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INTRODUCTION

This series of notes tries to lay the foundations for the interpretation of magnetic fields and
fluxes, often in terms of equilibrium plasma parameters. The title, 'magnetic diagnostics', is
taken to mean those diagnostics which are used to measure magnetic fields and fluxes using
induction, or pick-up, coils. More specifically, what is often inferred is a question: "How much
can we tell about a plasma given certain measurements of magnetic fields, and fluxes, outside
that plasma?" 1 don’t consider here diagnostics which measure the plasma current density
distribution utilizing phenomena such as the motional Stark effect, or Faraday rotation; these are

found in a series of notes on Plasma Diagnostics..

The measurements themselves are in principle simple, although in practice they are always
complicated by unwanted field components, for example from misaligned pick-up coils. There is
also the problem of allowing for image currents flowing in nearby conductors; dealing with these
image currents becomes a large part of the problem. Including the effects of an iron core also

leads to complications.

Many people think the topic under consideration is boring, in that there is nothing new to do.
You have only to read current issues of plasma physics journals to recognize that there is still
much interest in the topic. For example, equilibrium and its determination, axisymmetric stability
and disruptions are all of current interest, and all involve ‘magnetic diagnostics’. The subject

does appear to be difficult (students starting in the topic have a hard time).

The layout of the notes is as given in the list of contents. Generally I have included topics which
I have found useful in trying to understand tokamaks. Some basic concepts (inductances, fluxes,
etc.) are included, because they are made use of throughout the notes. There is also a section on
plasma equilibrium, in which the large aspect ratio, circular tokamak is described. The fluxes
and fields from this model are used as examples for application of certain ideas in the remainder
of the text.

References I find useful include:
o B. J. Braams, The interpretation of tokamak diagnostics: status and prospects, IPP
Garching report IPP 5/2, 1985.

o L. E. Zakharov and V. D. Shafranov, Equilibrium of current carrying plasmas in toroidal
configurations, in Reviews of Plasma Physics volume 11, edited by M. A.
Leontovich, Consultants Bureau, New York (1986).

o V. S. Mukhovatov and V. D. Shafranov, Nucl. Fusion 11 (1971) 605.

o V. D. Shafranov, Plasma Physics 13 (1971) 757.

o L. E. Zakharov and V. D. Shafranov, Sov. Phys. Tech. Phys. 18 (1973) 151
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o J. A. Wesson, in Tokamaks, Oxford Science Publications, Clarendon press, Oxford, 1987.
o P. Shkarofsky, Evaluation of multipole moments over the current density in a tokamak
with magnetic probes, Phys. Fluids 25 (1982) 89.
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1. SOME CONCEPTS AND DEFINITIONS

Maxwell's equations

We are going to make extensive use of Maxwell’s equations. In vector form, these are

VxB:,u(j+aa—]D 1.1

V-B=0 1.2

VxE:—@ 1.3
ot

V-D=p 1.4

If charge is conserved we can add to these the continuity equation. We shall ignore the
displacement current 0D/ot, and take L = L, the free space value, inside a plasma. Without the
last term Equation 1.1 is Amperes law. We have effectively restricted ourselves to assuming nj =
ne = n, the charge neutral assumption, and that any waves have frequencies much less than the
electron plasma frequency, with characteristic lengths much greater than the Debye length . We

have not said E or V-E = 0. When considering plasma equilibrium we shall also assume the
electron mass me approaches 0. This allows electrons to have an infinitely fast response time.

Pick-up or Induction Coils

This is the heart of the matter. Magnetic fields are usually measured with pick-up or induction
coil circuits. Changing the magnetic flux in a circuit generates a current; the direction of this
current is in a direction such as to set up a magnetic flux opposing the change. The
electromotence or voltage € (V € = -E, the electric field intensity) in Volts induced in a circuit
equals the rate of change of flux N = j;SB -ndS in Webers per second, i.e.

a

E= 1.5
dt

The flux can be changed either by changing its strength, changing the shape of the circuit, or

moving the circuit. Then

jSZE.dlz —%j;SB ndS 1.6
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for any path 1, with n the normal to a two sided surface S. Applying Stokes theorem
( f’ZA o dl :J.n eV X AdS for any vector A) to the left hand side of Equation 1.6 gives Equation
S

1.3. Figure 1.1 shows the geometry of a coil used in applying Equation 1.6, Faraday’s Law. The
output signal must be time integrated to obtain the required flux. By taking a small enough coil
the local field B can then be determined. This becomes difficult if very small scale variations in
field exist, because the pick-up coils must then be very small themselves. The surface S includes
any area between the leads; this is minimized by twisting them together. A hand drill is

particularly useful for this.

Coil

voltage
produced
across
leads

Contour |
Figure 1.1. The contour I and surface S of a pick-up coil.

Integration

The time integration required to obtain the magnetic field B from the pick-up coil output € can be

performed either digitally or by an analog circuit.

Q

& E— out
C

Figure 1.2. A passive “QC” integration circuit.

The simplest thing to do is to use a capacitor (C) and resistor (£2) network, as shown in Figure

1.2. The output voltage is given by

d‘Sout + €out :‘Si_n 1.7
dt T T

with T = QC called the integrator time constant. The solution to this equation is
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€out =€

%j[e—%\ '\ dt 18

) )Ein (t )T

For example, suppose at t = 0 we start an input voltage €i, = €ino sin(mt), so that the required

integral is € = €ino (1-cos(mt))/®. The output from the passive circuit is (obtained using

Laplace transforms)

(

e . ot N sin(mt) — ®T cos(mt) L9
out — €in0 2 .
te%(l+((m;)2) (+(@D?) J
Now consider two extremes. First, if @t >> 1 and t << T we have
£, =380 (1 cos(t)) 1.10
T

That is, €oy¢ = 1/7 times the required integral. In this limit we have integrated the input signal. If
o1 << 1 and t >> T, then €yt = €.

As an example, we show in Figure 1.3 the output from the passive integrator (“‘integrator
output”, dotted line) for a sinusoidal voltage input of 1V at a frequency of 100 Hz (*coil input”,
solid line), with an integrator time T = 0.1s. The exact integral (“field”) divided by T is shown as
the broken line. The integral is only performed accurately for times t << 7; as the pulse proceeds
there is a “droop”, and significant errors result. We can imagine the curve “field” represents a
specified magnetic field time history B = Bg(1-cos(mt))/(®t), with Bg = t/(nA) T, and B/t is
plotted. The curve “coil output” represents the unintegrated output from a magnetic pick-up coil
with area nA m2, (n turns each of area A), which becomes the input voltage to a passive

integrator €, = sin(mt). Finally the curve “integrator output” represents the output from the

passive integrator, which we would interpret as the original magnetic field.

A common situation is that the required signal from the pick-up coil has a low frequency
component of angular frequency @y, and superimposed upon this is a higher frequency unwanted
“noise” signal of angular frequency ®;. By carefully choosing the time constant T of our passive
integrator so that 0T << 1 (€uyt = &jn) but 1T >> 1 (integration) we filter the noise, leaving the
required slowly time varying voltage. As an example, Figure 1.4 shows the passive integrator
output €y (dashed line) for an input voltage €, (solid line) comprising a slow (wy = 10 rs71, g
=1 V) and fast (0] = 2x103 rs-1, €41 = 0.2 V) component. The time constant T = 0.01 s, so that
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oot = 0.1 (<< 1) and ®17T = 100 (>> 1). The output voltage is filtered, as required. The dashed

line shows the exact integral divided by 7, for comparison.

-1

Figure 1.3. The input (“coil input”, solid line) sinusoidal voltage with f = 100 Hz and
output (“integrator output”, dotted line) of a passive integrator circuit with t= QC =
0.1 s. The (exact integral)/t is denoted by “field”, the broken line.

1.5Fy 7 (exact
integral )t

1.25} input

. 7

0.75

0.5

0.25 output

]J V' ooz 0.0% 0.06 0.05 0.1

time (s)

Figure 1.4. The output of a passive integrator circuit used as a filter. An input voltage
(solid line) with summed sinusoidal voltages is smoothed to give the dash-dot line.

The exact integral divided by T = QC is shown as the dashed line.

A more common system to perform the time integration is an active integrator, but in many cases

an input filter consisting of a passive integrator is still used. Active integration is performed

using a circuit such as shown in Figure 1.5; the output voltage &,

ut

1 t
=— j g,dt. The example
QCy

shown grounds one side of the coil. A useful feature shown is the integrator gate, which defines

10
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the time t; the integration starts. On tokamaks this gate is often used to help reduce errors from
misaligned pick-up coils. For example, tokamaks have a large toroidal field and a much smaller
poloidal field. Therefore if the pick-up coil used to measure the poloidal field is misaligned even
by a small amount, the resulting component of the toroidal field which is picked up (as dB/dt)
can be significant. However the toroidal field usually evolves on a much slower time scale than
the poloidal field, and in fact it is usually time independent at the time the poloidal field is
initiated.  Therefore the integrator gate can be opened when the toroidal field is time
independent, and therefore the induced voltage in the misaligned pick-up coil is independent of
the toroidal field.

Integrator gate —

SR
e AN .

Figure 1.5. An active integrator circuit.

If the data is digitized, integration can be performed numerically. Sufficiently fast systems now
exist for “real time” integration; the integration can be performed in Us so that integrated signals
suitable for real time feedback control can be obtained. A p bit digitizer has a resolution of 1 part
in 10P, e.g. an 8 bit system has a resolution of 1 in 256, while a 10 bit system has a resolution of
I part in 1024. This can be a limitation if we intend to investigate large but low frequency
magnetic fields in the presence of small, high frequency fields. An example is that of trying to
measure the equilibrium poloidal field in the presence of Mirnov oscillations. The pick-up coil
output is dominated by the voltage produced by the time derivative of the small but high
frequency component. Avoiding saturating the input by the higher voltage, high frequency
component means that the resolution of the low frequency fields is now restricted. If we want to
use the full capability of the digitizer in recording the lower frequency fields, then the solution is
to filter the signal and only allow frequencies below a certain value to be recorded, i.e. use the

filter described above with reference to Figures 1.2 and 1.4.

Intuition suggests that if a time varying wave form is sampled sufficiently fast then the original
wave form can be recovered. However, we must determine how close the samples must be, and

how to interpolate between adjacent points. The sampling theorem provides answers to these
questions. An original signal x(t) can be recovered from sample values x(ntg), with tg the sample

time, by locating sinc functions at ntg with amplitudes x(ntg). The signal x(t) can only be

11
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recovered if the signal bandwidth b < fy/2, with fg the sampling frequency = 1/t;. If this is not

done, aliasing occurs.

If b > fy/2 then the high frequency signal can appear as a low frequency signal. The fact that

spoked wheels in films sometimes appear to rotate backwards is a manifestation of aliasing.
Aliasing can be avoided using a passive filter to remove the high frequencies f > fy/2. For

example, sampling at 5 kHz (i.e. a sample every 0.2 ms) then an “anti aliasing” filter with T= 0.5
ms can be used.

Vector potential

In describing plasma equilibria we shall make use of the vector potential A. It is related to the
poloidal flux, and used to determine self and mutual inductances. It is defined through the

equation
VxA=B 1.11

In cylindrical geometry (R,0,z), which we shall use a lot, this is

g =104 94

B R 9¢ az

0A, O0A
p A 9A 112
® 9z OR

_19(RA,) 104,
" R OR RI¢

Then the electric intensity E is proportional to the vector potential A whose change produces it:

E:—% 1.13
dt

From Equation 1.1 (ignoring D and p) we then have that A is given in terms of the current

density j (the current per unit area) by Poisson's equation:
2 .
VA = —j 1.14

which has a solution

AV pld

1.15
andv r 47t r

12
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where the total current I flows inside the volume V, the line element dl is along the direction of
the total current I, and r is the distance from the line element to the point of interest. A useful
example for us is the vector potential of a circular filament. This is used to represent windings

(vertical field, shaping, ohmic heating) on the tokamak, and elements of the plasma current itself.

P
r VA
dl Y
r Ry
o
R \ X
dl -0

Figure 1.6. The geometry used to evaluate the vector potential of a circular filament.

Consider a circular filament of radius Rg, with current I in the ¢ direction. Ay must be

independent of ¢, so choose the point of interest P in the (X,z) plane of Figure 1.6, where ¢ = 0.
Pairing equidistant elements dl shown in thickened lines at +¢ we see the resultant is normal to
(R,z). Therefore only consider the component dlg of dl in the direction normal to the plane (R,z);
dlp = Rocos(¢)d9. The radial distance r from the point P to the element is given by
r’=7"+R +R*-2R,Rcos(¢). Then

VA

P L‘llﬂ:ﬂj‘ R, cos(9)dg 1.16
* axd oy 27y (R§ + R* +7° —2R,Rcos( ;/ﬁ)f/2

Far from the loop (i.e. a small loop) we have rg = (R2+2z2)1/2 >> R, and the integral becomes

4, =4 Rcos(o) [1+ RRO:gs(ij
0 0 0 1.17

_RRul  (Mxr)
45 47r’

Here we have written the magnetic moment of the loop M = 7ZR§ I, directed upwards.

If the loop is not small, then let ¢ = 7 + 20, so d¢ = 2 d and cos(d) = 2 sin%(0) - 1, and we obtain

13
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ur 1 (2sin’(6) —1)d6

1.18
0 ((R0 +R) +2° —4R0Rsin2(9)j/2

A, =

This can be re-written 1n terms of K(k2) and E(k?), the complete elliptic integrals of the first and

second kind, ( E(m) = I\/m)de Km) = '[J(l
m sin

2(9)) as

_H (R RN ]
* "\ R ) (1 257 19

k= 4R0R[(R0 +R) +z2]1

LN

R

Figure 1.7. Cylindrical (R,$,z) and quasi cylindrical (p,®,0) coordinate systems.
Both are right handed

Going into a quasi-cylindrical coordinate system (p,®,0) shown in Figure 1.7, based on the
current path, then

R =R, —pcos(w)
z =psin(®)

1.20

Expanding k we find that keeping terms of order p/R¢ then k? = 1. We must go to higher order
(to find k < 1) because K(1) = oo. Keeping terms of order (p/Rg)* we find
1p° peos(w, p' (1+2cos2w))
AR R 4 R 16

Handbook of Mathematical Tables, Abramowitz, Dover Publications, and after some

k*=1- . Using the expansions for E and K found in the

’ 2R
rearranging, we obtain up to order (p/Rg)? E=I1+ 8136 2(1-“1{4)) and
P

0

14
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2
K= ln(%j _ L cos(w) + L > (ln[%j +—1 a+ 4cos(2a)))J . Finally we can write an
P 2R, 16R; P 2
expression for the vector potential near the loop keeping terms of order (p/Ry):
N I 8R, p cos(w) 8R ]
A¢z—° Infj—|-2|+— In—2| -3 1.21
22|\ R, 2 p ]

Figures 1.8 and 1.9 show a comparison between the approximate (Equation 1.21) and exact
(Equation 1.19) solutions for a case with current I = 1/u, and a major radius Rg = 1.0 m. For the

approximate solutions we show results both for zero order (i.e. neglecting terms proportional to
p/Rp) and including first order corrections (i.e. including terms proportional to p/Rg). Figure 1.8
shows a cut in the plane of the coil (z = 0), while Figure 1.9 shows contours for Ay = 0.15, 0.2,

0.3 and 0.4. We see that it is sufficient to consider only the zero order terms, that is the terms
proportional to p/Rq can be neglected. In fact in Figure 1.8 the effects of including the first order

I 8
terms cannot be detected. The simple approximation A, = ‘L;—O (ln [—Roj - 2) is excellent.
4 P

The field components are given, in the original circular coordinate system (R,0,z), as

&A |_ 2 2 2 —l
Ty ROl
< 2”1‘<>[(R+1'<>0)2+Z2T2 (R, —R) +z
1.22
AIRA) w1 T ReR-2 ]
- R OOR 2”[(R+R0)2+ZZT2L R-RY+2 |
where we have made use of
Kk __E KOJE_E K,
ok k(-k) k ok k k
1.23

ok _ k' ok __k K K
d0z 4RR’OR 2R 4R 4R

HoIRg

On the axis R =0 we have B =0 and B, =————,.
Z(Rg +z2f/2

15
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vector potential i

exact d
0.4
0.2

"W approximatg

0.6 0.5 1 1.2 1.4
0.6 0.3 1 . 1.2 1l.% i .
major radius R (m) major radius R (m)

Figure 1.8. The exact (solid line), the approximate Figure 1.9. Contours of vector potential
zero order (dashed line) and the approximate first  from the exact solution (thin dark line),
order (dotted line) solutions in the z = 0 plane for  the zero order approximation (thick gray
the vector potential from a circular current filament line) and including first order corrections

with current I = 1/p. (intermediate thickness dark line) for a
circular current filament with current I =
1/p. Contours of potential equal to 0.15,
0.2, 0.3 and 0.4 are shown.

