# Proton energy scaling laws - Generation of above-100-MeV proton beams with Z-Petawatt? 

Sante Fe, July 28, 2009
Marius Schollmeier

> Z-Backlighter Facility Sandia National Laboratories
> Albuquerque, NM

## Coworkers

Laboratories

Matthias Geissel, Briggs Atherton, Guy Bennett, Mark Kimmel, Patrick Rambo, Jens Schwarz

Knut Harres, Frank Nürnberg, Marc Günther, Jörg Schütrumpf, Dieter H.H. Hoffmann, Markus Roth

Kirk Flippo, Cort Gautier, Brady Gall, Tom Lockard, Dustin Offermann, Manuel Hegelich, Juan Fernandez


Forschungszentrum Rossendorf


Erik Brambrink

Hartmut Ruhl, Jörg Schreiber
Vincent Bagnoud, Abel Blazevic, Klaus Witte

Sandrine Gaillard, Thomas Kluge, Tom Cowan

Hartmut Ruhl, Jôr Schreiber

LMU
maximilians UNiversitas
MONCHEN

## Outline

- Main topic: Investigation of scaling laws and comparison with results from various laser systems
- Introduction: Laser ion acceleration by TNSA
- Scaling law by J. Fuchs et al.
- "Optimized" scalings: Energy-enhancement with different laser and different target geometries
- Summary: Can Z-Petawatt accelerate ions up to 100 MeV and more?


## Laser ion acceleration: Target Normal Sheath Acceleration (TNSA)



## Laser ion acceleration: Target Normal Sheath Acceleration (TNSA)

- Laser pulse creates pre-plasma



## Laser ion acceleration: Target Normal Sheath Acceleration (TNSA)

- Laser pulse creates pre-plasma
- Main pulse accelerates electrons to MeV-energies



## Laser ion acceleration: Target Normal Sheath Acceleration (TNSA)

- Laser pulse creates pre-plasma
- Main pulse accelerates electrons to MeV-energies
- Electron sheath generates electric field on rear side



## Laser ion acceleration: Target Normal Sheath Acceleration (TNSA)

- Laser pulse creates pre-plasma
- Main pulse accelerates electrons to MeV-energies
- Electron sheath generates electric field on rear side
- Transverse spread of sheath with speed of light



## Laser ion acceleration: Target Normal Sheath Acceleration (TNSA)

- Laser pulse creates pre-plasma
- Main pulse accelerates electrons to MeV-energies
- Electron sheath generates electric field on rear side
- Transverse spread of sheath with speed of light
- Field ionization and ion acceleration in normal direction




## Laser ion acceleration: Target Normal Sheath Acceleration (TNSA)

- Laser pulse creates pre-plasma
- Main pulse accelerates electrons to MeV-energies
- Electron sheath generates electric field on rear side
- Transverse spread of sheath with speed of light
- Field ionization and ion acceleration in normal direction



I'Perawatr*

## Energy gain in electric field

## Laser:

$\mathrm{I}=2 \times 10^{20} \mathrm{~W} / \mathrm{cm}^{2}$
$\mathrm{t}_{\mathrm{p}}=1 \mathrm{ps}$
$10 \mu \mathrm{~m}$ dia. focus
--> E = 150 J
Target:
$10 \mu \mathrm{~m}$ metal foil
$k_{B} T=m_{e} c^{2}\left(\sqrt{1+\frac{I \lambda^{2}}{1.37 \times 10^{18}}}-1\right) \approx 5 \mathrm{MeV}$
$\lambda_{D}=0.56 \mu m$
$E_{\max } \approx 1 \times 10^{13} \mathrm{~V} / \mathrm{m}$
acceleration time: very long, about 3 ps!!



