Sandia National Laboratories

28 July 2009

Laboratory Astrophysics on the Z Pulsed Power Facility

Gregory A. Rochau

Workshop on Science with High-Power Lasers and Pulsed Power

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Pulsed power is the temporal compression of electrical energy to produce short bursts of high power.

Take the equivalent energy required to operate a TV for a few hours (1-2 MJ) and compress it into more electrical power than provided by all the power plants in the world combined (~15 TW).

...S T Pai & Qi Zhang, "Introduction to High Power Pulse Technology," World Scientific Publishing Co., Singapore, 1995.

andia

Pulsed power has been investigated for over a century.

Z-pinch implosions effectively convert electrical energy into radiation

The refurbished Z facility delivers world-record currents to Z-pinch loads

*50% increase in Electrical Energy*Predicted 100% increase at full capacity

Z-Pinch Dynamic Hohlraum

The Z facility has an extensive suite of standard diagnostics

X-ray Power and Energy

Filtered X-ray Diodes (XRDs)	< 4 keV Power
Photo-Conducting Diamonds (PCDs)	> 1 keV Power
Silicon Diodes (TEP)	Broad-band Power
Bolometers	Broad-band Energy

X-ray Spectroscopy

Elliptically Curved Crystals	0.7-10 keV T	ime-gated
Convex Curved Crystals	0.7-10 keV T	ime-integrated
Spherically Curved Crystals	0.7-10 keV T	ime-integrated
Transmission Crystals	> 10 keV Tim	ne-integrated

X-ray Imaging

Filtered Pinhole Cameras......> 0.7 keV Time-gated Multi-layer Mirror Pinhole Cameras...... 0.277±0.003 keV Time-gated

X-ray Backlighting

Point-projection.....two-frame @ ~1kJ ea. 1 or 2-color Monochromatic Imaging......two-frame @ ~1kJ ea.

Fiber-Based Velocity Interferometry (VISAR)

The Z-pinch Dynamic Hohlraum (ZPDH) is an energetic and reproducible x-ray source.

The Z-pinch Dynamic Hohlraum (ZPDH) is an energetic and reproducible x-ray source.

*Axial power not yet conclusively measured on ZR

The Z-pinch Dynamic Hohlraum (ZPDH) is an energetic and reproducible x-ray source.

*Internal T_r not yet measured on ZR

ZPDH Source

- I_p > 21 MA
- 18 radial slots (x-ray exit holes)
- 1 axial aperture
- High internal temperature

The Z facility provides a wide range of energy densities – Flexibility for Lab Astro

Z provides multiple platforms for a variety of laboratory astrophysics experiments.

EOS

D₂ EOS relevant to giant planet interiors.

B- Driven ICE & Flyer Plates

Knudson et al., PRL 87 (2001)

Rad Jets

High resolution imaging of radiation driven jets

Backlit image

Photoionized Plasma

Rad dominated plasmas relevant to accretion objects

Wire-Array Z-Pinch Source

Foord et al., PRL 93 (2004)

National Laboratories Z provides multiple platforms for a variety of laboratory astrophysics experiments.

Stellar Envelope Opacity

Opacity of Fe in envelope around Cepheid Variable stars.

Saturn Z-pinch Secondary Hohlraum

Springer et al., JQSRT 58 (1997)

Solar Interior Opacity

Opacity of Fe at the boundary between the solar radiation and convection zones.

An astrophysical issue: The 'CZ problem'

Transport depends on opacity, composition, ne, Te

Definition of a laboratory astrophysics experiment to address the 'CZ problem'

- Base of solar convection zone: $T_e \sim 193 \text{ eV}$, $n_e \sim 10^{23} \text{ cm}^{-3}$
- Most important elements: O, Ne, Fe
- Fe is the most complex and therefore the most suspect
- Fe charge states: +16, +17, +18 (Ne-like, F-like, O-like)
- Photon energy range $h\nu$ ~ 700-1400 eV
- Atomic processes: L-shell bb transitions and bf transitions

The Z-pinch Dynamic Hohlraum (ZPDH) provides a platform for high temperature opacity experiments.

An experiment platform

- Source characterization
- Diagnostic methods

 -instrumentation
 -analysis methods
- Peer Review

<u>Sample</u> T_e up to 190 eV *Bailey et al. , PRL 99 (2007)*

The Dynamic Hohlraum is formed by an imploding Z pinch, and heated by a strong radiating shock.