Mutual inductance

We shall use mutual and self inductances, often between circular filaments. They can be used to
derive the vertical field necessary to maintain a plasma equilibrium, and to analyze axisymmetric
instabilities. We are interested in the relationships between mutual and self inductances and

fluxes, and how to write energy in terms of mutual and self inductances.

The mutual inductance M, between two circuits is defined as the flux Ny, through circuit 1

produced by unit current in circuit 2. Then

_eA

with A» the total vector potential due to current 2 in circuit 2. That is,
_ Mg g odidl
M, = 47z§u ‘ﬁ =M, 1.25

The electromotance through circuit 1 due to a current I» in circuit 2 is

16
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dl
£ = M127; 1.26

The total energy (in a volume V) associated with two circuits is

W, ==, (B +B,)e (B, + B,)av

a 1.27
_ L pave L Bav+ L '
oy [ Blav+ ZﬂjVBzdwﬂijl *B,dV

The first two terms represent the energy required to establish the currents I; and I producing the
fields By and B in circuits 1 and 2. The third term is the energy used in bringing the two circuits

together. This mutual energy between the two circuits W5 is

1
W, =M, = ;jv BB,dV 1.28

Self inductance

The magnetic energy density W of a single circuit carrying current I; is used to define the self

inductance L1 of the circuit:

1 1
W=—[BFadv==LF 1.29
2u°V 2

To maintain the current I1 a power source must, in each second, do an amount of work

dN,
el =h—" 1.30

(because € = dN/dt) in addition to working against resistance €. The stored energy per second in
the magnetic field equals dW/dt, so that

dN dI
I—=r1— 1.31
di di

1.e.
N, =L,1 1.32

Therefore we can also define the self inductance of a circuit through the change in flux linking

that circuit when the current changes by one unit:

17
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- dN, _ Lﬂﬂ 1.33
dt dt
Poloidal flux

Suppose that a system consists only of toroidally wound loops producing only poloidal fields. In
a cylindrical coordinate system R,(0,z shown in Figure 1.7 (¢ is also the ‘toroidal’ angle in a quasi

cylindrical coordinate system) nothing depends on the angle ¢. Then

M, = 27le% 1.34

2

and A has only a toroidal component Ag. In this case the fields are given by (B =VxA):

0A
B,=—*
0z
B, =0 1.35
18(RA¢)
B =—— %
* R OR

These poloidal fields are also expressed in terms of the transverse (poloidal) flux function

Y: Y(R,z) = constant defines the form of the equilibrium magnetic surfaces, proved later:

:ﬁ(V‘Pxe{b) 1.36

with e a unit vector in the toroidal (¢) direction, so that

__1 o¥
2 7R OR 137
o | 0¥
R™ 2R 9z

But we know that we can write, in terms of the vector potential for our toroidally symmetric
system (0/0¢ = 0),

By=-22
) 138
_19(ra,)
" R OR

That is, the poloidal flux can be written as (with subscripts implied but not given):

18
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R
W = 27RA, = MI =27 B.RAR 139

That is, for the system we are considering, the poloidal flux at a position R is simply the vertical
field B, integrated across a circle of radius R. Note that sometimes in the literature the flux

function y = ¥/(2m) is used.

As an example we show in Figure 1.10 the poloidal flux y produced by a single circular
filament (see the section on vector potentials for the derivation of Ag) of radius R = 1 m, current
I = 1/y0. Results are shown in the plane of the coil (z = 0). The exact results are shown as the
solid line. Also shown are two approximate solutions; the very near field solution and the far

field solution. Near the current (“near field”’) we can write

oo -8 (o)) (ZJ ) )] v

IR R
The very near field solution is the zero order in p/Rg term, i.e. ¥, = £ ; 2 (ln[g Oj - 2} . Far
z p
from the loop (“far field”) we can write
MR
4 1.41

@Y

We see that neither the very near or far field solutions are good for distances of about half a coil
radius from the coil itself. However, if we use the full expansion expression including terms of

order p/Rq (Equation 1.40) then the results are very near to the exact solution. This is shown in

Figure 1.11.

1 .
v |
0.8
far field

Y ¢

N,
0.2 .

exact
S S
0.2 —x
_ very near field—® - _ _

u] 0.5 1 R(m)l.E 2
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Figure 1.10. The poloidal flux y in the plane z = 0 for a circular current loop,
radius 1 m, current I = 1/py. The solid line is the exact solution, the long dash line
is the far field solution, and the short dash line is the very near field solution (zero
order in p/R terms only).

exact

very near _Jggr - . _ @-firstorder

zero order

0.6 0.5 1 1.2 1.1
Radius R (m)
Figure 1.11 The poloidal flux y in the plane z = 0 for a circular current loop,
radius 1 m, current I = 1/y. The solid line is the exact solution, the short dash line

is the first order expansion in p/R( solution keeping terms of order p/R, and the
long dash line is the very near field solution (zero order in p/R terms only).

We can also compare the zero order, first order and exact solutions by plotting contours of Y in

(R,z) space. This is done in Figure 1.12, for the conditions described in the caption of Figure
1.11. We see that it is very important to include the first order in p/R¢ terms; even then the

solution contours are significantly different from the exact solution contours. This is very

different from the case of the vector potential, where the zero order solution was accurate.
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_height z (m)

radius R (m)

Figure 1.12 Contours of flux y from the exact solution (thin dark line), the zero
order approximation (thick gray line) and including first order corrections
(intermediate thickness dark line) for a circular current filament with current I =
1/u. Contours of flux equal to 0.15, 0.2, 0.3 and 0.4 are shown.

Field lines and flux surfaces

Before starting on TOKAMAK EQUILIBRIUM, I want to discuss the field line equation, and

apply it to a case very similar to a tokamak. The field line equation is

ar_dy_d P
B, B, B
or, in cylindrical geometry (the system (R,0,z) of Figure 1.7)
RB
dR _dz _ %5, 1.43
B, B. B,

This is easy to see in two dimensions, as illustrated in Figure 1.13.
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X BX

o= dz/dx =B,/B¢
Figure 1.13. A field line made up from two components By and B,.

If the length along a field line is 1, then these equations are equivalent to dI/B = constant (B is the
magnitude of B). Now a magnetic surface is defined by an equation Y(R) = constant; we use Y
because it will turn out to be the poloidal flux that is constant on a surface. The condition that all

lines of magnetic force lie upon that surface Y(R) is written as
VyeB=0 1.44

because Vv is the normal to the surface, so the equation says there is no component of B
perpendicular to the surface. Now we describe the fields B through the vector potential A, so

that

o _loA

¥ RO 0z
0A, OA
B ——k 2 1.45
? 9z oR

_ia(RAﬂf)__laAR
"R OR R J¢

For axial symmetry, nothing depends on ¢ (we will also call this toroidal symmetry). Now take

Y(R,z)=RA, 1.46

Using Equation 1.45 in 1.46 gives

o(RA,) 124 94,] (% )04,
R component: R |_R 0 oz _| R R +A, ) P

8(RA¢ )|_ 0A, OA |

FY) 2 k)=

component: —
¢ comp R
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8(RA¢ )r_l B(RA¢)_ 1 aAR—| _ 94, [R 0A

= - A\ 1.47
= |R R Roo| o )

Z component :
P oR 7

where the RHS of each equation represents the result for 0/0¢ = 0. Therefore, with the assumed

symmetry, the ¢ component is zero and the R component and z component cancel. Therefore our
assumed form for the surface (Equation 1.46, ¥(R,z)=RA,) ensures that VyeB =0, i.e. it

ensures that all field lines lie on that surface where y = RA¢ = constant. In the case of toroidal

symmetry the z component of Equation 1.45 gives

5 _LRA) 13w
* R OR R OR

R R
1
i.e.yxsz RdRz—jzrzB RdR 1.48
. z 2”0 V4

2r

17 v
=2—75££3sz1€¢1¢=;{

where the total poloidal flux W is the integral of the vertical field B, through the circle we are

considering.

An example

I want to consider what the magnetic surfaces look like starting with a single filament in the ¢
direction (a ‘toroidal’ current), then adding a uniform ‘vertical’ field in the z direction, and
finally adding a filament in the z direction to produce a ‘toroidal’ field. This is meant to
approximate a tokamak equilibrium, but note we are not specifying that the conductors are in

equilibrium yet.

Consider a circular filament, as shown in Figure 1.6, with current Iy. The field lines lie in a

surface (the flux surface) defined by y = constant, and we have shown previously that to zero
order in the normalized distance p/R( from the filament

1 8
Y=RA,= HoloRy [ln( ROJ - 2} = constant 1.49
2r Yo
where
o =(R,—R) +7 1.50
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i.e. the magnetic surfaces are described by circles with p = constant.

Far away from the loop we have shown that the field looks like that due to a dipole with moment
M:

M = R(2ly. 1.51

Then the equation for the magnetic surfaces becomes

yoME__
7+’

Now we add a uniform field B, in the z direction. This has a vector potential given by

= constant 1.52

A, =—= 1.53

The magnetic surfaces are now given by

R(A¢ + Ay )= constant 1.54

Finally we add a filament up the z axis, which produces a field « 1/R in the ¢ direction (a

‘toroidal’ field. The vector potential due to this filament is

1
A =25 (R 1.55
2z
Because this has only a z component, it does not affect the result (Equation 1.54). The results are
shown in Figure 1.14 and Figure 1.15 for a vertical field (the form used is relevant to that

required to maintain a circular tokamak in equilibrium)

4,1
B ==t ¢(ln(8R°)+A——1) 1.56
4 7R, a 2

with A =2, Ry =1 m, and a = 0.2 m. In the figures the exact form for A¢ from the circular
current filament (written in terms of elliptic integrals) is actually used. The positive current I

produces a field downwards (in the -z direction) at the outer equator (z =0, R > 1 m). Adding a
positive vertical field B, cancels this field at some point, producing a point where B,(z=0) = 0.

This is called an X point; the flux surface through this point is called the separatrix. Note that,

with the negative uniform vertical field applied, there is no inner X point. However, if a vertical
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field o< 1/R was applied the more negative B, at the inner equator would cancel the positive B,

from the filament, and an X point would appear

0.4 'r 0.
z (m)
0.2 0.2
o u]
—0.2 —-0.2
—0.3 -0.%
h0.1
0.6 0.5 1 1.2 1.% 0.6 0.8 1 1.2 1.2
major radius R (m) major radius R (m)
Figure 1.14. Contours of constant flux y, Figure 1.15. Contours of constant flux y,
with positive Bj. with negative B,.
X
point P
rl

dipole current
1

+

dipole current
2
>y

4

dipole current
3

Figure 1.16. The geometry used for calculating the flux surfaces of a straight filament in a
quadrupole field. z is into the plane of the figure.
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For a second example, consider the field lines and flux surfaces resulting from a quadrupole field
applied to a single filamentary current, in straight geometry. In a straight system the field lines
will lie in a surface defined by constant vector potential A (i.e. ¥ constant, with R = o). The
single (“plasma”) filament of current I, lies at the origin of a rectalinear coordinate system

(x,y,z) shown in Figure 1.16, where z will approximate the toroidal direction in a toroidal

Il
system. The vector potential at P is given by Equation 1.55 as A = —'uTozﬂln(r), with r the
V4

radius from the plasma filament to a point P. There are then four additional filaments, at a
distance d from the plasma filament, with currents I,q alternatingly + (into the plane) and - (out

1
of the plane). The ith additional filament (i = 1 to 4) has a vector potential A_, = —%’lln(ri) in
Y1

its own local coordinate system. Transforming to the coordinate system (r,0) we obtain

rln(al2 +r? = 2dr cos(t9))“2 ]
/2
- —t, . () ol |+ In(d* +r2 + 2drc0s(t9)j

27 2 I—ln(d2 +72 ~2drsin(6))"”

|
| 1.57
1/2 |
|~In(@* +r* +2drsin(6)) " |
The resulting contours of constant A, are shown in Figures 1.17a through [.17d for the ratio
I;q/lzp = 1.0 to 2.0. In the examples d = 0.25 m. The equi-distant contours shown are different
from frame to frame. Clearly approximately elliptic cross sections are obtained; in tokamaks
elliptic surfaces are produced by applying quadrupole fields. A separatrix appears and defines
the last closed vector potential surface (a straight circular system is the only one without a

separatrix).

We can derive an analytic expression for the shape of a given flux surface. By expanding
Equation 1.57 to third order in r/d, we find

I > 4,1 cos(26
A= thle 1n(r)—(1) Kol c05(26) 1.58
‘ 2 d V4

With I;q =0 the surfaces are described by r = constant = a, i.e. a circle. If we assume the surfaces
with I;q # 0 are described by

r=a+A,cos(26) 1.59
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0.1 0.1

) (e (
0.1 0.1

0.2 -0.1 u] 0.1 .2 -0.2 -0.1 0 0.1 0.2

Figure 1.17a. Vector potential contours with  Figure 1.17a. Vector potential contours with
I;q/lzp = 1. The quadrupole filaments are at  I,q/I,p = 2. The quadrupole filaments are at
+0.25 m. +0.25 m.

then Equation 1.58 gives, after expanding in A/a,
I_cos(26 2 24,1 cos” (20
~A = ey, (a)+ (—)—ﬂﬂo cos (26’)+(a) Ml c0s(20) )+(ﬂ) (A) fol,, cos 29)
27 d’ \a V4
1.60

For a/d << 1, A/a << 1 we can ignore the last term (o< cos2(20)). Then we ensure that

I .
A, =const = —%ﬂ In(a) by setting the coefficient in front of the cos(20) to zero, i.e.
T

A: ( j[ﬂ) 1.61

The elongation of the surface is then

1, (a\’
height 1+2( jkd)

_ A

L ~1+4/ =2 | 1.62

width L) aY’ 1,)\d

1-2| = :
1,)\d
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Figure 1.18a and 18b show the computed distortion to a particular surface (A = constant) for d
=0.25, I¢/Izp = 0 and 2.0. With I,¢/I;p = 1.0 the value of height to width is measured to be 1.28,

as compared to the value of 1.25 derived from Equation 1.62.

u.1 0.l

0.05 0,05

0 0

-0, 05 -0, 05

-0.1 -0.1
-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 @ 0,05 0.1

Figure 1.18a. Contours of vector potential ~ Figure 1.18b Contours of vector potential
with I¢/I;p = 0. The larger contour is taken  with I;¢/I;p = 2. The contours have the same

as a reference in determining the distortion  flux values as those shown in Figure 1.18a.
produced by an applied quadrupole field.

Circuit equations

For some applications we will consider the plasma as a lumped series resistance and inductance,
coupled to other circuits (including a conducting vacuum vessel) by mutual inductances. Figure
1.19 shows how this is represented.

The equation for circuit 1 consisting of a series self inductance Ly and resistance Qj, coupled by

mutual inductances Mj; to other circuits i, is

1.63

The sum over the mutual inductances is for i # I because My = L is brought out separately. If
the circuit is closed (short circuited), then € = 0. If the circuit is open, or connected to a high
input impedance, then I} = 0 and €] = d/dt(XM, ;I;). The plasma is sometimes represented as one
series inductance-resistance circuit, or sometimes as a number of such circuits in parallel, all
short circuited together. The vacuum vessel is similarly represented as a number of paralleled

resistor-inductor circuits, which can be open circuit (a vessel with an insulating gap) or short
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circuited (no insulating gap). For a perfectly conducting plasma the plasma series resistance
elements are set to zero, so that the flux enclosed by the plasma loop is conserved. These models

are very useful in analyzing axisymmetric stability problems.

ohmic heating

plasma

vertical field, shaping

vessel/shell (switch open = gap)
Figure 1.19. Representation of circuits coupling to a plasma.
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2. SOME NON STANDARD MEASUREMENT TECHNIQUES

Hall Probe

Other techniques (than pick-up coils) are used to measure magnetic fields. The most common
alternative is a Hall probe, shown in Figure 2.1. A semiconductor is placed in a field B, and a
current I driven perpendicular to B. The current carriers experience a Lorentz force, producing a
charge buildup in the direction perpendicular to both B and I. The resulting charge buildup
produces an electric field which cancels the magnetic force. This electric field is measured by

electrodes. This was iscovered in 1879 in Johns Hopkin University.

up perpendicular to B
and j. Measure E.

l B /']/ Drive j. Charge build

Figure2.1a. A Hall probe.

veroml -

Figure 2.1b. A Hall probe in use
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Assume the electrons move inside a flat conductive strip in a magnetic field. Then the output

voltage is:
V,, = hiBsin(a) 2.1
Where i is current, h is efficiency which depends on geometry, temperature, area. Theoretically

the overall efficiency depends on the Hall coefficient, the transverse electric potential gradient

per unit B field per unit current density.

