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Penning Traps
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B and E fields used to increase time that an electron remains within a discharge: Penning, 1936.

Can now trap a particle 'indefinitely in a combined homogeneous B and electrostatic quadrupole

(now known as a Penning trap).  A small cloud of such trapped particles is like a many electron

atom,  with the nucleus replaced by a trapping field.

Electrons introduced by applying HV to the field emmission point.  The beam of energetic e's

collide with sparse neutral, to produce slow electrons, which are captured in the trap.  Electrodes

are hyperboloids of revolution which produce a quadrupole field.  Superimpose a uniform B.

Resultant motion is fast circular cyclotron motion with a small radius carried along by a slow

circular magnetron drift motion in a large orbit.  i.e. an epicyclic motion in the x-y plane.  Radius

of cyclotron motion shrinks as synchrotron radiation is emitted.  The axial oscillation is coupled

to an external detector at low temperature.  The large magnetron motion is a circle about an

effective potential hill.
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Classical picture

charge e, mass m.  z axis parallel to B, positive so that cyclotron motion is right handed rule.  i.e.

z axis is indirection -eB.  Cyclotron frequency is

ω c =
eB

mc
ˆ z = ω c

ˆ z 
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e.g. 6T ωc = 164 GHz, wavelength is 2 mm.  Proton would oscillate at 89 MHz (radio). Charged

particle is bound radially, but not axially.  In an ideal Penning trap, superimpose a restoring force

to any small perturbation by a quadruple field  Write potential as

V = V0

z 2 − ρ2 / 2

2d2
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This function satisfies Laplace.  Can be produced by placing electrodes along equipotential

contours.  Three are required.  Two endcaps and a ring.
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Endcaps: z2 = z0
2 + ρ2 / 2

ring electrode: z2 =
1

2
ρ2 − ρ0

2( )

Constants z0 and r0 are the minimum axial and radial distances to the electrodes.  Choose

characteristic trap dimension d as

d2 =
1

2
z0

2 + ρ0
2 / 2( )

Then V0 is the potential difference between endcap and electrodes

Axial motion

is de coupled from B field, and is a simple harmonic motion.

˙ ̇ z + ω zz = 0; ω z
2 =

eV0

md2

Usual to have ωz << ωc.  Typically might have V0 = 10 V, and d = 0.3 cm, so that νz = 62 MHz.

But can easily get 10 keV, so νz = 62 GHz.

Radial motion:

m˙ ̇ ρ = e Ε + ρ
c

× B 
 

 
 

E =
V0

2d2
ρ
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In terms of axial and cyclotron frequency

˙ ̇ ρ − ω c × ˙ ρ −
1

2
ω z

2ρ = 0

See repulsive last term from electrostatic potential. Find two consequences.  First cyclotron

frequency reduced, as repulsive radial potential reduces centrifugal force.  Second, fast cyclotron

orbit is superimposed upon a slower circular magnetron orbit, angular frequency ωm.  Resultant

is as shown in figure b below, but now add axial harmonic motion.
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To understand magnetron motion, note that in perpendicular E and B fields, a charged particle

with a drift velocity

u = cΕ × B/ B2

will move unimpeded, because in the basic radial motion equation  u/cxB will cancel E (a

velocity filter).  Strictly true only for constant fields, i.e. a constant drift velocity u.  But

approximately true anyway.  The filter velocity does not depend on m or e.  Subst for E
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E = V0ρ/ 2d2( )  to get ωm = u / ρ = E / B / ρ = V0 / 2Bd 2( ) = ω z
2 /ω c  shows that the drift or

magnetron motion is a circular motion with the same sense of rotation as the cyclotron orbit,

independent of e and m, but ωm << ωz << ωc.

Note: cyclotron motion is almost exclusively kinetic.  Axial motion alternates between kinetic

and potential.  Reducing energy in either reduces amplitude: they are stable.  magnetron motion

is almost exclusively potential. i.e. it is an orbit about the top of a potential hill.  exciting the

magnetron motion makes the particle roll down the hill.. The motion is unbounded: any

dissipative process which removes energy from the magnetron motion increases the magnetron

radius until the particle hits the ring and is lost  But typical damping time is of order years!

Radiation damping

Accelerated charge radiates em waves.  Therefore motion is damped.  Transition probability for

such an electric dipole is proportional to high power of transition frequency; appreciable

radiative decay occurs only for high transition frequencies/  For protons or heavier the

frequencies of motion are in radio frequency range, and radiative decay is ignorable.  Also true

for axial an magnetron motion of electrons, but not cyclotron motion.

