u,)] du, du,.
Introduce new variables v, v, such that
u, cos 6, +u, siné, =v,, @)

-u, siné, +u, cosf, =v,,

so that
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E,(r,, 6,)= fjﬁz(vl,vz; 6,) exp(i7,v,)dv, dv,.

(5)
Note that

f ﬁz(vl’uz; 6,)dv, = (Vg5 6,) ()

. is also a probability distribution function. Suppose

now that the left-hand side of Eq. (5) can be ex-
pressed as

4

E,(r,, 62)=exp<2 a,,(ez)r;'), p>2

S J’w My (vy; 6,) exp(i7,v,) dv,. )

But this cannot be done in view of the M theorem
applied to 7,(v,; 6,) for every 6, except for a set
of measure zero. Hence the theorem is true for
P,.

This theorem can now be established for the case
of k variables. The point to note here is that

j f ﬁk(vx"'vk;gl”'ek-l)dv1"'dvk-1

=my(vy; 6, 6py) (8)

is a probability distribution in v, for fixed
(6,++* 6,_,). We will now prove the following theo-
rem:

Theovem 1I. I P p] is a probability density
functional, then

E[0)- [ Rlplexp [z [ utettyas] o ®

cannot be expressed as

exp(yi:1 fu-j_:K,,(tl ceot, )U(E)e e+

X U(t,)dt, -~ -dt,,) , (10)

with N>2 without violating the positive definiteness
of Pl[p] . We have here used a single variable ¢

-for simplicity; this has an obvious generalization.

Proof. By definition (see for instance, Ref. 10)
a functional is defined as the limit

UmP,(py, p,, - - ., p,) =Plp],

n—>
where the discrete points ¢, - -+ £, are replaced by a
continuous variable £, and one defines a function
p(2) such that the variables p,, p,, . .. are
p(t,),p(t,), ..., respectively, with the definition
of the convergence of the limit either in the mean
or in probability. Also, one employs continuous
Junctionals defined by
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1imP,[p, ()] =P[p(?)]

n—o

whenever

limp,(#)=p(2).

n—

One then defines the functional integration through

limf---fdpl---dp,,-jﬁbp.
>

All these operations are assumed to have been
performed in the foregoing manipulations. (Note:
Similar definitions hold for functionals of several
functions, Plp, &,...].)

To prove the statement of Theorem II, we first
convert the functional relation to a statement about
a multivariable function and then use Theorem I.
To do this, we expand p(x) in terms of a complete,
biorthogonal set of functions {¢,},{#,}:

D) =T cabas €=, )= dnlp(t,
since

<¢ms ¢'n> = 6m.n .
The c,’s are now the required random variables.
Also,

Dp ~limdc, **-dc,,

n—s

f at, U(t)p(t)=Y c,U,,
where

Un=<Ur (Pn)

In terms of {y,}, U has the expansion },,U,¥,.
Thus, we have finally

E[U)=E,(u,,u,,...),
Plpl=Bc;, ¢ - - ),

and

..)=1imf---fdcl-°-dc,,
n—>®

With a suitable definition of the existence of the
limit and using Theorem I for finitely many mu-
tually commuting variables, one arrives at the
required theorem.

In the above theorems, the variables commute
among themselves. In the quantum-mechanical
theories, one encounters anticommuting variables
and we will therefore extend the above theorems
for such variables. In this case, one has to‘“order”
the multiple integrations in some sequence by

means of some convention.!!

We will now restate Theorem II in a form appli-
cable to random variables obeying either Bose or
Fermi commutation relations, and in a form ap-
plicable to Green’s-function theory of many-
particle systems directly.!!

Theorem II'. The generating functional

e £l= [Bls,1

xexp[i [ @evteha] suoyt an

@y, #'] is the probability functional) cannot be
expressed as

exp( % J-.n.ng(xl)...gT(x")K';m(xl...x";x{...x"n)

n,m=1

X E(xh)e e E(x{)dxl---dx,,dxj,,-”dx{) (12)

with all N+ M>2 without violating the positive
definiteness of P,. To keep the discussion quite
general, here x; stands for a multidimensional
dependent variable such as the space-time vari-
ables, (F,t). If y, 9" obey the usual equal-time
Bose commutation relation or Fermi anticommuta-
tion relation, so do the c-number variables, §, 5*
correspondingly.

Proof. The case of Bose variables is easy to
handle and proceeds as with the proof of Theorem
II. In the case of Fermi variables, a little in-
genuity is required, and we shall describe this
here. As in the proof of Theorem II, we express
¥(x), T (x) in terms of a complete orthonormal
set of functions {y,} (for simplicity we here use an
orthonormal set instead of the more general set
introduced earlier):

W(x) =D a@y (%), ¥T(x)=2alyi(x),  (3)
i 5

where a,, a; now obey the anticommutation rela-
tions:

la;,a,].=0, la,,al]l.=0,,. (14)

Also,

e<x)=4"j el (), e*(x)=Xj) £0,(x) (15)

where &; and &,f also obey anitcommutation rela-
tions.