Lol LT
.._!,"'::-r
o=

%

= ot HIE T Wi Wiln ¥

Figure 2.1c. A Hall probe at and angle to the field

Specific problems include: susceptibility to mechanical stress, and temperature (of resistors).

Faraday Effect

It has also been proposed to use the magneto-optic effect (the Faraday effect) in fused silica
single mode optical fibers to measure magnetic fields, and the electro-optic (Kerr) effect to
measure electric fields. The Faraday effect is the consequence of circular birefringence caused
by a longitudinal magnetic field. Circular birefringence causes a rotation F of the plane of

linearly polarized light, given by

F=V.$Hed 22
!

around a contour 1. No time integration is required. The Verdet constant V. = 5x10-0 radA-! for

silica. Thus the rotation must be now measured. Another approach is to coat a fiber with
magnetostrictive material and measure the strain effects, with the fiber as one arm of a Mach
Zender interferometer.

The Compass.

Chinese 2634 BC, magnetite suspended on silk.
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Flux gates

This is intended for weak fields. A B-H curve below is shown below.

i

5 B -
3

= i -

: /)

2=

il i
fiy el reetin il Sirenph

Figure 2.3 a A simple flux gate and the B-H curve

An applied field H to the core induces a magnetic flux B = mH. For high B the material saturates
and W is very small. There is hysterisis, and the path is different for increasing and decreasing H.
When the core is not saturated the core acts as a low impedance path to lines of magnetic flux in
the surrounding space. When the core is saturated the magnetic field lines are no more affected
by the core. Each time the core passes from saturated to unsaturated and backwards, there is a
change to the magnetic field lines. A pickup coil around the core will generate a spike. Flux
lines drawn out of core implies positive spike, lines drawn into core, a negative spike. The
amplitude of the spike is proportional to the intensity of the flux vector parallel to the sensing
coil. The pulse polarity gives the field direction.

The core must be driven in and out of saturation by a second coil. The excitation current will
induce a corresponding current in the sensor coil, but this can be allowed for.
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i Ciil scase Ciil

Figure 2.3b. A driven flux gate

A better approach is to position the excitation coil so that it will excite without affecting the
sensor coil. i.e. excite the flux at right angles to the axis of the sensor coil. One can use a

toroidal core with a drive winding and a cylindrical sensor coil..

Sensnive A

Dirve Coil || J LAY e Ol

Figure 2.3c: A flux gate with toroidal core with a drive winding and a cylindrical sensor coil
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3. GENERAL FIELD CHARACTERIZATION

Fourier components

Suppose we want to characterize the tangential (subscript T) and normal (subscript n) fields on a
circular contour of radius aj. It is often convenient to express the results as a Fourier series: for

the poloidal (0) and radial (p) fields outside a current I we can write

B,=B,= 2’”—;‘; [1 + ;ﬂn cos(nw)+ 0, sin(na))} 3.1
B,=B, = éu 72;1 {Z K, cos(nw)+ u, sin(na))} 3.2

We are working in a coordinate system p,®,0, centered on the contour center-see Figure 3.1.

Note that it is not uncommon to use a left handed coordinate system.

z

A

Figure 3.1. Coordinates.

We can measure the components either by performing a Fourier analysis of the data from a set of
individual coils measuring B,(®), Br(®), or we can construct integral coils which will do the job

directly. For example, a "modified Rogowski coil", or “cosine coil”, whose winding density
(number of turns per unit length) np = ngcos(nw), each turn of area A, will give a signal which,

when time integrated, is proportional only to Ay:
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d d 2z
€= —EJS-(B *nydS)= —E{I(Bw(a))nA(a))alAdw)}

0

_ oA d | ( . V]
= - dt{lj;tcos(nw) 1+Zn:/1n sin(nw)+ u, cos(nw))de 33

= Hadm d gy
2 dt
The elemental area dS = naAdl, the unit length dl = ajdw, and ng is the unit normal to the coil

area. That is, the only contribution to the space integral comes from the term cos2(n®), because
jo "cos(nm)cos(mw)dm = 7 if m = n, otherwise = 0. If the winding density is proportional to

sin(n®), the time integrated output is proportional to d,. To obtain the coefficients u, and x;, we
must wind a “saddle coil” with ny, turns of width w varying as sin(n®) or cos(n®), so that for a

sin” saddle coil w(w) = wq cos(w), and

g=-2 {J' (B(w)n, w(a))alda))}
di 3.4

:_ﬂﬂwonwi I
2 dt{ﬂ”}

In this case the elemental area dS = nywdl = nywajdw, the time integrated output provides the
coefficient L. Figure 3.2 shows a cosine coil which measures A. Although it is not illustrated, a

center return wound inside the Rogowski coil should be used. Figure 3.3 shows an unfolded ““sin
saddle coil” measuring (1. Of course, we cold also use an array of coils placed on a contour,

measuring independent B¢ and By, at different positions (different ®) and construct the required

integrals.

pitch changes sign

'width' changes sign

p

Figure 3.2. A modified Rogowski coil. Figure 3.3. A saddle coil.
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Field components on a rectangle

If we want to characterize the fields on a rectangular contour, we can make use of the fact that an

arbitrary function in a plane can be expressed as

B( 77’ 5) = Zcm,pém np 3'5
m,p

with ¢ p constant coefficients. Here we are working in a rectalinear coordinate system &,n,

centered on the contour center, at R = Ry, shown in Figure 3.4.

(Y AN

Z

‘/ Contour 1

Figure 3.4. The geometry used in describing fields on a rectangle or square.

On a one dimensional contour there will be degeneracy. Suppose we have a "modified
Rogowski" coil whose winding density varies as some function (M. ), so that the time

integrated output is proportional to

T

S, =$f, Bl 3.6
!

The subscript T refers to the tangential (normal) field component on the contour. We could also
construct the signal spr from individual measurements of Braround the contour. Further

suppose that we express the tangential field itself in terms of our functions f as

B,=)c,f., 3.7
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Then we can write

Spe =2, 8 £, dl 3.8
m l

i.e. if we can calculate | 1fmfpdl for our chosen functions f, then we can express the coefficients c,

through the measured parameters sp r. In a similar way we can build a saddle coil of width f,

whose time integrated output is then

Sy =P Bdl 3.9
1

Expressing the normal field as

B,=)d,.f, 3.10
we have
Spu=2.d, 1,1 ,dl 3.11
m I

Again, assuming we can calculate flfmfpdl, the coefficients dy, can be expressed in terms of the

measured sp p.

We still have to choose the functions fp. One choice, which is used in 'multipole moments',

discussed later, is pP, the pth power of a vector radius on the contour 1. This can be expressed in

the form of a complex number as

p=E¢+in 3.12
e.g. for p =2 we have

p =& -1 +i(n) 3.13

If the contour chosen is a square of half width and height a, then this form for the functions f

gives
[ a
dl = 4a"") —— + if m and p are even 3.14
f’fmf,, Lm+1 p+1J P
$1,.f,dl =0 =0 otherwise 3.15
!
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Then we would have the output from the 'modified Rogowski' coil

Spe=2.C,f L dl
m l

( ) —| for m, p even 3.16
m+p
—Zc 4a Lm+1 p+1J

=0 otherwise 3.17

Equations 3.16 and 3.17 show specifically how, by including a finite number of terms (say pmax
= mpax = 5) we will end up with a set of linear equations relating the measured signals to the
required constants ¢,. We must now solve them to obtain the coefficients cy, as functions of the
measured Sp ; a similar procedure provides the dp, as functions of the signals sp . The result is
not as elegant as the Fourier analysis applicable on a circular contour, where a single coil can be
wound to measure each individual Fourier coefficient, but I don’t know another way to represent

the fields on a square contour. Of course, instead of using these specially wound coils to
measure sprand spp directly, the required integrals can always be constructed from individual

coil signals of B¢ and B, around the contour .

An example of a saddle coil for a particular f = N(1+&/Ry) is shown in Figure 3.5. Here R; is the
major radius of the contour center. These strange looking coils are actually useful for helping

determine plasma position

Figure 3.5. A saddle coil suitable for winding on a square vessel
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4. PLASMA CURRENT
Rogowski coil

The plasma current is measured by a "Rogowski coil", which is a multi turn solenoid completely
enclosing the current to be measured. Figure 4.1 shows an example, the placement of this coil
around the plasma is shown in Figure 4.2. The transient plasma current generates a voltage €
which, for a uniform winding density of na turns per unit length of area A, is (after applying

Faraday's Law)

dl
E=nAU,— 4.1
A /’lO dt
from which I, is deduced after time integration. This is just a special case of our general model

for how to measure the fields on a contour. Integration can be performed passively with a
resistance-capacitance circuit, with active integrators, or numerically on a computer. In each case
there is an associated 'integration time constant' Tip;. The Rogowski coil must not be sensitive to
other than the wanted field components, so that a center return must be used. The angle between
the Rogowski coil and the enclosed current is irrelevant, as is the contour on which the coil is

wound.

Figure 4.2. Coil
Figure 4.1. A Rogowski coil placement around plasma
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5. LOOP VOLTS, VOLTS per TURN, SURFACE VOLTAGE.
Introduction

The Loop Volts g, also called the Volts per Turn or Surface Voltage, is used in calculating the
Ohmic power input to the plasma. It also allows a calculation of the plasma resistivity Qp. € is

also a useful measure of cleanliness: clean ohmic heated tokamaks usually have € ~ 1.5V.

What we want to measure is the resistive voltage drop across or around a plasma. In a linear
machine, this simply done by measuring the potential across the end electrodes with a resistive
potential divider. A similar method can be used in a torus with a conducting vacuum vessel
which has one or more insulating sections. In an all metal torus the voltage induced in a single
turn pickup coil (a volts per turn loop) wound close to the plasma is used, as shown in Figure 5.1.
However, the interpretation of the output signal is not trivial. Here I want to address two
questions. The first is “What does a toroidal loop as shown in Figure 5.1 tell me?”. The second

is, “How do I measure the Ohmic power input into a plasma?”.

The single volts per turn loop

The voltage across the toroidally wound volts per turn loop (subscript 1) is given by:
d d d
g =Z(LUII )+ Q1+ ,ZE (M,,jlj)+;t (M,,1) 5.1

Here subscript j refers to all fixed windings, such as the Ohmic heating, the vertical field, and the
shaping winding. The plasma current contribution (subscript p) is brought out separately. We

can arrange for the voltage of the loop to be measured with a high input resistance amplifier.
Then I} = 0, so that the first two terms on the RHS are zero, and

d d
g =;E(M,,j1j )+E(M,,p1p) 52

If this signal is time integrated, then the result is exactly the poloidal flux ¥, because

e =% j (Be nﬂS)z% j L (B.RARAP)

5.3

R
_4, ﬂj B RdR =X
=3 dt
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Now consider the voltage €, around the plasma. It is connected on itself (a torus) so that:

d d
£,=0=— Lp,plp)+gp1p+ZE(Mp,j1j) 5.4
J

Now remembering the definition of mutual inductance in terms of linked fluxes, we can always
write the flux through circuit i due to current [j in circuit j as the flux through another circuit k

due to the current [j in circuit j plus the incremental flux between the circuits k and i due to the

current Ij in circuit j, A¥ j;j. Then

M, I =M,_ I +A¥, . =M, I +A¥, 5.5

[ kyjoJ

Then for example Mj ohloh = Mp ohloh + A%¥p 1;0n

Thus we can write
d d d
& :Z;(Mmlj )+ E(MZ’PI" ) di Z‘(A‘PP’Z;]) "

Substituting from Equation 5.4 gives

d d
&=-—(L,,1,)-Q,1,+ Z(‘P

5.7

plasma—loop )

where AW plasma-loop 18 now the total flux between the loop and the plasma, provided by all

circuits, including the plasma (plasma, ohmic heating, vertical field, shaping). If the plasma

current is constant the volts per turn loop tells us the plasma resistance. A more elegant approach

to seeing this is to use Poynting’s theorem.

Poynting’s theorem

Consider a number of non integrated flux loops, i.e. volts per turn loops, measuring d\P//dt, all
placed around the plasma on some contour 1, which might be the vacuum vessel. Figure 5.1
shows the configuration. Note that the emf € = -2RE, will not necessarily be the same in each

loop, because the contour I is not necessarily on a magnetic surface.
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volts per turn

contour

Figure 5.1. A subset of volts per turn coils on a contour 1.

To interpret what we are measuring, notice that the poloidal (subscript p) and toroidal fields are
not coupled in Maxwell's equations, so that we can write Poynting's theorem for the poloidal

fields alone. To remind you, the basic equations needed are

V xB = 1j 5.8

_9B

VXE=
ot

59

Multiplying these by -E and B/u respectively, adding, and writing the poloidal component, gives

(¢ 1s the direction the long way around the plasma)

B B
-Q(—LJ+V-(Ex—ij+bE¢=O 5.10
o\ 2u, Hy

Integrating over the volume V defined by rotating the contour 1 in the ¢ direction gives

o LI
a—t(—lzﬂj +[J,E,dv =$eB di 5.11
Vv l
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Here we have used [V o (ExB, )}V =[(E, xB, Jo dS, =[ 27RE, B,dl. Li is defined by (Lil,2)/2
Vv S N

=] (sz/(2u0)dV. Note the integration is to the contour I, not the plasma edge. Therefore the
inductance is not just that internal to the plasma, which is usually called 1;. Now use Ohms law

j'B = 0|E-B, and assuming IByo-Bgyl << By gives E¢ = jo/0y. Therefore

LI’
a(—ﬂj I—"ldV 1{) 5.12
ot ", Oy
where
(&) =——§eB.dl 5.13

0%p 1

What we find, from Equation 5.12, is that the ohmic input power fj¢2/6||dV into the plasma must
be evaluated knowing the poloidal distribution of both € and Bt around the contour 1, as well as
the inductance L; within that contour. For example, suppose the contour is a circle of radius aj,

and
8=€0[l+28n cos(na))} 5.14

,uo Ll+ z/i cos(na))J 5.15

Then we obtain
(&) = 80(1+ Z/lngn) 5.16

The inductance L; is given approximately by (i.e. the "straight" circular tokamak )

[ (a) 1]
L[z,uoRlen — +_J 5.17
a,) 2

with ap, Rp the plasma minor, major radius. The term o/(4m)]; is the inductance per unit length

(toroidally) inside the plasma, and the In term represents the inductance between the plasma
surface (r = ap) and the contour 1 (r = aj). The approximation given is for a straight circular

tokamak coaxial with a circular contour. That part of the inductance between the plasma and the

contour is sensitive to plasma position.
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Uses of the Volts per turn measurement

We can deduce an average value of the plasma conductivity, <6>, by writing

2aRI2 ¢, LI
e :J'i“’—dvz Ie) _2(—% j 5.18
ma,{o) 3 o ar\ 2

From this we can define a conductivity temperature Tg. The conductivity deduced by Spitzer for
Coulomb collisions is given by (there are corrections for the fact that, in a torus, trapped particles
cannot carry current and so 6 must be reduced)

”

c=1.9 ><10“L 5.19
Zejfln(As)

Then Tg is defined as that temperature which gives a Spitzer conductivity (with Zegr = 1) equal to
the average conductivity <6>, with an approximate value taken for In(Ag). We can also derive an

average “‘skin time”, from the formula for the penetration of a field into a conductor of uniform

conductivity <6>:

2
_ o4, 5.20

Tskin - 16

The definition of energy confinement time for an ohmic heated plasma with major radius Ry,

cross sectional area Sg.(here we assume a circular minor radius ap so S = napz), total energy
content W = 37tRpf Sq)pdSq,, ohmic input power Py, = IPZQp, can we written in terms of the

poloidal beta value By = 8n/(u01p2)f s¢PdS¢ (discussed later) as

2
7, = l _ SﬂOﬁIRp _ 3#0161“;,(0) . 51
P, 8Q 16
Combining equations 5.20 and 5.21 shows that
ko.p 5.2
Z.skin
Therefore for ohmic heated plasmas, where typically B; = 0.3, the currents penetrate

approximately 3 times slower than the energy escapes from the plasma.
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6. TOKAMAK EQUILIBRIA
6.0. AN INTUITIVE DERIVATION OF TOKAMAK EQUILIBRIUM