A reproducible radiating shock is the source of x-ray energy for the Z-pinch dynamic hohlraum.

Rochau et al., PRL 100 (2008)

The ZPDH shock is used to drive and backlight opacity experiments at T_e > 150 eV.

Foil is heated during the ZPDH implosion

Foil is backlit at shock stagnation

Bailey et al., POP 16 (2009)

Opacity measurements require reproducibility in source power (heating) and spectrum (backlighting).

Mg K-shell spectra indicate $T_e = 156 \text{ eV}$ and $n_e = 7*10^{21} \text{ cm}^{-3}$.

The measured Fe transmission compares well with models from LANL, LLNL, CEA, and PRISM.

Bailey et al., PRL 99 (2007)

Z experiments reproduce the iron charge states at the Solar CZ boundary

Solar CZ boundary 193 eV, 1 x 10²³ cm⁻³

The OP model used in solar research predicts Fe L-shell opacity that is too low at Z conditions

- OP Rosseland mean is ~ 1.5x lower than OPAS at Z conditions.
- If this difference persisted at the exact CZ conditions, it would solve the CZ problem

Discrepancies at Z conditions raise a caution flag for solar opacities

At the base of the convection zone (T=193 eV, n_e=10²³cm⁻³):

- Iron frequency-dependent opacities possess some differences.
- Rosseland mean opacities are not significantly different, even though they disagree at Z conditions.

The higher power ZPDH on ZR heats opacity foils to ~20% higher temperatures than achieved on Z.

Pulsed power sources are gaining recognition as effective drivers for laboratory astrophysics

2010 Joint OFES-NNSA HEDLP grants for laboratory astrophysics related to Z:

-Mancini et al., UNR, Photo-ionized plasmas (Accretion disks)

-Pradhan et al., OSU, Laboratory Tests of Stellar Interior Opacity Models

-Bailey et al., SNL, Laboratory Tests of Stellar Interior Opacity Models

-Frank et al., IC, Astrophysical Jets

Extra Slides

Many People and Institutions Contribute

J.E. Bailey, M. Cuneo, G. Bennett, D. Ampleford, S.B. Hansen, P.W. Lake, T.J. Nash, D.S. Nielsen, J. Porter, M. Herrmann Sandia National Laboratories

C.A. Iglesias, P. Springer, R. Heeter Lawrence Livermore National Laboratory

J. Abdallah Jr., M.E. Sherrill, B. Wilde Los Alamos National Laboratory

J.J. MacFarlane, I. Golovkin, P. Wang **Prism Computational Sciences**

R.C. Mancini, I. Hall, T. Durmaz University of Nevada, Reno, NV

C. Blancard, Ph. Cosse, G. Faussurier, F. Gilleron, J.C. Pain **CEA**, **France**

D. Cohen, M. Rosenberg Swarthmore College

A.K. Pradhan, S.N. Nahar, M. Pinsonneault **Ohio State University**

Y. Maron, E. Stambulchik, D. Fisher, V. Fisher Weizmann Institute, Israel

The anatomy of a Z-pinch source

The Z facility provides a wide range of energy densities – Flexibility for Lab Astro

Mg foils at three azimuths show a consistent radial x-ray energy.

Sandia National Laboratories

The shock stagnation makes a bright, featureless, continuum backlighter.

Bailey et al., POP 16 (2009)

Sample electron temperatures are reproducible to < 4%.

Photo-ionized plasma research is a success story for external user experiments on Z

- Initial work by M. Foord and R. Heeter: Fe at ξ ~ 20 erg cm/s Foord et al., PRL 93 (2004)
- Stockpile Stewardship Academic Alliances Grant: R. Mancini, 2007-2009 Ne at ξ ~ 4-10 erg cm/s Hall et al., Astro. Space Sci. 322 (2009)
- High Energy Density Laboratory Physics Grant: R. Mancini, 2010-2012

Z-pinch Source

Measurements of Fe at T_e ~ 20 eV benchmarked opacity calculations for stellar envelopes.

• Detailed line-by-line treatment is required to match even the bulk transmission.

• Critical temperature and density regime for Stellar envelopes.

- Rogers and Iglesias, Science 263 (1994)

Springer et al., JQSRT 58 (1997)