Energy in a cyclotron orbit is decreased by power radiated, according to

−
d

dt
E =

2e2

3c3
˙ ̇ r 2

˙ ̇ r = wc × ˙ r 

E =
1

2
m˙ r 2

⇒
dE

dt
= −γ cE

γ c =
4e2ω c

2

3mc3

E t( ) = E0e−γ c t

Convenient to write in terms of classical radius r0 of charged particle:

r0 = e2

mc2

⇒ γ c =
4r0ω c

3c
 
 

 
 
ω c
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for electron r0 = 2.8x10-13 cm.  So if ωc/(2π) = 160 GHz, γc = 80 ms.  Note 1/m3 dependence.

Number density

Canonical Angular momentum.

Look at old paper by Brillouin (Phys Rev 1945)  Define momentum p by a standard Lagrangian.

For a charge e, e/m vector potential A, electrostatic scalar potential Φ, with independent variable

x, v and t:

pk = m ˙ x k + eAk = ∂L

∂˙ x k

L ˙ x 1 ˙ x 2 ˙ x 3x1x2x3t( ) =
m

2
v2 − eΦ+ e v • A( )

v • A = ˙ x 1A1 + ˙ x 2 A2 + ˙ x 3A3

Note L(v,x,t).  Note  A1, A2, A3 are components in a rectangular coord system x1 x2 x3.  The E

and B components are given by

Ek = −
∂Φ
∂x k

−
∂Ak

∂t
k =1,2,3

B =∇ × A B3 =
∂A2

∂x1

−
∂A1

∂x2

Then Lagrange's eqn of motion is

dp
dt

= ˙ p = ∂L
∂x

dpk

dt
= ˙ p k = ∂L

∂x k

=− e
∂Φ
∂x k

+ e ˙ x 1
∂A1

∂xk

+ ˙ x 2
∂A2

∂x k

+ ˙ x 3
∂A3

∂xk

 
 
  

 
 

Remember that

d

dt
=

∂
∂t

+ ˙ x 1
∂

∂x1

+ ˙ x 2
∂

∂x2

+ ˙ x 3
∂

∂x3

 
 
  

 
 

So that

m˙ ̇ x k + e
∂Ak

∂t
+ e ˙ x 1

∂Ak

∂x1

+ ˙ x 2
∂Ak

∂x2

+ ˙ x 3
∂Ak

∂x3

 
 
  

 
 = −e

∂Φ
∂x k

+ e ˙ x 1
∂A1

∂xk

+ ˙ x 2
∂A2

∂x k

+ ˙ x 3
∂A3

∂xk

 
 
  

 
 
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Take k = 1, note first terms in each brackets cancels, and we get

m˙ ̇ x 1 = −e
∂A1

∂t
− e

∂Φ
∂x1

+ e ˙ x 2
∂A2

∂x2

−
∂A1

∂x2

 
 
  

 
 + e˙ x 3

∂A3

∂x1

−
∂A1

∂x3

 
 
  

 
 

which can be arranged as

m˙ ̇ x k = eEk + e v × B( )

i.e. the equation of motion.

Now the Lagrangian appears in the principle of least action.  We can now build up the

Hamiltonian

H p1p2p3x1x2x3t( ) = pk
˙ x k

k
∑ − L

H = 1
2

mv2 + eΦ = 1
2m

pk − eAk( )2

k
∑ + eΦ

and the eqns of motion are

˙ x k =
∂H

∂pk

=
1

m
pk − eAk( )

˙ p k = −
∂H

∂xk

For a single electron,  in a z field, conservation of canonical momentum leads to

pθ = rmvθ + reAθ = rmvθ + re
Brr

2

i.e.

pθ = m rvθ − r2ωc / 2( )

where ω c = eB / m , vθ is azimuthal velocity, consisting of ExB and thermal (cyclotron) motions.

If there are no external torques, and the electrons are introduced without any canonical

angular momentum, we have

˙ θ = ω c /2

Note: For rωc >> |vθ|, then
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pθ = − mωc / 2( )rg
2

with rg the radius of the guiding center.  Note that in absence of external torques

P = pθ∑ =− mω c / 2( ) rg
2∑ = const

i.e. if some electrons increase their radius, other must decrease theirs.  Since initial average

radius is less than the wall radius, , only small losses can occur.  Now radial component of force

balance in equilibrium is

eEr + eBr ˙ θ + mr ˙ θ 2 = 0

(E+vxB balances centrifugal).  Substitute ˙ θ = ω c /2 = ωH  and use conservation of energy

(actually H) and let initial velocity be very small (0).  Direction 3 is along B field

U = −
2e

m
Φ = −

2e

m

m

2e
v2 

 
 
 = ˙ r 2 + r2 ˙ θ 2 + v3

2

then

Er = −
∂Φ
∂r

=
m

2e

∂U

∂r
=

m

e
rωH

2 + v3

∂v3

∂r

 
 

 
 

but need 
∂v3

∂r
= 0 , so Poisson's equation becomes

1

r

∂
∂r

eEr( ) =
ρ
ε0

= 2
m

e
ωH

2

Now note that ρ = ne, and get

n =
ε0B2

2m
=

B2

2µ0mc2
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