Introduction

After having described how to measure the plasma current and loop voltage, the next most

important parameter to measure is the plasma position. We will show how we determine both
this, and certain integrals of the pressure and field across the plasma cross section (specifically Py

+ 1i/2), in section 7. The basic idea is that we want an expression for the fields outside the plasma
in terms of plasma displacement A and (1 + 1;/2). We can only do this by knowing a solution to
the plasma equilibrium, i.e. we must solve the Grad Shafranov equation. I deal with this later in
this section, but first we can gain a physical picture of tokamak equilibrium by considering the
various forces acting on a toroidal plasma. Also note that there are techniques to measure plasma
position without recourse to equilibrium solutions, the so called “moments” method. However,
the interpretation of this method (i.e. what has been measured) itself requires a knowledge of the

equilibrium.
The total energy of our system must be made up of 3 parts,
W=W'+W +W, 6.0.1

where WP is the energy stored as pressure, W B is the energy stored in toroidal fields (poloidal
currents), and W»B is the energy stored in poloidal fields (toroidal currents). Once we have
calculated expressions for these terms, we can obtain the required forces: the minor radial force
F, = OW/0a, and the major radial force FR = OW/OR. By setting the net force = 0 we will obtain
the conditions necessary for equilibrium. We work with a circular cross sectioned plasma with
major radius R and a minor radius a, and a/R << 1. Figure 6.0.1 shows the geometry. The
poloidal coordinate is 8. We use <...> to mean an average over the volume (which is the same as
an average over the plasma surface if a/R << 1) and V = 2nRma2. A positive force is in the “R”

or “a” direction (an expansion).
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The toroidal fields and pressures p
present in a section of a toroidal
plasma colum. the toroidal angle is

¢

Figure 6.0.1. Elemental volume discussed in deriving force balance.
Energy associated with plasma pressure wP

The major radial force F, exerted by the plasma pressure in expanding a distance dR is given by
F; dR = <p>dV, and the minor radial force F’ exerted by the plasma pressure in expanding a

distance da is given by F’ da = <p>dV. The total energy WP is given by

W’ = jpde(p>V=<p)2ﬂlRa2: 6.0.2
|4
so that
p
O _2Vp) 6.03
da a
p
=W U 6.0.4
oR R

These forces were computed at constant pressure.
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Energy associated with toroidal fields w;8

The energy associated with poloidal currents is written as

LI} LI
=Lyl M, 6.0.5
2 2

Wy’
Here I is the poloidal current in the plasma, and I, is the poloidal current in the toroidal field
coil (subscript e for external). I is that poloidal current flowing in the plasma edge which
produces a toroidal field equal to the difference between the internal toroidal field Bgy; and the

external toroidal field Bge. By definition we have

L <(B¢,. —B¢e)2>V

6.0.6
2 2u,
B,)-B, B,V
M1, = (2,)-5. 6.0.7
Ho
Now the circuits I; and Ij, are perfectly coupled, so that L; = M. The field B; = uol1/(2nR), and
SO
1 Ei ( » o avh) | Mea’
M=L=— dv = R—(R —a ~ 6.0.8
=L 112 }[ﬂo H ( )/) R

for skin currents. To get the forces we will need only the functional dependencies, namely

oL, _21,

da  a 6.0.9
oM, _2M,

da a

dL, _ L,

oR R 6.0.10
oM M

OR R

The forces will be computed at constant current. For example, the part of the force due to
0/6R(L11;2/2) is then written as (1;2/2)0/6R(L1) = -(I12/2)L/R = -(L1112/2)(1/R). Using Equation
6.0.6 this becomes (I;2/2)0/60R(Ly) = <B¢1—B¢e)2>V/(2Ru0). Doing this for each component in

Equation 6.0.5 gives
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owr vl (8)-£)

Fl = 6.0.11
" da al 24 J
2 2
pr WLV |(—(B¢“ () 6.0.12
b= = 0.
OR R 24 J

There will be no force from the term L.l ¢2/2, because we keep the external currents constant.
Energy associated with poloidal fields _w,B

Again we write the energy in the poloidal circuits as

LI I5
w, :%+%+M212126 6.0.13

with I = I, the toroidal plasma current, and Ip¢ the poloidal currents in external windings. These
windings are imagined to consist of a set which provides an external vertical field B, but induces

no plasma current, and a set which drives the plasma current but produces no B,. We will need

the radial derivatives (with respect to both major and minor radii) of the self and mutual
inductances. All external currents will be kept fixed, so that d(Loe)/0a = 0(Lpe)/0OR = 0. Only

that winding producing a vertical field is imagined coupled through a mutual inductance to the

plasma.

We must make use of the inductance of a current loop:

L= ,uOR(ln(gR) ) +%} 6.0.14

a
The term 1; accounts for the inductance between the center of the loop and the edge, atr =a. We

also need the flux ¥ = M»lye, the external flux passing through the central aperture, which can be

written as

R
¥ = [27RB.dR 6.0.15
0

Then we have

aa—ll‘; = ,uo(ln(g—f) —1+i) 6.0.16
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9L _ MR 6.0.17
da a

aMz_i[ij_ZﬂRB 6018
oR oRrR\L,) I, o
oM, 9 (\pj

—=—|==0 6.0.19
da dal\l

Now we can deduce the forces:

B 2 BZ
o= V[ 6“) 6.0.20
da 2u,
5yl B R 2B.B R—|
Fy _W, V' B (l (8—) -1+ A 4 6.0.21
oR L ot )
where
1
B, =h Ko 6.0.22
27ma  27a

Total forces

We can now add Equations 6.0.3, 6.0.11 and 6.0.20 to get F,, and Equations 6.0.4, 6.0.12 and
6.0.21 to get Fgr:

5 (B)8)

F =ﬂ| | 6.0.23
a| 2;“0 24, J
[ oo 1
B R 1\ 2RBB,  \Bx—\B,
F, :Z| - (ln(g—) 1+—’\ + ( ) +(p | 6.0.24
L,Uo a Hqa 24,
1
with B,, = 'L;—OE . Equilibrium requires F, = 0, so that
[ B —(B2)) |
(p)=|ﬁ+—( tl ¢'>)+| 6.0.25

|_2,Uo 2u, ]
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Therefore if we can measure the difference in toroidal field with and without (when Bgy;i = Bge)

plasma present, we can measure the average plasma pressure. This is discussed later in dealing

with “diamagnetism”.
The condition Fr = 0 specifies the vertical field:

5 __ Byl (8R) 3.4, 2u(p]
=R ™ 2 2 B

aBgar (8RY 3 L ]
DRI, )_2+2+ﬁ’J

- 6.0.26

This was the field we used in section 1, Field lines and flux surfaces, to plot out the flux surfaces

which result from a combined circular filament and a vertical field.

6.1. THE FLUX OUTSIDE A CIRCULAR TOKAMAK

Later we will use the expression for the flux outside a circular tokamak. It can be considered to
come from two sources, that from the external maintaining fields Yex; and that from the plasma

itself, Yp. In the previous section we derived an expression for the vertical field B, necessary to
maintain a circular equilibrium (Equation 6.0.26). While the major radial term appearing as

R\ . . . )
ln(—) in Equation 6.0.26 clearly refers to the geometric center Ry (it comes from the
a

inductance of a plasma with radius a with a geometric center Rg), it is not obvious to what radius
the term outside the square brackets refers. It could be either Rg, or the coordinate itself, so that
B, o< 1/R. In the former case, in a right-handed cylindrical coordinate system (R,,z), the flux

would be derived from W o< R2, or in our local coordinate system (p,,0) based on Rg (See
Figure 1.7)

Y =k, +k, cos(@w) + k, cosQw) 6.1.1

with k; a constant. The constant is unimportant, but the cos(2m) term means that such an external

field would introduce ellipticity, and we have specifically considered a circular plasma.
Therefore we must take B, o< 1/R, and in the coordinate system (R,(,z) this is derived from a flux

Mol Rl (8R\ ]
e |_l \, +A—O.5J 6.1.2

ext
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L
where A =3, +§’ —1. In the local coordinate system (p, ®, ¢) the necessary B, is then derived

from a flux (ignoring the constant of integration)

_ A peos(@)f | (8R,) 1
B 41

ext

I_nk a)+A—0.5J 6.1.3

current filame? center R

geometric center R ¢

Figure 6.1.1. The geometry used in relating the geometric and current filament centers

Next we come to the flux W, produced by the plasma. Outside the plasma, where there is no

current and no pressure, the fields and fluxes we are looking for must be able to be constructed

from those due to circular filaments. This will not be true inside the plasma. For a first
approximation we will model the flux W, as being due to a single circular filament with current

I,. If we position this filament at a position R then in a coordinate system (pc, @, ¢) based on

the filament we have shown that the flux is well represented by

() ) el )

[&

However, we have to decide where to place this filament, that is, what to choose for R, and how
P, Pc, ® and . are related. Because we have derived Wex¢ for a circular cross section (in the
calculation of B, we used inductances for circular current path), we must place the filament so
that, in the coordinate system (p, ®, ¢) the surface Yiotal = Wext + Yp = constant is a circle of

radius at p = a.
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Suppose we place the filament at a position Rg = R + A. From Figure 6.1.1, and expanding in

the small parameter A/r, we then derive that
oo =p° +A —2Apcos(180— w) 6.1.5

o =p.+AN -2Ap, cos(w,) 6.1.6

from which we have
A
p. zp(l +;cos(a))J 6.1.7

and

A A

cos(w, )= cos(a))(l —— cos(a))) +— 6.1.8
r r

Substituting for p. and @ in terms of p and m, and using Ryp = R¢ + A, we obtain an expression

for the total flux Wioal (P, ®, ¢) in the coordinate system based on the geometric center. Keeping

terms of order A/r and cos(®) only (i.e. neglecting elliptic distortions to any surface) we find

v - ,uOIRr [ j ] ,uolecos(a)r (B) At __2ﬂ—|

oz | 27 | 2] 619

To ensure a circular outer contour (at r = a) we set the cos(®) term to zero, that is we set

6.1.10

Substituting for A form Equation 6.1.10 into Equation 6.1.9 gives the final expression for the flux

outside a circular tokamak:

o TSR] o et o) (1o (o] ]

27Z'L J

6.1.11
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6. CIRCULAR EQUILIBRIUM

Derivation of the Grad Shafranov equation

Most analysis of magnetic measurements rely on an understanding of equilibrium. The most
general cases are derived from integral equations, which do not constrain the plasma shape, and
are discussed later. However, an insight can often be gained by considering the case of a circular,
low beta, large aspect ratio (a/Rp<<l) system. For this we must solve the so called Grad-

Shafranov equation. The basic equation for equilibrium is that of pressure balance:
jxB=Vp 6.1

from which B-Vp = 0, i.e. there is no pressure gradient along a field line; magnetic flux surfaces
are surfaces of constant pressure. Also from 6.1 we have j-Vp = 0, so that current lines lie in a

magnetic surface. Equation 6.1, together with Maxwell’s equations, is all we need.

The conditions for the applicability of equation 6.1 are interesting. It is NOT correct that it only
applies to the ideal MHD plasma, which would imply that it is incompatible with diffusive

phenomena. In fact it is sufficient that

1) The plasma directed kinetic energy is much smaller than the thermal energy. Inertia is

ignored.

2) The gas kinetic pressure is nearly isotropic. This is still possible for a collisionless
plasma (A >> 27tR) as long as the times considered are long (t >> A/v, i.e. t >> Tee, Tej With Tee,

Tei the electron -electron and ion-ion collision times).

3) The local distribution function deviates slightly from a Maxwellian even for a straight
system because of the finite Larmor radius rp: &f = rp.0f(r)/0r. This leads to a deviation from

pressure isotropy by an amount dp = pry/a, with a the minor radius. In toroidal geometry the
particles are displaced from a magnetic surfaced by amounts d = ry q for passing particles and d =
r.qe /2 for trapped particles (€ is the aspect ratio /R, q is the safety factor). Then there is a
deviation from a local Maxwellian distribution function f by an amount &f/f = d/a, and an
associated pressure anisotropy Op/p = rpg/a. Therefore we should have rpg/a << 1. i.e. the
plasma can be considered as a gas of Larmor circles produced by charges rotating in a magnetic
field.
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Figure 6.1. Nested flux surfaces. Figure 6.2. Field lines in a surface.

We introduce V, the poloidal flux per radian in ¢. This is proportional to the poloidal flux within
each surface; it is constant on a flux surface. Figure 6.1 shows an example of nested flux
surfaces, and Figure 6.2 shows field lines lying in a flux surface (followed 10 times in the

toroidal direction). We will show that the current lies in a flux surface, but current lines do not

follow field lines. In Figure 6.1 the each surface is described by a radius r = r,, + z A, cos(nw),
n=2

where we have also shifted the origin of each surface with respect to each other. The example
shown has a circular innermost surface, a mostly elliptic (n = 2) central surface, and an outer
surface with a combination of ellipticity (n = 2) and triangularity (n = 3). Note that y = RAy,
where A is the vector potential (note we sometimes use the total flux ¥ = 2ny). In the

cylindrical coordinates (R,0,z) of Figure 1.7 the magnetic fields are derived from

1y
B —_19oV 6.2
K R 0z
1y
_1lay 6.3
R OR

which satisfy V-B = 0. We also introduce a current flux function f, which is related to the
poloidal current density so that

Lo

J,=—
R R0z

6.4
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1 9f
. _1of 6.5
= ROR

Now Amperes law [gj = V x B gives

. 10B iy
]R - /lo aZ .

_ 1 3(rs,) 6.7
== R OR '

so that, comparing Equation 6.4 with Equation 6.6, and Equation 6.5 with Equation 6.7, we have

U,f = RB, 6.8

That is, the function f includes the total current in the windings producing the toroidal field.
Since from Equation 6.1. j-Vp = 0, using Equations 6.4 and 6.5 for j gives (0f/OR)(0Op/0z) -
(0f/0z)(Op/OR) = 0, or

VixVp=0 6.9
Since p is a function of v, i.e. p = p(Y¥), we must have f = f(y) as well.

Now we want to derive the basic equilibrium equation in terms of . Write Equation 6.1 as
j,xe,B,+je,xB =Vp 6.10

where subscript p means poloidal and ey is a unit vector in the ¢ direction. Now Equations 6.2.

and 6.3 can be written as
1
BP—E(VI//xea,) 6.11
and Equations 6.4 and 6.5 can be written as
|
Jp:}(fo%) 6.12
Substituting 6.11. and 6.12 into 6.10, (remember ey VY = ey VE = 0) gives

B J
—LVF+=LVy=V 6.13
R f R y=Vp
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Writing VI(y) = (df/dy)Vy and Vp(y) = (dp/dy)Vy, and substituting into 6.13, gives

o=y L 614
dy dy
or
d, d
j¢:Rd—p+&f—f 6.15
Yy R dy

The equilibrium conditions restrict the possible current distributions jg in the plasma ; instead of

a two dimensional distribution jy(R,z) a one dimensional one is obtained, depending on the two
profiles dp/dy and fdf/dw.

We can write jg in terms of Y using Amperes law, [oj = V x B. Substituting from Equations 6.2

and 6.3 for the components of B in the toroidal component jg gives

8(181//\ >y

RR\Rar) T o2 6.16

_:uoRjgj =
Substituting for jy from Equation 6.16 into Equation 6.15 finally gives the Grad Shafranov

equation:

2 (1 oy Py ,dp . df
R i S— —_—
R\Rar) Tz T ARG TRy

6.17

In the local coordinates (0,r,¢) of Figure 6.3, based on the plasma major radius (the geometric
center of the outermost circular surface) Ry this equation becomes:

[19/( 9) 1321 1 [cos(e) ma}

Lr arvar} T r 06 JW (R +rcos(0)) 00 v 613
. .
=y (F, + reos(@)) <2~ i1

Note the ordering (0,r,¢) in which the system is right handed. The poloidal angle 0 is measured
from the outer equator, so that x=(R+rcos(8))cos(@), y=(R+rcos(6))sin(¢p),

z=rsin(@). The metric coefficients are h,=r, h, =1 and h, =R +rcos(6). If a new variable
01 = ©— 0 is defined, so 01 is measured from the inner equator, then the system (r,01,0) is also

right handed. We have mostly used this latter system.
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Figure 6.3. Geometry of the local coordinate system used.
Solving the Grad Shafranov equation

In a large aspect ratio expansion let us write
v=uy,0r)+y(r,0) 6.19

where the first term describes a set of concentric circular surfaces, and the second term is the first
order correction. Substituting into the general equation (Equation 6.18) gives the zeroeth or
leading order equation for yy:

1d( dl/fo) dp(y,) df(y,)
—— | oy RS — 6.20
rdrkr r Ho L, dy :uof(Wo dy

The first order equation for y is rearranged as:

[1ar( 0) 1 9% | cos(0) dy
U T N TR, o

g
d df
r dy dy Jdy
dp(yy)

—2lgRgreos(0)——
dy

Suppose each surface y is displaced a distance A1(yo(r)), so we can write  as

5 )
V=Yt V= - A0SR = - A ()eos(O) L 6.22
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Substituting this form for Y (= -A1(r)cos(8)0y/Or) into the first order equation, Equation 6.21,

gives:
d( .2 dAl) r dpg 2)
— | Bgp— | =— (2ugr— —-B 6.23
dr \ 260 dr ng Hot dr %0
1d
where B,, =— %0 has been used.
R, dr

8

The solution of this equation gives the horizontal shift A; of a flux surface away from the
geometric axis, as illustrated in Figure 6.4. This, together with the solution of Equation. 6.22,

gives us what we want. If we wanted to consider non circular surfaces, we could write

r= rO+ZAn(r)cos(n0) for each surface. Then y(r) is a constant (by definition), so that

n=1

=y, - iAn (r)cos(n6)

dy,
dr

Figure 6.4. Displaced circular flux surfaces.
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The poloidal field at the plasma edge

To continue, we need an expression for the boundary field Bg(a) from the plasma equilibrium.