## More realistic: Isothermal expansion

- Mora, PRL 90, 185002 (2003): isothermal fluid expansion with charge separation
-„Standard model" of TNSA

$$
\begin{aligned}
\frac{\partial n_{i}}{\partial t}+\frac{\partial\left(v_{i} n_{i}\right)}{\partial z}=0 & \frac{\partial v_{i}}{\partial t}+v_{i} \frac{\partial v_{i}}{\partial z}=-\frac{e}{m_{p}} \frac{\partial \Phi}{\partial z} \\
\varepsilon_{0} \frac{\partial^{2} \Phi}{\partial z^{2}}=e\left(n_{e}(z)-n_{i}(z)\right) & n_{e}=n_{e, 0} \exp \left(\frac{e \Phi}{k_{B} T_{\mathrm{hot}}}\right)
\end{aligned}
$$

## More realistic: Isothermal expansion

- Mora, PRL 90, 185002 (2003): isothermal fluid expansion with charge separation
-„Standard model" of TNSA



## Energy gain in isothermal model

peak electric field moves with ions -> stronger acceleration

still about 650 fs needed for protons to reach 100 MeV
--> plasma has to stay at temperature for this time
basic model, but good enough for comparison with experimental data

## Comparison with experiments: Scaling law

J. Fuchs et al., Nature Physics 2, 48 (2006) and J. Fuchs et al., Phys. Plasmas 14, 053105 (2007) : Isothermal expansion with stopping time

$$
\begin{aligned}
& \tau_{\mathrm{acc}}= \begin{cases}\left(-6.07 \times 10^{-20} \times\left(I_{L}-2 \times 10^{18}\right)+3\right) \times\left(\tau_{L}+t_{\min }\right) & \text { for } I_{L} \in\left[2 \times 10^{18}, 3 \times 10^{19}\left[\mathrm{~W} / \mathrm{cm}^{2},\right.\right. \\
1.3 \times\left(\tau_{L}+t_{\min }\right) & \text { for } I_{L} \geq 3 \times 10^{19} \mathrm{~W} / \mathrm{cm}^{2} .\end{cases} \\
& E_{\max }=2 T_{\mathrm{hot}}\left[\ln \left(t_{\mathrm{p}}+\left(t_{\mathrm{p}}^{2}+1\right)^{1 / 2}\right)\right]^{2} \quad t_{\mathrm{p}}=\omega_{\mathrm{pi}} t_{\mathrm{acc}} /\left(2 \exp ^{1}\right)^{1 / 2}
\end{aligned}
$$

Validity conditions: Similar lasers with $t_{p}=[300 \mathrm{fs}, 1 \mathrm{ps}]$, with similar contrasts of about $10^{-6}$, metallic targets with $\mathrm{d}>10 \mu \mathrm{~m}$

## Comparison with experiments: Scaling law

Parameters:
$\mathrm{t}_{\mathrm{p}}=500 \mathrm{fs}$ focus dia. $=6 \mu \mathrm{~m}$ $25 \mu \mathrm{~m}$ target


$$
\begin{array}{ll}
E_{\max }=100 \mathrm{MeV}: & \\
I=6 \times 10^{20} \mathrm{~W} / \mathrm{cm}^{2} & E=84 \mathrm{~J} \text { or } 168 \mathrm{~J}(50 \% \text { foc. }) \\
I=2 \times 10^{21} \mathrm{~W} / \mathrm{cm}^{2} & E=280 \mathrm{~J} \text { or } 560 \mathrm{~J}(50 \% \text { foc. })
\end{array}
$$

## Lasers with longer pulses and larger foci

Parameters:
$\mathrm{t}_{\mathrm{p}}=1 \mathrm{ps}$
focus dia. $=10 \mu \mathrm{~m}$ target: $10 \mu \mathrm{~m}$
same scaling law
Result: longer pulses and thinner targets result in higher proton energy:
$E_{\max } \propto k_{B} T \ln \left(\sqrt{n_{e}} \tau_{a c c}\right)$

## Lasers with longer pulses and larger foci

Parameters:
$\mathrm{t}_{\mathrm{p}}=1 \mathrm{ps}$
focus dia. $=10 \mu \mathrm{~m}$ target: $10 \mu \mathrm{~m}$
same scaling law
Result: longer pulses and thinner targets result in higher proton energy:
$E_{\max } \propto k_{B} T \ln \left(\sqrt{n_{e}} \tau_{a c c}\right)$

What if the target geometry is changed?

