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Warm dense matter:  strongly coupled, quantum
effects, coulomb potential ~ thermal energy

Shock waves 
probe WDM up 
to several Mbar
(gas gun, Z pinch,
explosions, laser).

States deep in
interiors of GPs
and BDs will be 
accessible 
(e.g. Z machine).

Plasma
parameters:

coupling
Γ=L/D

degeneracy
  Θ=kBT/EF

Temperature vs. Density

Plot courtesy of Dr. Ronald Redmer, Institute for Physics, University of Rostock
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Flyer plate impact & isentropic compression
experiments on Z yield highly accurate EOS data

• Uncertainty ~1-2% typical due to accurate VISAR, uniformity of
pressure drive, sample size & time scale.

• Current pulse shaping and large magnetic field (>1200 T) enable multi-
megabar pressure drive (>6 Mbar).
– Flyer plate velocities > 40 km/s.
– 20.7 Mbar sapphire; 15.7 Mbar quartz (shock)
– 5.5-14.0 Mbar diamond; 1.8 Mbar cryogenic D2 (shock)
– 3.8 Mbar Ta; 3.5 Mbar Be (ICE)

• Relevant to ICF, planetary physics, basic science (validation).
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Computational & theoretical tools provide
predictive capability for EOS experiments

• VASP (Vienna ab initio simulation program; Technical U Vienna).
– DFT (density functional theory) Kohn-Sham approximation to

Schroedinger equation [A. E. Mattsson et al., Modelling Simul.
Mater. Sci. Eng. 13 (2005) R1].

– Calculations of equation of state / electrical conductivities
(Desjarlais QMD/LMD).

• ALEGRA 2D & 3D resistive magneto hydrodynamics & radiation (SNL).
– J = σ ( E + v x B ).

• DAKOTA ---- SNL optimization code.

• BERTHA ---- NRL transmission line and circuit code.

• LASNEX ---- 2D, RZ, resistive MHD & radiation (LLNL).
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Two platforms have been developed for accurate
equation of state experiments on Z

Isentropic Compression Experiments (ICE)*

Magnetically launched flyer plates

Magnetically driven Isentropic Compression
Experiments (ICE) to provide measurement

of continuous compression curves to ~4 Mbar
- previously unavailable at Mbar pressures

Magnetically driven flyer plates for shock
Hugoniot experiments at velocities to > 40 km/s

- exceeds gas gun velocities by > 5X and
pressures by > 8X with comparable accuracy

* Developed with LLNL

 

rectangular, coaxial

planar
stripline
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Planar strip-line flyer / ICE load guarantees symmetric
pressure drive:  produces larger pressure for same current

= anode = cathode
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Rectangular coax load: material
samples or flyers anodes only

New planar strip-line: material
samples or flyers both electrodes
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Identical pressure on both
electrodes in horizontal plane.

Misaligned cathode causes unequal
pressures on anodes in horizontal plane.
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ICE yields an isentrope to a peak pressure; plate impact
yields a point on a shock adiabat (Hugoniot)
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Plate Impact Experiment (Hugoniot)

flyer plate target sample

BJ

rr
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Isentropic Compression Experiment (ICE)

sample

Shock and release trajectory
will go through WDM phase.

1000-25119 K
isotherms

Hugoniot

melt lines
isentrope

WDM

4400 K
1 Mbar

WDM

1408 K
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Plate impact experiments:  state of flyer at impact
is assumed to be known

Flyer plate & target sample after impact
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Shock-less acceleration of flyer plate achieved if
applied magnetic pressure follows isentrope

dynamic
loading

Lagrangian frame of materialDynamic loading:  speed of
sound increases with
increasing pressure; shock
forms if rise time too fast.
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Ideal pressure drive must be mapped to a current
that Z can produce

Feasibility of current shape determined using ALEGRA
2D MHD and detailed circuit model of Z in BERTHA.

Ideal & Actual Pressure Drives for IC (900 µm Al flyer)

Time  (µs)
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18 pairs, independently timed laser triggered
switches enable current shaping for ICE & Flyers

Z accelerator

Marx
generator

laser-
triggered
gas switch

Flyer / ICE
load

Shaped & Unshaped Load Current

Time  (µs)

shape for
6 Mbar IC

no shaping

Timing of laser triggered switches determined by detailed
circuit model of Z in BERTHA with 2D MHD results.
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Magnetic acceleration of flyer plates:  Joule heating
destroys flyer if flight time too long

Flyer survival:  flight time < flyer thickness / magnetic diffusion rate.

Magnetic Diffusion Rate
vs. Current in Aluminum

Flyer / AnodeCathode

undisturbed
material
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B
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plasma / vapor / liquid
/ compressed solid
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Strip-line flyer plate impact experiments on Z produced
velocities > 40 km/s exceeding old record by ~30%

Velocity 900 µm Al Flyer Plate;
all Strip-line Geometries

Mbar 3.61.4 !!
B
P

Time  (µs)

Density & Temperature of
900 µm Al Flyer @ Impact

T > 1740 K

melt line

B > 90 T

124 µm
solid Al

40 km/s Al flyer shocked quartz to 15.7 Mbar, sapphire
to 20.7 Mbar (would shock Cu target to ~29 Mbar).

See R. W. Lemke et al., J. Appl. Phys. 98, 073530 (2005) for related work.
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Diamond EOS experiments:  2D MHD simulations critical for
defining load, flyer velocities & Z charge voltage

Simulated asymmetric load

target

target

• Load designed to produce 2 flyers / shot
with 10% difference in peak velocity.