We will ultimately use this to match the external and internal solutions at the plasma boundary r
= a, where Bz (= Bg for a circular plasma) must be continuous. Now

poldv__ 1 dv o2
R dr (R +rcosl9) dr

Using Equation 6.22, with Aq(a) = 0, gives

B,(a)= B(,O(a)[l - (Rﬁg + (%U cos(ﬁ)} 6.25

with Bgg(a) the zero order poloidal field at the boundary. Now we need to find an expression for
(dAl/dr)a in Equation 6.25. Integrating Equation 6.23 (with the condition dAi/dr = 0 at r = 0)

gives the displacement of the magnetic surfaces for the zero order pressure distribution pg(r) and

zero order poloidal field Bgo(r):

2 ( B,
aA, _ _/102 (rzpo - I(Zpo 420 jrdr} 6.26
dr 1R By, 7 2u,

By defining (we will be more careful with definitions later)

87
B :ﬁ J.png, = J-pordr 6.27

0'p Sg 00( )

for our circular case, and

2 a

4 j By gy - [ By iy 6.28
212 .

HoR I, 5 24, a By (a)y 24,

i =

where By, is the poloidal field, Spy the plasma cross section in a poloidal plane, and V;, the

plasma volume, for our circular case we obtain

(dA a ( li
KTrl)a _ _R_gKBI +5) 6.29

Now we can substitute Equation 6.29 into 6.25 and obtain
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[ 4 ]
B,(a) = Beo(a)tl +—Acos(0)J 6.30
Rg
where
A=p, +% -1 6.31

That is, we now know the distribution of poloidal field at the boundary of a circular plasma

including terms of order (a/R).
Simple current distributions

Consider a case where the zero order (circular cylinder) current density is given by
S 2V
]¢ =]¢0(1—X ) 6.32

with 0 < x =r1/a < 1 representing the normalized minor radius.

Figure 6.5 The normalized current density distributions jo/jp0(0).

Figure 6.5 shows these profiles for integer o0 = 0 through 5 as a function of normalized radius x.

The total current J is given by

7£a2

J=
1+«

Jg0 6.33

so that we can write a normalized current density j; as
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2.
. matj 2\*
h_—7—_a+m@—x) 6.34

Figure 6.6 shows j; as a function of x for o between 0 and 5; these curves represent the shape of

the current density profiles with the constraint that the total current J is constant.

0.2 0.4 0.6 0.4 1

Figure 6.6 The normalized current density distributions j-(x)

The poloidal field Bg is given by

(-0-)")

B, =B, (1) 6.35

with Bgg(1) the value atr = a, or x = 1: Bgo(1) = npJ/(2ma). The ratio Bg/Bgg(1) is shown in

Figure 6.7 as a function of x for o between 0 and 5.

5

0.2 0.% 0.6 0.4 1

Figure 6.7. The normalized poloidal field distributions Bg/Bgo(1)
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The “self inductance per unit length” is expressed as
1 e d
+a X
L=2\{-(1-x — 6.36
<))

The solution is written in terms of PolyGamma and EulerGamma functions:

l; = EulerGamma + 2 PolyGammal0, 2 + o] - PolyGamma[0, 3 + 2 o]

6.37

However, a polynomial fit in o can also be used:

[; =0.509619 +0.462798 - 0. 0630876a +0. 004437460 6.38

Figure 6.8 shows the value of 1; as a function of o for both the exact solution (Equation 6.37)
and the polynomial fit (Equation 6.38). The fact that you cannot distinguish the two lines

demonstrates that the fit is good.

2

(04

Figure 6.8. The value of | as a function of a.

We must determine how to choose the free parameter a.. Two ways are suggested. First, if the
safety factor (discussed later, but q = (rBy)/(RBg)) q(1) at x = 1, (i.e. atr = a) and q(0) at x =0,

(i.e. at r = 0) are known, then

q(0)

o 1 6.39
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We must choose q(0). Figure 6 .9 shows the resulting o as a function of q(1) for two assumed

values of q(0): the long broken line is for q(0) = 0.8, and the short broken line is for q(0) = 1.0.
An alternate prescription is to choose o so that the position x; of the q = 1 surface is in

approximately the correct position. For example, suppose that x; = 1/q(1). Then the equation for

local safety factor

q(x)=4(1) - 6.40
EER
can be solved to give
(-
oA
\1_)/61(1)2) 6.41

o=
ln(l - %] (1)2)

Figure 6 .9 (solid line) shows the resulting o as a function of q(1).

lop

] 2 2 6 5 10
q(L)
Figure 6.9. The parameter o as a function of q(1), chosen such that 1) solid line:
x1 = 1/q(1), 2) long dashed line q(0) = 0.8, and 3) short dashed line q(0) = 1.0.

We have now uniquely determined o in terms of q(1), and as such there is a unique value of q(0)
for each q(a). This is shown in Figure 6.10
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b 3 & q(a) & 10

075} q(0)

Figure 6.10. The value of q(0) as a function of q(1), with the constraint that x| = 1/q(a).

For completeness, Figure 6.11 shows the various normalized q(x)/q(1) profiles for various values
of a.

a 0.2 0.2 0.6 0.8 1
Figure 6.11. Normalized profiles of q for various values of o.

The surface displacements: the Shafranov Shift

If we want to obtain actual values of Aq(r), we have to assume functional forms for the current

and pressure distributions, and integrate equation 6.26. We have already discussed a simple
current distribution; we must add a simple pressure distribution. Let the zero order pressure be

given as
p(x) = py(0)(1-x*) 6.32

so that the poloidal beta value, by definition, is
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_ _2up,(0) 6.42
b= B0 '

Now we can use the normalization x = r/a in equation 6.26 to obtain an expression for the surface

displacement:

dA, £a 2x

B2 -0)7)
[ﬁf‘yﬂ)ﬁ(l—ﬁ)y—ﬁ,(l—(l—xz)“l}j (1—(1_,62{“5%}

6.43

Where € = a/Rg.  The Shafranov Shift is defined as the distance between the magnetic and

geometric axis: As = Aj(1). Using a power series expansion for Aj(x) up to terms x® a general

expression can be derived:

r1+2—0{+iz |
9 72, |
A== 4 | 6.44
21 prr+n) bl o (- 1)(7—6)_4a(7—1)}|
[ 40+ 9 18 6 9

For the simple case of a flat current profile (a0 = 0, 1; = 0.5) and a parabolic pressure profile (y =

1) we obtain

_ &a ll)
A = 5 K'B’ + 5 6.45

Matching vacuum and plasma solutions

Returning to the field outside the plasma, we must match the vacuum field to the solution for
Bg(a). The vacuum field is given by the solution to (VxB)y = 0. Expressing BR and B in terms

of ¥ (Equations 6.2 and 6.3), (VxB)y has the form of the LHS of Equation 6.18. This has a
solution of the form (for r << Rg); remember we are outside the plasma:

8R
¥ =21y (r,0) = uORng(ln[—r%) —~ 2]
6.46

+H_(;Ip_ [r(ln(g%) - 1) +% + Czr}cos(e)

65



Magnetic fields and tokamak plasmas Alan Wootton

where the constants C; and C; are given by the boundary conditions (B-n) = O at the plasma
surface (By(a) = 0) and the continuity of tangential field at the plasma surface. At infinity y takes
the form Cprcos(0), i.e. this represents the part of y from the external sources. The first term on

the RHS is the flux from a filament. Substituting 6.46 into 6.24 gives an expression for Bg(a),

which is matched to the plasma solution equation 6.30 by taking

C 8R
—<-C,= ln(—ﬁ) +2A 6.47
a a
. -1 0y . . . .
Now since B = ?% the requirement B(a) = 0 means that the coefficient of cos(0) in 6.46 is
r.
8

zero at r = a. Therefore we obtain

C =a’(A+0.5) 6.48
8R

C,= —1n(4) +A-0.5 6.49
2

Thus we finally obtain an expression for the flux outside the plasma r > a:

_IUORng (8Rg\ — \
-t w7 )

_%z [[ _C;—j) (A +—D + ln(:r) }cos(@)

6.50

The field components are given by

Bg=——,B, =——— 6.51
T

1.e.

=R

Hol, 3 Rolp I a

Bg(r,0) = —— 1+— (A+l) +ln(ij—11cos(e)
O T om T omR, M R Y A P J 6.52

=)

Holp I a

B, (r,0)= —?ng - j(/\ +—D +ln(aiﬂsin(6) 6.53

[\

P
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We can also separate the total flux y into external (e) and plasma (yp) parts. At large r, the

expression (In(8Rg/r) -2) really approximates an expression which goes to zero. Therefore at

large r we have

v, = A, [ln{S—R&) +A —l) rcos(6) 6.54

leaving

r 2r r/) 7
6.55
1 8R 2
A, |_—ln(ﬁ‘i\ +1- (g) (A +l)—|c0s(6’)
4r L \r) r 2 J
i.e. the external field at the geometric center (R = Rg) has a component
19y ( (8R,) 1)
=——tt = In +A- 6.56
"R AR 4ﬂR \ g/ 2)

This is the component of the field which must be produced by external conductors to maintain a

tokamak equilibrium.

Figure 6.12 shows contours of the poloidal flux for a plasma with geometric center 0.06 m
outside the coordinate center, minor radius ap = 0.265 m, and A = 2. At the inner equator an X

point appears, where Oy/OR = 0. At this point the external vertical field and the poloidal field
from the plasma cancel, so that B, (= -Bg) = 0. The flux surface through this point is called the

separatrix. This X point approaches the plasma surface as Py increases. As this happens the

surfaces are strongly distorted from circular, and the above equations starts break down. Figure
6.13 shows the poloidal flux y =¥/(27) in the plane z = 0 for a plasma with minor radius ap =

0.2m, a major geometric radius Rg = Im, current I = 1/up, and A = 2. The external source

(vertical field) and plasma components are shown separately. Figure 6.14 shows the minor radial
(By) and poloidal (Bg) field components for this plasma, on a circular contour concentric with the

plasma minor radius.
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Alan Wootton

-0.3-0.6-0.4-0.2 0O

0.2 0.4 0.6 0.3

Figure 6.12. Flux contours for a (badly drawn) circular plasma with geometric center
0.06 m outside the coordinate center, minor radius 0.265m, A = 2.

s

" plasma
— o3 n‘\_‘_ contribution
. 02 =
-
-
"'\-\.\_\_\_ _.-"'-. /
i a.1 | total external
s flux
- o
= 1
0.4 0.6 1.4
-0.1 -
h\-""\-\.
—0.2 ? o
plasma
edge from external

sources

Figure 6.13. The external poloidal flux y =¥/(27) in the plane z = 0 for a plasma with minor
radius ap = 0.2m, a major geometric radius Rg = 1m, current I = 1/lp, and A = 2.
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bottom
B. (T)
0.1 f
Q.05
A outside inside
1 2 2 g &
-0.05 0 (rad)
-0.1
top
0.3 inside
I B. (T
0.4
—0.5
-0.6 \top
// 1 z 3 3 5 \E\
0 (rad)
outside

Figure 6.14. The field components B; and Bg on a contour with minor radius 0.3m
placed outside and concentric with the plasma described in Figure 6.13.

More complicated configurations.

It is easy to make non circular cross sectioned plasmas. Adding a quadrupole field produces an
elliptic deformation. Adding a hexapole field produces a triangular deformation. There are some
analytic expressions available for non circular cross sections, but in general numerical solutions

to the basic Grad Shafranov equation must be used.
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7. Position and B, + Ii/2 for the circular equilibrium
An ‘exact’ circular equilibrium

Consider the pickup coils shown in Figure 7.1. Two coils (B, Bg2) measure the poloidal field
at the inner and outer equator, each at a distance b from some center at R = R;. A saddle coil
measures the difference in flux between the inner and outer equator. Instead of the partial flux
loops (i.e. the saddle coil) shown in Figure. 7.1, two complete flux loops could be used, as in the

plan view of Figure 7.2. We want to know what these coils tell us for our circular equilibrium.

Fig 7.1. Saddle and B, coils Fig 7.2. A plan view of poloidal flux loops

The original equilibrium was derived in a coordinate system (r,0,0) based on the plasma
geometric center Rg. We must translate the results to a coordinate system (p,®,0) based on for

example the center of a circular contour centered at R = R}, which might be the vacuum vessel

center. Details are seen in Figure 7.3.
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¥

|

|
B
|

|

: contour with center R
|

|

Figure 7.3. The coordinate systems associated with the geometric center Rg,
and an external contour center Rj.

Then R = Ry + pcos(w), z = psin(w), and let Ag = Rg - Ry be the displacement of the plasma

geometric center from the contour center. Remembering that we are only dealing with r > a, the
plasma minor radius, and taking Ag/ap << 1, we can rewrite Equation 6.50 as

¥ _ Ho 1k, p(ln(gle _2J _ P (p%}(/\ +l) +ln(ﬁj —_123‘ cos(w)
2 27 P 4r P 2 a, p

7.1
The tangential and normal field components on the circular contour are then

I I 2 2R A
B,(p,w) .. —”—“—Kl +7a)%j(./\ +—D +ln[£j -1 +#}COS(0))

2mp  47R, a,
7.2
I ’ 2R A
B, (p,w) = . L7} (1 —ﬁ%](A +—1) + ln(ﬁJ ——=£ Isin(w) 7.3
4R, P 2 a, P

Now turning to the coil configurations of Figure 7.1 and 7.2, the outer coils at p = b, ® =0
measure Bgyp, and the inner coils at p = b, ® = T measure Bg;. The saddle or flux loops measure

the difference in flux between the inner (W) and outer () equator. Define

¥Y-Y v-vw, 7.4
J_ - - .
47R, b 2R b

then
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— 1 .
Ba)2 Ba)l + BJ_ :ﬂ_oﬂ ln ﬁ +ﬁ[ +L_1 7_5
2 27R, a, 2
and
A 2 2 B, - B ’ )
S._ b (ﬁ‘%jln L +0.5(1—3§j o 2| B WI)(l—%j—BL(1+£§-
b 2R |\b’) \a, v )| wl, 2 b b
7.6

Therefore, assuming circular equilibrium, we can obtain the geometric displacement of the
plasma from the vessel center, and the parameter A = By + 1j/2-1 if we have an estimate of the

plasma radius ap. To get ap we must iterate our Equations 7.5 and 7.6, starting with an assumed
value (say the limiter radius ajjy), and replacing it at step n by the maximum possible radius
defined by A, and the specified limiter geometry at step (n-1). Such a procedure is shown below

[terations to determine magnetic
configuration from fields.

1. Set initial guess for plasma minor
radius ap = limiter radius. Measure
poloidal fields.

— | 2. CalculateA andA using

| estimated ap.