## Change of target geometry gets even better results

Experiments at Trident (K. Flippo, S. Gaillard, et al., MG, MS): copper Flat Top Cones (FTC)
Trident Shot 21170,81 Joules and $670 \mathrm{fs}: 1 \sim 4 \times 10^{19} \mathrm{~W} / \mathrm{cm}^{2}$
> 65 MeV protons, highest energy protons in the world from laser-ion acceleration


Copper Flat-Top Cone Target Image


RCF images show a proton beam of $>65 \mathrm{MeV}$

Los Alamos
NATIONAL LABORATORY


K $\alpha$ shows deep penetration of laser and electrons
flat foil: 50 MeV, FTC: 65 MeV energy increase: $30 \%$

## Change of target geometry gets even better results

Scaling law fits, if $f_{\text {abs }}=0.5$ is fixed and $k T$ doubled (more efficient electron heating due to cone-shaped front side, backed up by K-alpha imager data)


## Target geometry II: Curved foils

concave targets lead to slight focusing
-> enhancement of electron density on symmetry axis
-> electric field increase
-> more efficient TNSA


3

Gaussian shaped foils with about $100 \mu \mathrm{~m}$ width and height have been produced for SNL.
Experimental campaign planned this year.


Energy increase seen in 2D-PIC: 20\%
Experiment by M. Roth et al.: ~30\%

## Summary: Can we get there?

Requirements:

- I~1.3 x $10^{20} \mathrm{~W} / \mathrm{cm}^{2}$
- pulse duration: ~ 1 ps
- $10 \mu \mathrm{~m}$-> $25 \mu \mathrm{~m}$ targets
- focal spot: $10 \mu \mathrm{~m}$ diameter
--> 100 J in focus or $1.5 \mathrm{~J} / \mathrm{\mu m}^{2}$ (> 200 J laser energy)

Comparison to simulations:

- J. Davis \& G.M. Petrov, Phys. Plasmas 16, 023105 (2009): similar value:
$\sim 2 \mathrm{~J} / \mu \mathrm{m}^{2}$ (with a 80 fs pulse)
- T. Esirkepov et al., Phys. Rev. Lett. 96, 105001 (2006):
100 MeV for $10 \mu \mathrm{~m}$ focus, 200 fs



## Summary: Can we get there?

Requirements:
$-\mathrm{I} \sim 1.3 \times 10^{20} \mathrm{~W} / \mathrm{cm}^{2}$

- pulse duration: ~ 1 ps
- $10 \mu \mathrm{~m}$-> $25 \mu \mathrm{~m}$ targets
- focal spot: $10 \mu \mathrm{~m}$ diameter
--> 100 J in focus or $1.5 \mathrm{~J} / \mathrm{\mu m}^{2}$
(> 200 J laser energy)
Comparison to simulations:
- J. Davis \& G.M. Petrov, Phys. Plasmas 16, 023105 (2009): similar value:
$\sim 2 \mathrm{~J} / \mu \mathrm{m}^{2}$ (with a 80 fs pulse)
- T. Esirkepov et al., Phys. Rev. Lett 96, 105001 (2006):


100 MeV for $10 \mu \mathrm{~m}$ focus, 200 fs pulse, $100 \mathrm{~J}, 6 \times 10^{20} \mathrm{~W} / \mathrm{cm}^{2}$

## Outlook

Different acceleration schemes:

- Enhanced TNSA / Laser break-out afterburner
- requires ultra-high contrast ( $10^{-12}$ and better) and ultra-thin foils
- first TNSA, then volumetric heating of bulk when foil becomes transparent
- First results: $\mathrm{E}_{\mathrm{p}}=40 \mathrm{MeV}$ with $\mathrm{I}=7 \times 10^{19} \mathrm{~W} / \mathrm{cm}^{2}$ (A. Henig et al., PRL 103, 045002 (2009))
- Include circular polarization: Radiation pressure acceleration
- requires ultra-high contrast (10-12 and better) and ultra-thin foils
- experimentally difficult to realize (B-Integral, Plasma mirrors)
- extremely high intensities are needed for $100 \mathrm{MeV}:>10^{22} \mathrm{~W} / \mathrm{cm}^{2}$ (A.P.L. Robinson, PPCF 51, 024004 (2009))
- benefit: whole foil is accelerated, quasi-monoenergetic ions