•                                                   (all shots)km/s 24 7 !! velocityflyer

C targets (500,
750, and 1000 µm)

(6 mm φ)

Quartz (or
Sapphire) windows

(4mm φ)

700 µm Al / 150 µm Cu flyer

VISAR
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M.D. Knudson, M.P. Desjarlais & D.H. Dolan, Science 322, 1822 (2008) 

proposed
triple point

Gekko
LULI

Pavlovskii

previous data

QMD
(Desjarlais)

QMD
(Desjarlais)

Z Data (Knudson)

Diamond Hugoniot:  Pressure vs. Density Diamond Hugoniot

Correa et al.

(Desjarlais)

Accuracy of plate impact experiments on Z allowed for
quantitative comparison with QMD predictions
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X-ray diffraction could be used on Z to determine
lattice structure of compressed solids

BCC (body centered cubic) FCC (face centered cubic)• Lattice structure
affects melt transition
and strength.

• Lindeman melt law
different for different
lattices [S. Cho, J.
Phys F: Met. Phys.
12, 1069 (1982)].

• For example, LiF
lattice @ WSU [P. A.
Rigg & Y. M. Gupta,
Phys. Rev. B 63,
094112 (2001)]. http://cst-www.nrl.navy.mil/lattice
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ALEGRA 2D MHD circuit driven simulations model
power flow coupled to dynamic geometry

Two-sided Strip-line Flyer
Plate Experiment

plane of 2D
simulation

X

Y

2D Simulation Plane of Two-sided Strip-line

cathode anode

flyers

diagnostic shields

target
Y

X

Electrode motion limits peak magnetic pressure that can be achieved.
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Strip-line magnetic field not confined to flyer region: plasma
jets & electrode motion reduce B/I in ak-gap
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Simulation 2-sided, 11 mm strip-line, 900
µm Al flyers, density & magnetic field
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• Magnetic field and inductance in ak-gap / flyer region (strip-line):

• Flyer velocity increases slower than I2(t) as pressure increases.

Electrode motion reduces magnetic pressure for a
given current & ultimately limits flyer velocity
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Cylindrical liners are an attractive load for EOS studies on Z:
magnetic pressures > 10 Mbar possible

• Liner radius 0.2 cm, I=19 MA,
B=1900 T, P=14.4 Mbar.

• Magnetic pressure α 1/R2.

• EOS data unfolded from x-ray
backlighting measurements.

• We are investigating possible
loads for EOS liner implosion
experiments on Z.

• Possible experiments include
cylindrical plate impact, direct
drive, reflected shock followed
by quasi isentropic compression.

X-ray imaging used to measure
pressure on Xe isentrope to 7.2
Mbar, T=14300 K, 5% accuracy*.

*O. L. Mikhailova et al., High Temperature, Vol. 38, No. 2, 210-214 (2000).
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Need higher energy backlight capability at Z to
image liners with relevant areal densities

• Present capability:  Z-beamlet laser K-shell backlighter 6.151 KeV.

• Future capability:  Z-petawatt (ZPW) laser K-shell backlighter ~8-30 KeV.

• Research:  ZPW bremsstrahlung x-ray backlighter with > 100 KeV x-ray energy.

Ta

Al

Cu

Be90 KeV

26 KeV

aspect ratio < 5 for
MRT mitigation

1000 mg

100 mg

R-in = 1 mm
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Concept can be tested using Be liners and present
Z-beamlet backlight capability

• X-ray imaging & Abel
inversion yield shock speed
US and density (d).

• Up = US*(1 – d0 / d)

• PH = d0*US*Up
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Additional possible diagnostics and experiments
for HED research at Z

● X-ray Thomson scattering diagnostic for density & temperature
measurements (Jim Bailey; SNL)

● Ultra high velocity flyer plate impact shock & release experiments
(planar geometry).

● Cylindrical liner implosions for quasi-isentropic compression of
shock pre-heated material.
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High resolution, 1D MHD Lagrangian simulation of 40.8
km/s flyer shows 124 µm solid aluminum at impact

40.8 km/s flyer trajectory in P
vs. ρ space of Al EOS 3700

isotherms

T > 1740 K

melt line

Flyer Density & Temperature @ Impact

B > 90 T

Flyer Density & B-Field @ Impact

Results are consistent with previously
published work; R. W. Lemke, et al., J.
Appl. Phys. 98, 073530 (2005).
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flyer

cathode
flyer

cathode

Strip-line reduces curvature of Al flyer at impact

One-Sided Strip-line Flyer Closed Rectangular Flyer Load

flyerflyer

Flyer Curvature @ Impact

Width of ± 0.5%
variation from
planar increases
from 2.1 to 4.8 mm.
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Single-sided strip-line with tungsten cathode
produces higher pressure than two-sided

Flyers & targets on anode side only.

anode tungsten
cathode

Schematic courtesy of Dustin Heinz-Romero (SNL).

anode tungsten
cathode

11.1 mm
15.7 mm

20.7 mm
25.7 mm

30.3 mm

target locations

ak-gap

diagnostic
faraday
cage
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Two-sided strip-line flyer geometry provides
measurements for 10 plate-impact experiments

cathodeanode

targets

flyers

38 mm

ak-gap

Five flyers (900 µm Al) & targets (α-quartz
or sapphire) on each electrode.

anode cathode

Schematic courtesy of Dustin Heinz-Romero (SNL).



 29

VISAR provides highly accurate in line flyer plate
and quartz shock velocity measurements

Melt
transition in
flyer plate

aluminum flyer
copper flyer
quartz shock