3. Calculate plasma geometric center from
estimated ap A and A.

4. Estimate new radius ap
from plasma geometric center
and limiter locations.

A more sophisticated method is to use a modified Rogowski coil (nA o cos(®)) to measure the
part of By(p,®) proportional to cos(w), and a saddle coil (width o< sin(®)) to measure that part of
By (p,®) proportional to sin(®). Such coils were shown in Figures 3.2 and 3.3. The coefficients

measured (after time integration) will be, for a coil on a circular contour of radius p,

; 2R A
A, :_iH1+ﬁ§](A+l) +ln(ﬁj —1+—12&} 7.7
2k [T TG ) T
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’ 2R A
p=—-L (1—3%](A+1)+1n Lo 7.8
2R, P 2 a P

From these two equations we obtain

2
p I a
P —p)+L=A +—2(A+05 7.9
L) +,u1)=A+10g(£j — A, 7.10
p a,

from which we can obtain the two unknowns A and Ag, assuming ap (which must be determined,

together with A and Ag, by iteration). Note that the term In(r/a) represents that part of the

inductance between the plasma surface and the coils.

Extension of position measurement to non circular shapes

The previous section showed how, for our circular equilibrium model, the geometric center could

be measured. We would like to generalize the method to allow non circular shapes. In fact, the

exact same diagnostics can do this, with certain important assumptions about the major radial

dependence of the flux V.
ZA = 76 >
Al I
>0 AL field B,

field B
flux ‘Pz

external flux surface

flux ‘1’1

Figure 7.4. Flux loops and poloidal field pick-up coils outside a plasma. There is a

coordinate system based on the center R = Rj of the two measuring coils and flux loops
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(sensors). The sensors are at a distance b from R;. The plasma geometric center is
displaced Ag from R;.

Consider the situation in Figure 7.4. The measurements of flux and field are supposed to be at
the same location, either at point 1 (shown at the smaller major radius) or point 2 (larger major
radius). If the loops have the same value of flux, then they sit on a flux surface. Using the saddle
coil as shown in Figure 7.1, if the saddle coil output is zero then the inner and outer toroidal legs

are on a flux surface. We expand the flux as

¥ hoop T A R

7.11

plasma

with A the distance between the loop and the plasma surface. This expansion goes badly wrong if
there is an X point between the measuring loops and coils and the plasma surface, because in this
case there is a point between the measuring loops and the plasma where 0%¥/dR = 0. Since B =

1/(2nR)0W/0p, we can write

P =g

loop

+27RA\B,, 7.12

P, =y

loop

+27RA,B,, 7.13

Now Ap = b-ap-Ag, A1 = b-ap+Ag, R1 = Ry-b, Ry = Ry+b, so that Equations 7.12 and 7.13 give

— ‘Pl_‘PZ (1 _
Ag_Zn'[Bwl(Rl_b)+Bw2(Rl+b)] (b-a,) 7.14

Therefore we can measure Ag if we know the plasma minor radius ap. In limiter geometry ay is
determined by Ag and the assumed known limiter geometry, so that as described before iterations
are necessary to provide both ap and Ag. If necessary terms in 02¥/0R? can be measured using
more B, coils (two at the inner, and two at the outer, equator). If the plasma is bounded by a
separatrix, then the whole expansion is useless anyway, and we must turn to integral relationships

discussed later.

Extension of S, + /2 measurement to non circular shapes

From our simple circular equilibrium described in section 6, we know that the external field

required to maintain a circular low beta plasma is given by Equation 6.49:

I &R 1
BZ:_&& In| — |+ A—— 7.15
47£'Rg a, 2
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Therefore if we know all the currents in the external conductors, the plasma current, minor radius
and major radius, we can calculate Bz at the geometric axis R = Rg, and obtain a value for A = Bt

+ 1;/2 -1. The result (Equation 7.15) has been found by numerical simulation to be accurate even

for non circular discharges. Therefore if we can calculate the maintaining field, and know the
plasma minor radius and geometric center, we can calculate By + 1;/2. It becomes difficult to

calculate the maintaining field if we have an iron core present; we will discuss this later.
However, there are more general techniques which do not explicitly require this calculation of
fields from currents, and we also discuss these later.

Non-circular contours.

So far we have only considered poloidal field measurements which can be made on a circular
contour. In many cases the simplest contour to use is that of the vacuum vessel, which is often
non circular. What do we do then? In section 3 we discussed how fields on a rectangle can be
characterized, and suggested that coils wound to measure “moments” might be useful.

Specifically, we discussed modified Rogowski coils which would measure

S, =$f,Bdl 7.16
l

and saddle coils which would measure

$,.=$f,B,dl 7.17
l

where the functions f, were taken to be the pth power of a vector radius on the contour 1. The

geometry is re drawn in Figure 7.5.
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[}

Z

‘/ Contour 1

—® R

Figure 7.5. Geometry used for a non-circular contour.

An analogy with our cosinusoidally wound Rogowski coil and sinusoidally wound saddle coil

would be a modified Rogowski coil measuring the first symmetric (in vertical position) moment

5, =$ Bl 7.18
!

and a saddle coil measuring the first asymmetric (in vertical position) moment

2 2R A
A, :_i|:(1+£§](A+l) +ln(ﬁj —1+—12{| 7.19
2R P 2 a, p

To interpret what these coils will measure, we can write an equation for the components Bt and
B on our chosen contour (for a rectangular contour they will be either By or Bg). Because the

only variables in the equations for an assumed circular equilibrium are the geometric

displacement Ag, A and minor radius ap, we must be able to derive expressions for the measured
coil outputs sy ¢ and sj  in terms of these variables. For example, if our contour is a square of
half height and half width a, centered at R = R}, we must find

Si,0 = Sl,r(lp’AaAg9ap’aaRl) 7.20

sin =50, (1s AAa,,a,R,) 7.21
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In principle we can then solve Equations 7.20 and 7.21 to give expressions for the required A
and Ag. Iterations will be necessary because we will find ap entering the final results, which itself

is only determined once Ag is known.

It may be that the particular geometry of the contour precludes performing the analytic integrals
(Equations 7.18 and 7.19, using the analytical representation for the equilibrium fields outside a
circular plasma). In this case the problem must be solved numerically. Equations 7.18 and 7.19
are solved numerically for many different Ag, A, and a, (we assume the contour geometry does

not change!) A regression analysis is then performed, in which solutions of the form

A= f(h ,h ,ap,contourgeometryj 7.22
IP IP
Sin Sic
A, = f|=*,—",a,,contourgeometry 7.23
IP II’
are sought.
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8. SOME FUNDAMENTAL RELATIONS
Geometry

In section 6 we derived an analytic expression for the flux outside a large aspect ratio (a/Rg <<
1) circular plasma, which we used in section 7 to interpret magnetic field measurements. Here
we want to derive some relationships which are of general use: we shall test them for the analytic
equilibrium of section 6. Use a right handed cylindrical coordinate system (R,(,z), usually
symmetric w.r.t. rotations around R = 0. Referring to Figure 8.1, there is an axisymmetric region

V, which completely encloses the plasma. The cross section of V in the poloidal half plane (¢ =
0,R>0)is S¢s and the boundaries are S;, and 1. dV is the volume element on V, dSq, the area

element on Sy, dSy, is the area element on Sy, and dl the line element on 1. Therefore

dV = 27RdS, 8.1
dSp = 27Rdl 8.2
4
A
o

contour |

Figure 8.1. Geometry

Normal and tangential derivatives on I are 6/0n and 0/0t. The positive orientation on 1 is that S¢

lies on the RHS. Note this is DIFFERENT from what was assumed in section 6. The general
question is: "How can we derive information on the magnetic field and plasma in V (or Sy) from

the fields measured on 17"
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Field representation

We shall try and be as general as possible. First we quickly re-derive the equilibrium equation.
For the case of axisymmetry, we discussed in section 6 the description of the fields using the

form

o)) Aol ] 2
a

2r 2r Yo, Ar P A
8.3

where

F=RB, = uf 8.4
and y= RAy
From VxH = j, we can also write

j:—iL*wmv(f)xw) 8.5

y y

where the operator L* is defined for axisymmetric scalar fields as

. V)
Ly=uRrVe (— 8.6
y=Uu LR’ )
The operator L™ satisfies the equation
Ly =—uRj, 8.7.
For uniform permeability |1 = 1y we have L* reducing to the operator A™:
. (Vy o010y Py
Ay=RVe ):R— ——= |+ 8.8
v VR~ or\RAR) T 07

That is, A" is the operator on the LHS of the Grad Shafranov equation. We also introduce the

operator L:

LW:—;VO(,LNI//) 8.9
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which reduces to the Laplacian A for uniform permeability. In a current free region we can use
the representation H = Vg, and V-B = 0 is then equivalent to Lg = 0.

Identities

Now we turn to some identities. Green's first identity for L* is:

| iy/L*@)dS¢ :§iy/@dl— | Lvye vads, 8.10
JUR " UR ™ on 5, MR

Green's second identity (Green's theorem) is:

10,90 _ amdl 8.11
,uR\ )

1 * Ed
—(Le-eL y)s, =
i 1
Both of these are derived by applying the divergence theorem to appropriate expression on V. In
particular see Smythe, static and dynamic electricity, page 53 eqn. 3.06(2) for a derivation of
Green’s theorem, which is, for scalars A, B and E,

[[AV ¢ (EVB)- BV o (EVA) iV = jErA@—Bzﬂds . 8.11b

Vv

Now let the function G(R,R") satisfy the equation L*G = uR'8(R-R") in S¢, where G is considered

a function of R at fixed R'. No boundary conditions mean that G is specified to within a constant.
Then we obtain Green's third identity:

1(aG oY)

dl 8.12
RK an on/

w(R")=— jGMzS +§
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contour |

vacuum region 2
7 \

™

plasma
region 1

coil region 3

Figure 8.2. The boundaries between the plasma (S¢plasma) region 1, vacuum
(S¢vacuum) region 2 and coil (S¢coil) region 3.

Suppose Sy can be split up into three regions, Sgplasmas S¢vacuum and S¢coils, as shown in Figure
8.2. Assume W = g in the plasma and vacuum region. The exterior region (the complement of
Sy in the right half plane) is called Sgext. Then if this external region has only linear magnetic
material, we can apply the last equation on the region S¢+Sgext- Choosing the Greens function
Gy so that Go(R,R") = 0 as IRI goes to infinity, and as R goes to 0, we have

w(R)=- [G,j,ds, 8.13

S ¢t S¢)gx[

i.e. Gop(R,R") equals the flux at R' caused by a negative current at position R. Therefore we define

l//im(R'): - .[ G0j¢dS¢ 8.14
Sp
1( G, E17%
R')=¢— L — G,—dl 8.15
l//ext( ) fﬂRkl// an 0 an)

and Y = Yext + Wine from Equation 8.12. We understand Wex¢ as the part of the flux caused by
currents in the exterior region, and Wi is that part of the flux associated due to currents in Sy.

VYint 1S homogeneous in the exterior region, and ey 1s homogeneous in the interior region.

An analytic expression for G if L = [y everywhere is:
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n_ Ho .r 2 k_z\ 2 |
G,(R,R )—kﬂ_\/ﬁ"E(k )—(1— > K(k )J 8.16
where
- 4RR'
(R RY +(z-2')) S0
Ideal MHD

Here we want to note only one important equation, which is a generalization of the “virial”
equation. We use Equations 6.1, 1.1 and 1.2. Allow the total equilibrium field to be split up into

two parts,
B=B, +B, 8.18

with VxB7 = 0. We can choose the partitioning of B in a number of ways. Multiplying jxB =Vp

by an arbitrary vector Q, we can obtain

IL[M ] °Q- B'VQ°B JdV y

IL[ j(Q'n) (BIOQ')UO(Blonﬂ 5 —J-QO(jXBZ)dV

with n the normal to the surface S,. We have made use of the vector identity

Q[VxBOB]zv{(QOB)B—%ZQ}+B?2VOQ—B(BOV)Q

We shall use equation 8.19 later to derive important integral relationships.

Boundary conditions

Last in this section we turn to boundary conditions. Suppose we have our three regions, as in
Figure 8.2. Region 1 (Spplasma) contains all the plasma current. Region 2 (S¢vacuum) contains no
source, but contains a contour 1 on which we make measurements. Region 3 (S¢coils) 1s outside
region 2, extends to infinity, and contains all external currents. To find the plasma boundary we
have to know Y(R,z) in region 2 between the contour on which parameters are measured, and the

plasma boundary itself. In principle we can do this knowing either
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a) oy/on (i.e. the tangential field) and either Oy/0t (the normal field) or ¢ on part of 1 (note
specifying Oy/0t is equivalent to specifying  to within an unimportant constant after integration.
This is the Cauchy condition. However, there are significant problems with stability to small

errors in the measurements. Therefore another useful set of boundary conditions is

b) all currents in region 3, and either Oy/on, oy/0t or ¥ on 1. For example, suppose we know the
currents and ¥ on 1. The total fields are then the superposition of the contributions from the

external currents in region 3 and the plasma current in region 1:
l/j(R’ Z) = l//plasma + l//external 820

Wexternal 15 already specified by specifying the external currents, so we must only determine
Wplasma-  SiNCE€ Wplasma 18 homogeneous outside 1, it must be completely specified by the
condition OWplasma/On = 0 at infinity and either Wplasma (Dirichlet) or OWplasma/On on 1

(Neumann). But condition 2 tells us we already have one of these specified, so that Wpjasma must

be determined everywhere outside and on 1.

In fact we usually use an apparently over determined problem, for example knowing the external
currents, Oy/on and Oy/0t on 1. In fact this is not over determined because we only have the
fields at discrete points, and usually the boundary conditions are only applied in a least squares

sense.
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9. MOMENTS OF THE TOROIDAL CURRENT DENSITY

Let ® be an arbitrary function satisfying the homogeneous equilibrium equation L*® = 0 in S¢s
and let y be the poloidal flux function which satisfies L*y = -URjy. Apply Green's second
identity for the operator L* (Equation 8.11) to the pair (®,y):we obtain a fundamental integral
equation:

— -0— d! 9.1

1( 90 _op)
J-E\l//an on/

l

[®j,as, =
So

The moments of the current density (i.e. the integral on the LHS) are expressed in terms of y and
Oy/on on the boundary. From L*® = 0 we have IIR'l w1(6@/on)dl = 0 so there is no dependence

upon the choice of the arbitrary constant in Y. We introduce together with ® a conjugate function
€ according to the equation

V(i\ - YOx¥9 9.2
R
which admits a solution L*® = 0. In cylindrical geometry, Equation 9.2 is
p) [ EY 100
=== 9.3
OR\uR)™  uR 9z
(L) 1o o
oz\uR) ~  uR 9R

The function § satisfies L(R-1p-1) = 0, (remember the operator L = u~1V-(uVy), which reduces
to the Laplacian if [ is uniform). Therefore the definition of & implies through Equations 9.3 and
9.4 that —d(R-1p-1€)/0t = R-1u-10@/6n, where /07 is the partial derivative along 1 (clockwise on
the outer boundary). Now by partial integration we can eliminate y from Equation 9.1 and write
in terms of Oy/oT:

1( oy ¥

1
Ek a—‘[ o )dl ZI;(an +®BT):1'Z 9.5
! !

[@),ds, =
Sy

i.e. the "moments" over the current density can be measured as line integrals of the normal (B, =
(1/R)oy/ot) and tangential fields (Bt = -(1/R)0y/0n) along the contour 1.
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1
An alternate derivation follows by letting fields q and g satisfy the equation —(V x q) = V(ﬁ),
H H

so that VX (Vxq)=0. Then

jq-jdvzjq (Vx—\dv:er[Bxq)+—°(V><Q)JdV

u)
[ xq)+B-v(iﬂdv j( xq)0n+[lu)B0anS

This has not invoked axisymmetry. Letting q = ®V¢d =and g = R-1 , and using Equations 8.1

<'—~o

and 8.2 gives the previous result (Equation 9.5).

To get the notation used by Shafranov, we let q = fV¢ (which has a component only in the f
direction, q = f/R) and consider uniform permeability ly. Then we can write an expression for

the "multipole moment" Yy, of the toroidal current density

Y, =— J FudodSy =7 —L§(s,B,+ Re, B 9.7

PS¢; OPl

1 1
where, from Equations 9.3 and 9.4, (i.e. —(qu)z—(ine¢) =V[ﬁ}) fn and g, are
K N R K

various solutions of

B 1Y

=——= 9.8
OR ROz
9g _19f 9.9
dz ROR
Remember that Vx(Vxq) =0, with q = fV¢ = eyf/R, so the equation for f is
2 2
ot ——li +ﬁ =0 9.10

OR> ROR 07

That is, f is a solution of the homogeneous equilibrium equation and g is a solution of Laplace's
equation. Of course, the trick is to find useful expressions for f;, (equivalent to ®p,) and gp,.

An important point about the method of multipole moments is that the results obtained are
sensitive only to currents flowing within the contour I (including vacuum vessel currents if the

measurements are made outside this). Thus either the total equilibrium fields, or just the plasma
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fields, can be used. The plasma fields can be calculated if external conductor currents are known.