We now arrange the operators a; ,a,f in an ar-
bitrary but fixed order of the labels. Define new
operators,

b,=n;a;=a,n;, (16a)
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j=1
bl =aln,=mn;a], withn, =exp(1ri§=_;a,;rak> .
(16b)
Note that the operator

. ¥
exp(mia)a,) = (-1)%% =1 - 2a]a, .
The set of new operators b, b: satisfy the simpler
commutation relations:

[6,,67], =1, b2=b12=0
i itt j i ’ (17)

[6,,5,]_=0, [b,;,b]]1_=0 for j+k.

Thus b,’s form a sef of commuting Fermi operators.
Each single Fermi oscillator b, b' can be identi-
fied with the Pauli spin-flip operators ¢~, 0" so
that we obtain a system generated by a “multi-

_ spinor.” Also, the states of the modified Fermi
operators generated from the vacuum may be
identified with the states formed by coupling N
spin-3 units. We get N +1 states of total spin N/2,
which is symmetric in all the degrees of freedom
and a number of other states of lower spin eigen-
value. It is enough to prove that

E,(-++ &5, 5}---)=<exp(i ;n,@,b} +b, e,*)>,
(18)

where (-++) denotes the average over-the proba-
bility distribution function B,(* b is b} +++), cannot
be expressed as an exponential of a multinomial

in (c+- ¢, E;' ++¢) of degree greater than 2. To do
this, we observe that if we define

£;=n;&;,
then

ECen g,m g )= (exmi (6,0 4, 2])
i

(18’)

where the ¢,’s are now suitable commuting Fermi
variables. Let us assume that we can write E,
in the form

Ey(&, ..., ) =expl®(c,, ..., tN], (19)

where ® is a multinomial in the variables. Con-
sider the special case when

£,=tf =0r=x.
Then
E,(x,...,x)=explQ(x)],
where
Q(x)=C(x,...,x).

But E,(x,...,x) is the expectation value of the

unitary O(3) operator, exp(2ixJ,) where J,

=32 (b,+b;r). The spectrum of J, is of course
the usual one consisting of —3N, -3N+1,...,5N-1,
3N. Hence, we also have

N/2
E,(x)= Z m,exp(2mirx)=expQ (x).

r==N/2
Since x is assumed real in the above, we have
|E,(x)|<E,(0)=1
and hence
1>exp{3[Q(x)+@*(x)]}.

Since Q(x) is assumed to be a polynomial, we ob-
serve that £[Q (x) +@*(x)] is also a polynomial,
say R(x). Hence, with the exception of the case
where all 7, =0 except one, we must have

R(x)<0 for all nonzero real x,
R(x=0)=0.

But for a real polynomial this is impossible unless
it is a monomial of even degree:

R(x)=—(ex)?Y, v an integer.

For sufficiently small x, if E,(x) can be approxi-
mated by a power series, then we must have the
quadratic term necessarily since its coefficient

is the expectation value of $J2. Hence the only
possibility is R(x)=—(ex)?. This implies that we
have at most @ (x) =iS(x) — (ex)?, where S(x) is an
odd, real function of x. From an argument similar
to the one used in proving the M theorem, we can
further deduce that S(x) must be linear in x and
hence we get a Gaussian characteristic function

at most. We thus establish that we cannot have

E (& ¢+ &,T,) expressed as an exponential of a multi-
nomial in £ ¢« E;[,, except as a quadratic form.

We may mention in passing that a discrete vari-
able version of the M theorem also exists, be-
cause we may express a probability distribution
function p(x) in the form

p(x)= D p,0(x -x,),

with
3. p.=1, 0sp,<1
n

and hence E(k) =2, p,exp(ikx,). The statement of
the M theorem is then that E(k) cannot be written
as an exponential of a polynomial in k2, of degree
greater than 2. This may have relevance to the
recent interest in binomial moments in particle
physics.!?

The implication of this theorem is clearly that
one cannot set the cumulants as being nonzero up
to a prescribed order larger than 2 and O beyond it
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without violating the basic positive definiteness of
the probability distribution function itself. Al-
though the theorem does not indicate in which
correlation function the difficulties will occur, we
shall in Sec. III note certain examples in which
the problems arise in low-order correlation func-
tions of interest.

III. APPLICATIONS

A. Many- electron problem —remarks on Hartree-Fock
(HF) theory and the random-phase
approximation (RPA)

In Ref. 11, Martin and Schwinger discuss trunca-
tion procedures in detail for the system of equa-
tions obeyed by Green’s functions of various orders
for an interacting system of many identical par-
ticles obeying either Bose or Fermi statistics.

It is clear from that discussion that HF scheme
corresponds to N=1, M =1 or Gaussian approxi-
mation for E,[£, £7] in Eq. (12) and this clearly
does not violate the positive definiteness of the
probability functional, P[y,»']. However, in RPA
it amounts to keeping terms up to N=M =2 in Eq.
(12), (with K,,=0=K,,). This scheme then must
violate the positive definiteness of P[y,y"]. To
see that this indeed happens, one must examine

the sequence of probabilities generated by the
functional itself in detail and this is usually a
difficult job. However, the pair correlation func-
tion is usually computed in the literature as it is

of great physical importance and this is one of the
elements defined by Pz[tp, »']. It is found in the
literature that (see Ref. 7 for a discussion of this
and references to the literature) the pair correla-
tion function (which is itself a probability) becomes
negative for zero separation for densities corre-
sponding to 7,>1 in RPA. Various “improvements”
have been made within such approximation schemes
by many authors (notably Singwi and his co-
workers) and essentially in our language, their
attempts are all going into improving the proba-
bility functional by improving the calculation of

K,, while still keeping all the rest of the cumulants
zero. While an improvement in the computation

of K,, improves the value of 7, (<4) up to which the
pair correlation function is positive,” the problem
still remains that this function becomes negative
for larger 7, (>4). For values of 7, between 2 and
4, the theorem would imply that some other higher-
order correlation functions would become nega-
tive. This observation holds for all the existing
methods of computing the dielectric function for the
many-electron system (from which the pair cor-
relation function is deduced in the usual way) all

of which amount to neglecting higher-order cumu-
lants of order 3 or more. Incidentally, the {runca-
tion procedures in many other aveas will also
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have this difficulty if only one examines the various
probabilities systematically. The theovem only
states that some probability will become negative
but does not indicate which one. Also, the trurca-
tion schemes may be a good physical approxima-
tion in some region of intevest, but it would imply
violation of a basic positivity vrequivement on the
probability functional.

B. Some theories of turbulence

Orszag® has surveyed some analytic theories
of turbulence, in particular the formulation of
the problem in terms of cumulants. He also
develops the infinite hierarchy of equations for
the various orders of velocity correlation func-
tions to describe homogeneous turbulence; these
can be reformulated also as a single functional
differential equation. More recently, Martin
et al.® have also examined this formulation, even
though they had different reasons for so doing. In
particular, Orszag has noted that truncation pro-
cedures lead to unphysical negative values for the
energy spectrum and attributes this to irreversible
relaxation effects caused by the neglect of cumu-
lants of order 4 and more. (This is also noted
by Martin ef al.’) What this means in our formu-
lation, is that such approximations make the prob-
ability functional negative and this reflects in the
explicit computation of energy spectrum.

We may bring the attention of the reader to the
paper of Martin et al.® where several physical
theories of classical physics are reformulated in
terms of the functional approach as well as to
various other papers of Martin and co-workers
who have also formulated many other quantum
theories of many-particle systems in terms of
functionals.!® The theorem proved in this paper
is of importance in connection with these formula-
tions as it signals a warning note whenever trunca-
tion of some sort is used as an approximation
scheme.

C. Quantum theory of partial coherence

In statistical optics the expectation values of the
products of fields yield the higher-order coherence
functions. The two-point coherence function,
sometimes called the mutual intensity, is the
fundamental function of the classical theory of
partial coherence. It obeys a wave equation in
free space and its time-Fourier transform is the
spectral density function and thus directly mea-
sured in terms of spectral profiles. Quantum
theory of partial coherence yields absolutely no
restrictions on the two-point function that is not
already imposed by classical theory.'®

Higher-order coherence functions become of
importance in intensity correlations,!® photoelec -
tric counting,'” and in nonlinear optics.!®* For a
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Gaussian field the correlations of higher order
can be determined by putting all the higher cumu-
lants to be zero.!®* For non-Gaussian light (in-
cluding phase-uncertain amplitude-fixed “laser”
light) the higher cumulants do not vanish. These
higher-order functions contain new spectral in-
formation.!®

It would be tempting to charactervize the light
by a finite number of cumulants, say the fourth

in addition to the second. However, the M theorem
forbids such a possibility in classical optics. In
quantum optics the corresponding ensemble weight
functions are not necessarily positive? and one
might consider this possibility. However, our
generalization of the M theorem shows that even

in quantum optics such a possibility is not realized.
Once we go beyond the spectral profile, we have

an unlimited number of new spectral densities.

IV. CONCLUDING REMARKS

The hierarchy of equations for various orders of correlation functions (or Green’s functions) necessarily
imply the existence of the “probability functional” (see Refs. 10 and 11 for instance) and hence the conclu-
sion reached in this paper is of importance. The implication of this work is a negative one, and fills a
gap that exists in the literature concerning the meaning of truncation schemes in many areas of physics
(see Ref. 11). Furthermore, the futility of improving the theory within such a framework becomes trans-
parent, unless one is seeking solutions in a region of interest where the violation of positive definiteness

does not occur.

This work supplements that of Robinson’s* by establishing the theorem of Marcinkiewicz for generalized

probability functionals.
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