Using just the plasma fields alone may have advantages in terms of requiring fewer moments to

accurately describe the data.
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10. PLASMA POSITION

Position by multipole moments

Let us apply the concept of multipole moments as described in section 9 to the geometry shown
in Figure 10.1, using the notation of Shafranov, Equations 9.7 through 9.10. Assume Sy contains
only the plasma and vacuum regions so that L = g and L* = A*. The term deq) in Equation 9.7
is over the plasma surface, in a coordinate system centered in the plasma, while the term Jdl is
evaluated in a laboratory frame. The two coordinate systems are related by plasma position;

therefore Equation 9.7 must provide information on the plasma position.

Z Z Z
A . Z
A A
EYWIEANIP
¢ >R E A.z- —» R
5 T Ry
R +— R—pi
la 1b lc 'Af{

Figure 10.1. The geometry used in section 10.

There is a contour I, centered on R = Ry, with a local rectalinear system (1),§), and a second
coordinate system based within the plasma, (z,x), centered at R = R, the plasma current center,
defined later. Note that & = X +AR, N =2z + Az, Rc = Rj + AR, and R = R¢+ x = Rj + & To be
convenient, the moments (i.e. the choice of fy) should, in the large aspect ratio limit
(x2+iz2)/Rp2<<1, reduce to a form of the kind

(x+iz)" 10.1

with some denominator chosen to get convenient dimensions. We look for solutions of f which

are both even (symmetric) in z, and odd (asymmetric) in z. Those suggested up to m = 2 are
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symmetric asymmetric
h=1 Jo=0
8 =0 8 =-1
2
X X
flzx(1+2—ch fl:z(l—i_Ej
Z X X Zz
=— =——|1l+—|+—=
& R, & RC( ZRJ R
2 2 4. 2
= x 1+ij - 2(1+ij =|2x (1+ij =L (1+ij
2 ( or) “UTR L= r ) T3k MR
5% UT2R) 3R =R UT2r) TRUTR TR 3R

Because the Yy, are sensitive only to currents flowing within the contour 1 (including vacuum

vessel currents if the measurements are made outside this), either the total equilibrium fields, or
just the plasma fields, can be used. The plasma fields can be calculated if external conductor
currents are known. Using just the plasma fields alone may have advantages in terms of requiring

fewer moments to accurately describe the data.

We define the current center by setting Y1 = 0. Using the symmetric set we obtain
—A,) R + R, +

fllE—A, +u B, +1—§an dl —,{l—éAan dl=0103
2R, R L R

1

i.e. the current channel displacement with respect to the center of the contour I is

c c

A2
AR=ARO+AR1—2—II;) 10.4
e Tien e
/’lOIp 1
1 2
Ay = [}(é—BT +£and1} 10.6
Mol 1\ 2R, R

Ignoring the term Ago2/(2R|), then AR is constructed from two integrals, namely
[[E+(E2/2R))1Bdl and [[n+ME/Ry)IBydl. The first integral is measured with a modified Rogowski
coil whose winding density times cross sectional area varies as & +£2/(2R;). The second integral

is measured with a saddle coil whose width varies as N+n&/R;. Alternatively the integrals can be

constructed from discrete local measurements.
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Consider as an example a circular contour of radius aj based on R = R;. Then § = aj cos(®) and |
= aj sin(w). These coils measure the fields in the coordinate system (p,®,$) based on the vessel
center, and By = Bp , By = By, Assuming a plasma with no vertical displacement, symmetric

about z = 0, we can write

ral 1
B,=B.= 1+) A 10.7
A . 27L'a,|_ ; ncos(na))_'
7N | F . 1
B,=B, = 2;% Z 1, sin(nw) | 10.8

Substituting these expressions into Equations 10.4 to 10.6 gives

a a ( A j a’ >
v (it i) Py GRS s (4 +u,)

i.e. for small displacements, (Aj+U1) << 1, and a circular plasma (A,, Uy, = 0 for n >1) we have,

a 612
A, ~—L(A +u )+—L+ 10.10
; 2(1 ) 7

1

i.e. all that is needed to measure the displacement of a nearly circular plasma within a circular
contour (Ap, Wp, n > 2 = 0) is a modified Rogowski coil whose winding density varies as cos(),

and a saddle coil whose width varies as sin(®w). This simple coil set gives the correct answer
when the constant aj2/(4R)) is allowed for. We already knew this. To allow for significant non-
circularity the more general expression (Equations 10.4, 10.5 and 10.6) should be used. We can
also derive equations to determine the vertical displacement of an arbitrarily shaped plasma,

using the asymmetric components in Equation 10.2.

Application to the large aspect ratio circular tokamak

Let us apply these ideas to the circular equilibrium described in section 6, surrounded by a
circular contour on which we have a sinusoidal area Rogowski coil and a cosinusoidal width
saddle coil. The equations given in section 6 were in a coordinate system (r,0,0) based on the

plasma geometric center; they were transformed into the vacuum vessel coordinate system in
section 7, Equations 7.1, 7.2 and 7.3, allowing for a geometric shift Ag.

The output from the integrated saddle coil with ny, layers of width w(®) = wgsin(®) and integrator

time constant Ty 1S
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n wold, I
£, = L %% .[B (w)sin(wdo = ~—">2 otlo : 10.11
T 2
int int
Using the expression for By from Equation 7.3 we get
A [ 1 2\
=== - ln( j+(A+ )[1—%) 10.12
a, 2R L a a J

The output from the integrated 'modified Rogowski coil each turn of area A, with ngcos(®) turns

per unit length, is.

A n,Au,l
g, =LA j B (a))cos(a))da)—oz_—ﬂ;ﬂll 10.13

int 0 int

Using the expression for B from Equation 7.2 we obtain

ﬂl=—%—;—§[ln[%J+(A+%)(1+ZZJ 1}
—ﬁ’-rA+ln(ﬁLj—|—
RIL a, J H

Before we can substitute these expressions (Equations 10.13 and 10.14) into Equation 10.10, we

10.14

must recognize that our equilibrium fields were evaluated in a left handed coordinate system,
while this section we have worked in a right handed system. Sorting this out we find A; = -A1,

and Ly = U1, so that

A, —A, —‘”—(A+1) 10.15

This is the difference between the geometric center Ag and the current center AR of a circular

plasma, under the present approximations. We also note that, after sorting out the coordinates,

subtracting the outputs from our coils gives

A - 1, =%[A+ln(%jj 10.16
1 14

that is, we can measure
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l R
,31+—2’=A+1=1+—l(/11—,u1)—ln(%J 10.17

a; .

Combining Equations 10.15 and 10.16, we see that we can measure the current center, the

geometric center, and A, using our modified Rogowski and saddle coils.
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11. PLASMA SHAPE

Using higher order moments we can obtain information on the plasma shape. Y> determines

ellipticity and Y3 determines triangularity. Using equations 9.7 and 10.2, we obtain:

2A. ) (55 +s) A
gz(l—JjM+Az —(1—?’?)& 11.1

T Z
R, So 1

where

si=4 a{u%}-nz(u%ﬂmm 11.2

1

2§n(1+3—&~‘— 7 HBndI 11.3

2R 3RE
B.dl = u,l, 11.4

s, = §
1
Sy = f
1
That is, with the Rogowski coil measuring I, (i.e. so®) and either modified Rogowski and saddle

coils, or single point measurements of B, and Bz suitably combined, we can construct Y;. If we
want to use modified Rogowski and saddle coils, then to obtain Ip, AR and Y, takes a total of 5

coils. For a circular contour, and ignoring toroidal effects, Equation 11.1 is written as
a2
Yz:—A2R+A§+—21(/12+,uz) 11.5

That is, neglecting toroidal effects we need only A, and 5, in addition to AR and Iy,

To interpret the moments it is necessary to assume a plasma current distribution; because the
moment is an integral of the current density over the surface Sy there is no unique solution for the

boundary shape. As an example, consider a uniform current density and a surface described by an

2 2
ellipse with minor and major half width and half height a and b, so that (ﬁ) + (%) =1. Then
a

b
for k =— -1, k << 1, and ignoring toroidal effects, we have

Y, ~—— 11.6

In a similar manner, if the surface is described by a function which includes both elongation and

triangularity, namely
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) )

then ignoring toroidicity (i.e. x/Rj and z/R| <<1, we have for a flat current distribution

Y,=-a’y 11.8

93



Magnetic fields and tokamak plasmas Alan Wootton

12. MOMENTS OF PLASMA PRESSURE
The Virial Equation

Here we consider certain integral relations which allow us to determine information on the energy
density within Sy. The techniques described to determine plasma position, and more generally

plasma shape, needed only Maxwell's equations. Now we add the constraint of equilibrium.
Generally we apply these results to S¢ = Sgplasma + S¢vacuum: €ven simpler relations are obtained

by identifying S¢ with S¢plasma-

From a previously derived integral equation (Equation 8.19), we can obtain some very useful
relationships. First, take B, = 0 (i.e. all the fields are described by B = B1), and let the arbitrary

vector Q be the polar vector (r = Rer + zez.). Then Equation 8.19 becomes the “virial theorem”:

jdei[(p+2ioj(ron)—%M}Sn 12.1

0

2

I(3p+ ;;l

74 0

Note that if B were the self plasma field, and there was no other field, then the surface integral on
the RHS approaches zero as the surface (where p = 0) approaches infinity, because B(self) o< R-3.
This contradicts the positive definiteness of the LHS volume integral, showing that equilibrium

by self fields alone is impossible.

Now restricting to toroidal symmetry, 0/0¢ = 0. Therefore the poloidal (subscript p) and toroidal
(subscript ¢) fields satisfy

B=B +B
P 122
B,eB, =0
Next assume that the surface Sy, is outside the plasma, where VxB = 0, and that the vectors Q and

B, are purely poloidal (i.e. there is no toroidal component of B3);

Q :QReR +Qzez
B, =B,:e,+ B, e

2272

12.3

Noting that the toroidal field outside the plasma is given by Bge = const/R, then we have

2Qee,
R

[ B, (Qen)ds, :sze(VOQ— )dV 12.4
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and

B;Qee,
B, B eVQ=B *B ¢VQ +—% 12.5

Using these, we can express Equation 8.19 so that the toroidal field enters only as Bq,Z—Bq,e2 on
the LHS:

2
IF[P+—1’— VoQ+B B¢6(V-Q ZQ.eJ_BPI.VQ B”Jdv
1l 2, R Ho
12.6
m (B, * QB °n)
= ||| p+=|(Qen) -~ 2 ds, —[lie(B,,xQ)}v
o5 G| MU
Now let
B - B,
P:p+ d 12.7
2u,
B, +B, —B
T=p+ 12.8
2u,

(Remember Bj is the poloidal field). Then the integrand on the LHS of Equation 12.6 can be

written as (from now on drop the subscript p for poloidal)

[]- P(aQR 9N, T

By —B:(90. 00;) ByB.(30; 00.)

R T2 )RS T s R T4, Var T or)
12.9
Now we have to chose something for Q. Let
u=R—R, +iz=pe" 12.10

with R, some characteristic radius, a fixed point within the plasma cross section. Then
2
o =(R-R,) +7 12.11

Now with this notation let

= F(u)
Q. = —iF(u)

12.12
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so that the last two terms in Equation 12.9 are zero. Next take
Fu)=u"" 12.13
Finally we can rewrite Equation 12.6 in the form

j [Z(m +1)Pu” +%u"’+1 }zv

o+ 2oy B

2u, Hy
12.14

Surprisingly, this is useful. We now consider the results when we take different values of m.

m-= '1, BZ — Bext

Take Bj as the externally supplied maintaining field and B; the plasma self field. For large

volumes the surface integral approached zero, and we have

—j%dv ={j,B. .V 12.15
\%4 \%4

or equivalently

[J,B...RdS =—J-|_p+(wj—|d5 12.16
Sy P ’ SQL 244 J ’

Suppose (low toroidicity) that p/R¢y <<1. Then the R dependence of T appears in the form R -
Reh, so that dT/dR = -dT/dR.,. Now because T/R = V-Tegr - dT/dR (if p/R¢p <<1) we have, with

T = 0 at infinity:

I%‘W:_i%dvzﬁiqmv) 12.17

1%

Now introduce some definitions:

1
B =- i,B. . dV 12.18
L 27Z'R I J-.]¢ z,ext

ch™p Vv
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[ TRds,

12.19

BZ
=—= [2av 12.20

b "L [ pas, 12.21

0%p s,

B - B
L2 j( “’ejds 12.22
ll’lOIp Sy 2/10

Note that LoLpi/(47) is a total inductance, and the usual "inductance per unit length times 47/pLp"
is given as

2

B
4 —=qv 12.23
MR, 15 21,

P

Now we can write Equation 12.16 as

9 {
. = 8 Rm Lﬁ' hrry (R"hLP)J 12.24

This is a generalization of the external vertical field needed to maintain a plasma, allowing for

non circularity.

m=0,B>=0
Now Equation 12.14 gives an integral expression along the minor radius:

dev+(2;‘h)j TdV

T

7 _Bn B_B —| .
:0'5!, TOIHOep —# Z'OepjadSn —0.5‘.[]¢[Bzz(R—Rch)— B,z Jiv

12.25
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If we assume that IR-Rcpl << Rep, then the term with (R-Rch)/(2RT) can be omitted, and the LHS
is independent of the choice of S;,. Therefore the RHS must also be independent of S;,. Then we
can write (with [R-R¢pl << Rep)

R,I
[ Pav= ﬂ°—4°"-”- s, 12.26
\%4

where s1 must be independent of the choice of By. In particular, taking B, = 0, Equation 12.25

can be written, using the definitions above, as

B, =1, +s, 12.27

where

5, = %j [B: - B )onee,-2B.Bpree, }is, 12.28
ILIORL'hIp Sp

The difference between s1 and 1 is due to non circularity.

In fact, the constraint R-Rcpl << Reh, but not (RT-Ren)/(2RT), can be relaxed by redefining Bry

and Ny as volume integrals: see Equations 12.31 and 12.32 below.
m= -1, Bg =0

Now we obtain another important integral relationship, assuming IR-R¢pl << R¢p, namely

181+_ZE:%+52 12.29
where
5, =%j[(3§ —B )nee —2BB1eeJis, 12.30
Mol 5,
and £ =R - Rep,.

In fact, the approximation IR-R¢pl << R¢p is not necessary if B and p are redefined as volume

integrals, namely

87
2R, B, = ﬁj pdV 12.31

0%p v
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dv 12.32

2 p2
2R My == 871[2 _[ (B¢ B¢6)

ﬂO pv 2#0
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13. B| + ||/2
Solution

In the previous section, Equation 12.29, we showed that we could express the parameter By + Ly/2
through the integral equation

L
B+ =

== s, 13.1

where s; and sy are two integrals of the fields over dS,, which we will be able to measure as

contour integrals, namely

5, = j[(B2 B )onee,-2B.Bptee, [,
ol 13.2
j[(B2 B )ynee,-2BBptee, Rdl
ﬂo ol 1
5, = j[(B2 B )nee ~2BB1eeJis,
ol 3, 133
= 2Z [[(B:~ B e, ~2B.Bree i
ol

Equation 13.1 was good for toroidal geometry if volume definitions By and puyy were used. Note
that dS;, = 2nRdl, so that s; and sy can be written as contour integrals around 1. Unfortunately
they involve the squares of fields, and so we cannot design simple modified Rogowski and saddle
coils to make the measurements. Instead we must measure B, and B at discrete points along the
contour, and then construct the required integrals. All we have to do is construct the integrals s

and sp from measured B, and Br.

Suppose we are measuring fields on a circular contour of radius aj, centered at R = R = R¢p; that

is we identify our characteristic radius with the center of the contour 1. Then in the vessel
coordinates we have 1ep = 0, nep = 1, neg = cos(w), Ter = -sin(w), and dS, =
2nR [ 1+(a/Ry)cos(w)]ajdw. If the fields can be expanded as in Equations 10.7 and 10.8, and

keeping only the terms A and [ (i.e. a circular plasma), we obtain
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s, =1
s, :ﬁ(ﬂ’l—i_ﬂl) 13.4
a
i.e., substituting 13.4 into 13.1:
B, +—I;‘"- = 1+§l’(ﬂl +44) 13.5

Let us apply this equation to the displaced analytic equilibrium discussed in sections 6 and 9.
The Rogowski coil with cosinusoidal varying winding density, and the saddle coil with sinusoidal
varying width, tell us A; and ;. First there is a mess with right and left handed coordinate

systems to unravel. Doing this then i = - in Equation 13.5. Now Equation. 10.16 already tells
us that

[ ;]
4 a LS
ll_ﬂl:ztln(aijrﬁﬁZ 1J 13.6

Therefore comparing Equations 13.5 and 13.6 we must have (allowing i@ = -l in Equation 13.5)
that

‘ L
L+ln{&j =2 13.7

This is exactly what we expect, because the total inductance to a radius aj is given by:

[ ]
L. = 27:R(&)L = 4,R In ﬂj b 13.8
4n/ " L a, ZJ

Separation of f; and ;

If we have By + 1i/2 from the poloidal field measurements just described, and B from diamagnetic

measurements (see later) then obviously we can separate By and 1 If no diamagnetic

measurement is available, two possibilities exist. For non circular plasmas, there is a third

integral relationship, which I have not derived, which gives in terms of a measurable line integral
the parameter IV(2p+BZ2/u0)dV. When V is the plasma volume, this is related to 2By + Ly,. If the

volume averages <B,2> and <Bp2> are different, as is the case for non circular discharges, then

this measurement allows the separation.
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For near circular plasmas, we must estimate Ly, separately. For example, for the simple circular
low beta equilibrium of section 6, we can take a model current distribution jo(r) = jo(1-(r/a)2)e.,
Then 1j = Ly-In(ay/ap), with I given as a function of o = (qa/qo -1). By assuming gp = 1 we can

then estimate 1;, and make the separation.

Comments on the definition of poloidal beta

We must be careful with the definition of "poloidal beta". So far we have used Equation 12.21,

namely

B =Fjps¢ 13.9

We could replace By by B, (the poloidal beta), which characterizes the ratio of plasma pressure to

the pressure of the magnetic field for an arbitrary shaped cross section. It should be introduced so

that the pressure balance, Equation 12.27, is replaced by

B,=1+u, 13.10
so that Bp = 1 for p, = 0.
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14. DIAMAGNETISM
Comments

Next we turn to the toroidal flux and its measurement. Before plasma initiation this is simply
given by fB¢dl = U, .[ JdS,ie. 27RB, = i, , where we have applied Amperes law to a contour
l N

in the toroidal direction, encircling the inner vertical legs of the toroidal field coils (i.e. I, =

i,ning, with i, the current from the generator, n. the number of assumed series coils, and n; the

assumed series number of turns in each coil).

Microscopic picture for a square profile plasma in a cylinder

During formation inside a magnetic field the plasma particles acquire a magnetic moment m:

2

[0

m= Areaorb,‘tlorbit = ﬂ(l) (g—) 141
) /4

Since ® = qB/m¢, we have

m=—= 14.2

adding up to a total magnetic moment

M= nmS¢ 14.3

per unit length of column with cross section Sy and a number density of n - Supposing cylindrical

geometry the elementary currents cancel within the homogeneous column, leaving only an
azimuthal surface "magnetization' current density jg:

nk,T _p,

B B

14.4

js =nm=

where p| = nky(Te + Tj) 1, kp is Boltzmann’s constant. The toroidal field will be modified.

The associated flux from this surface current can be calculated:
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A® = 7a,AB, = 7a;, —- By ma; = £ 27R;j,
P2 7R P27R

2 My 20 o 2
=ma. —=27R— =7ma u,—
"22R" B, vl B,

Using the definition of By, discussed much more a little later, we then have

2 52
Ag = LB
8 7B,
Macroscopic picture

Let us consider a toroidal device with no toroidal current plasma current, i.e. a stellarator, in
which the necessary rotational transform is produced only by external conductors. Starting with
the radial pressure balance, with p = 0 at the plasma edge, and approximating the torus by a long

cylinder, then

dPL

ol = JjoB, 14.5
integrating over the minor radius (r = 0 to ap) gives
p. = —B¢.[j€(r')dr' 14.6
and
<pJ_ a? jzﬂerd’”_ v!‘J‘g(r')dr'
14.7

B, ‘¢ TS(r)
——2 | % (r)dr=-B 50, r)dr
m;}[ .]19() ¢J(;7z_a2]€()

P

ap
Then jge = ) 0 S(r)/(nap2)j9(r)dr is the effective surface current density at the plasma edge as a

consequence of the finite plasma pressure.
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Paramagnetic and diamagnetic flux

Outside the plasma the toroidal field has the form Bge = Bpo(Ro/R), with By the value at a fixed
radius Rqg. This toroidal field, together with the poloidal field, takes part in balancing the plasma

pressure.

We need an equation relating fields to pressure. Substituting VxB =g, j into Vp = jx B yields
VB’

(using Bx (VxB)=————(Be V)B)

B2
V(p+
2u,

j:(BOV)ﬂ%

For a straight axially symmetric system (6/0z = 0) we obtain

d ( B+ ng B
or 24, Tl

Multiplying each side by r2, letting u = r2, du = 2rdr, dv = 0/or(.), v = (..), we obtain by
integrating by parts (Judv = uv - Jvdu)

a

B’ + B2 ¢ B’ + B’ ¢ B
rz(p+d’—9j —j(p+4—9j2rdr:— —Lrdr
2/”0 0 0 2/”0 0 luo
1.e.,
B’ + B 1 | B’
(p+4—9j = zj(p+4—j27rrdr
uy )., T 2u,

That is, ignoring curvature and equating B, with By, the pressure balance constraint is
2 2 2
2u,{p)= B + B —(B}) 14.8

where By is the toroidal field inside the plasma, Boge is the toroidal field outside the plasma, <..>

means an average over the plasma radius, and we have assumed p = O at the boundary (i.e. at r =
a). That is, for a given plasma current I, and pressure <p>, the difference (Bge? - <B¢2>) adjusts

itself to ensure pressure balance. This happens because of a poloidally flowing current, either

diamagnetic or paramagnetic, in the plasma, as we derived in equations 14.4 and 14.17. In a
tokamak we have Bye? >> Bge? - <B¢2>, so that if the cross section is circular with radius ap,
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B ~(5)) =28.(p. ~B) =222
p
where
5® = 7’ B,,— B,) 14.10

is the diamagnetic flux of the longitudinal (toroidal) field. We will discus its measurement later;

it is the difference in toroidal flux in the plasma column when the plasma is initiated. Defining

37
,BI = 2 jpngﬁ
/’lOIp S
2
Le. B = M for a circular cross section 14.11
B

ba

1
with B,, = —‘”—éuo the poloidal field at the plasma edge, we can write
a
P

7B, 6P
B =1+ —2— 14.12

Hol,

From this equation we write the net flux difference 6 = (uolp)z/(San,e).(BI - 1) as the sum of
the paramagnetic flux 6P:

252
1
5P, =t 14.13
87B,,

due to the poloidal component of the force free plasma current, and the diamagnetic flux 0®q:

5D, = -0 f3, 14.14

due to the poloidal currents providing pressure balance for the finite pressure.

Toroidal, non circular geometry

In a torus curvature must be accounted for: Corrections with coefficients (a/R) appear in the RHS
of the equation for B1. For Py << R/a the corrections are small, and it should be noted only that

for Boe the value on a line R = Rg, the plasma center, should be used. We will derive that below.

Also, we must now be rather careful with definitions.
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We derived, in section 13, a general expression relating 1 to poloidal field measurements and the

diamagnetic measurements. This derivation allowed for both toroidicity and non circularity, and
gave in terms of volume integrals (equations. 12.31, 12.32, 12.27, 12.28)

By =M, +s, 14.15
4 B, - B, .
ULy = j( 2 )dV 14.16
/’lO ch PV
= dV 14.17
ﬁlv ﬂ Rchl jp

The measurable integral s; = 1 for a circular discharge. Remember that R¢, was a characteristic

major radius of the plasma. Because we can write [Bgpe-Byl << Bgo, the diamagnetic parameter

can be expressed through the experimentally determined flux (the measurement is discussed later)

oo=[(B, -B,)ds, 14.18

Sp
By substituting (Bge2-B¢2) = 2B¢(Bge-Bg), and writing

B. R
B, =—X— 14.19

de - R
then we have

87B,, 0P
Uy, =—— 14.20

1,

That is, in toroidal geometry and for an arbitrary shaped cross section, measuring 6® and the
integral s1 gives us a good measure of Pry, the volume defined current beta. Note that the field

Byo is the external field at the characteristic plasma major radius, which we can take as Rcp = Rg..

The meaning of

We can understand By by integrating by parts Equation 14.11 to give (for a circular cross section),

and assuming p at r = ap = 0, we have
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14.21
822\ o Tadp 1 82 L dp
2 ”—Irz—dr :——Irz dr

) ﬂolzzﬂ Upr ’

Here we have integrated by parts, with u = p, du = (dp/dr)dr, v = 12, dv = 2rdr. Next we use the
approximate pressure balance equation (dp/dr = jgBg - joBe, we will work in a RH coordinate
system). We substitute for jg and jo in terms of By and Bg (from x,j=V XxB), ie.

) . 10(rB ,
ﬂo]e:_jﬁ’ﬂohﬁ_— (ar ) , we obtain
B\ B,
@+i[—“’—j+ (rB) 0 14.22
dr dr\2u,) p,rdr

Substituting for dp/dr from equation. 14.22 into equation. 14.21 gives

47[ {[@ 2dr + IZBer

| Fjd( ),

_aBgaL

_|
ridr + J 14.23

=1+

).,

a, B2 dr

Ba ()

If (dBy%/dr) > O then Py > 1, and if (dBy2/dr) < O then By < 1. Figure 14.1 shows this
schematically. A reduced By (diamagnetic) inside the plasma is associated with By > 1. The
normal ohmic heating case, with By = 0.3 has an increased By inside the plasma (paramagnetic).

The figures are not well drawn, because we must have that ByR 1s constant on a flux surface.
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Figure 14.1. The toroidal field with different values of Py.

Measurements

)
-
-

--------.--
P

coil output
Figure 14.2. A simple loop to measure toroidal flux.

To measure 0P it is usual to use a wire wrapped around the vacuum vessel, as in Figure 14.2.
The voltage output from the coil is integrated to give a signal proportional to the enclosed flux.
For most cases 0@ is small, typically ~ ImWb, which must be compared to a typical vacuum flux
®, = IWb enclosed by the same loop. Therefore we have to use techniques which allow
measurements to better than 1 part in 104 to get 10% accuracy in values of By. This is done using

compensating coils.
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plasma

/ Vessel
/

Diamagnetid ik ; loop 1loop2
loop ! § |

Compensating
coil

Fig 14.3. Diamagnetic loop Fig 14.4. Two concentric diamagnetic loops
and compensating coil

Figure 14.3 shows a typical set up for the 'diamagnetic loop', a single turn coil around the vessel,
and a compensating coil. The idea is to make the vacuum signal from the two coils as near
identical as possible, so that a simple summing (or subtraction) circuit can be employed. A
compensating and balancing circuit is then employed, as for example is shown in Figure 14.5.
The vacuum common mode flux is canceled using the summing integrator, so that the balance is
determined only by the effective areas and the resistors. The product of resistance and
capacitance (RC) is adjusted using 'toroidal field only' shots (no plasma). By opening the switch
after the toroidal field (TF) has 'flat topped' much of the common mode is also rejected. Of
course, to balance the system during the toroidal field only shots the switch is opened to consider
toroidal field ramp up. The circuit shown also allows for phase difference between the two

signals to be compensated.
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integrator gate
lasma . :
P diamagnetic loop /
| C
compensating coll )
* /\/\/ N
/ _J —

[ balance resistor

—\AAN ||

Figure 14.5. A diamagnetic coil compensating system

An alternative technique is to wrap two simple toroidal flux loops around the vessel, but at

different minor radii. Such a configuration is shown in Figure 14.4. Let two concentric loops
have radii by and by, and let Ry be the major radius of the loops. Then, remembering that Bge =

ByoR1/R, we have after time integration

_ 1
O(b) =27 By| R — (R12 _biz)z +6P 14.24

) -
D(b) =27R By| R — (R’ =B ) |+ 5P 14.25

b Jan_blz +'\/R12_b22
by =B R +yR +b

8 = (b)) - k(D(b,) - P(b,)) k= 14.26
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From these two signals we can calculate d®. The subtractions are performed electronically (i.e.
analog); the constant k is determined experimentally so that d® is zero without plasma (toroidal
field only).

In reality there are problems. One in particular is caused by the discreteness of the toroidal field
system, and the current redistribution in the toroidal field coils during a shot. When the toroidal
field current is initiated, the current flows at the inner edge of the conductors to minimize the
linked flux. As the pulse proceeds, the current redistributes and approximates a uniform
distribution (not exactly because of repulsion of current channels). The time for this
redistribution to occur is approximately the radial penetration time of the poloidal current into the
conductor of radial extent w: T = TooW2/16, typically 200 ms. If the toroidal field system was a
perfect toroidal solenoid this redistribution would leave the fields unaffected. However, because
of the discrete number of toroidal fields, there is now a time varying toroidal field ripple. The
size of the changing field ripple depends on where a pickup coil is placed: therefore two coils
linking the same steady state flux can link different transient fluxes. It is best to place the coils

between the toroidal field coils, where the redistribution effect is smallest.

Another problem is due to poloidal eddy currents in any conducting vacuum vessel. This
produces a non zero change in the toroidally averaged By, not just a local ripple. Therefore it

couples strongly to the pickup loops. Compensation for both the effects discussed has been

performed successfully using software, by simulating redistribution and eddy currents as simple
circuits, coupled to both the primary By coil current and a secondary pickup coil.

Further problems occur if the loops are not exactly positioned, so that they couple to the poloidal
fields produced by the primary, vertical field and shaping windings. That any such effects exist
can be checked for by firing discharges with positive (+) and negative (-) By. Let AP, be the

signal caused by poloidal field coupling, A®(+) the signal obtained with positive By, and AD(-)
the signal obtained with negative By. While the toroidal field coupling effects will change sign

with reversing By, any poloidal field effects will not. Therefore
AD(+) - AD(-) = 2(6D + AD,) 14.27
AD(+)+ADP(-) = 2AP, 14.28

Any finite A®, can be correct for using a circuit model again, with the coupling between any

winding (including vacuum vessel) and the pickup coil written in terms of mutual inductances.
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15. FULL EQUILIBRIUM RECONSTRUCTION

The problem under discussion is how to reconstruct as much as is possible about the equilibrium
from external measurements. In particular, if we knew everything about the fields outside the
plasma, what could we uniquely determine? Could we separate B1 and 1;? (In principle yes for
toroidal systems). Could we go further and actually uniquely determine the plasma current

distribution of a toroidal plasma (I don't know)?

If we want to allow measurements of dp(y)/dy and FdF(y)/dy we must have redundancy beyond
that required to solve the equilibrium equation with a known current density profile. We see
immediately a problem in straight geometry, because with straight circular cross sections the
magnetic measurements must be consistent with a solution that has concentric circular surfaces.
In this case the measurements are consistent with any profile function which gives the correct

total plasma current, so there is an infinite degeneracy.

In practice the mathematical subtleties of what can and cannot in principle be determined are not
discussed.  Instead the usual technique for equilibrium reconstruction is to choose a
parameterization for jy, with a restricted number of free parameters. These free parameters are
chosen to minimize the chi squared error or cost function between some measured and computed
parameter, for example the poloidal field component on some contour. Obviously we need some
boundary conditions, as discussed in section 8. Information available might consist of the flux
on a contour, the fields B, and Bt on a contour, and currents in conductors, the total current, and

if lucky the diamagnetism. Typical parameterizations are

Jo= -9 (o) 151
Jo = (,0y + ,8y" + o,y )R+ (b, 5Y)R” 152

with Sy = (W-Whoundary)(Wmag axis-Wboundary). In each case the term proportional to R represent
the part of jo proportional to dp/dy, and the part of jy proportional to R-! is proportional to
FdF/dy. R, is some characteristic radius. The assumed function g might be of the form g(dv,Y)

= exp(-y2(1-8y)2, dyY or &y +ydy2. If in equation 15.1 the function g(8y) is 1, then the
description of jg is called quasi uniform: for a circular outer boundary there is an exact analytic

solution of the equilibrium equation.
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The general results show that, given only poloidal field magnetic measurements (i.e. no
diamagnetic signal), then By and 1; can only be separated for significantly non circular equilibria.
From our discussions of Br+lj/2, we know we can measure Br+Li/2 exactly anyway. If we have
reconstructed the plasma surface then we can evaluate the integrals s; and sp on that plasma
surface, and then L; = 1;. For circular equilibria it is found that only the sum Py + 1;/2 can be
found. Of course, adding a diamagnetic measurement allows the separation for any shape, as we
have seen. Also adding a pressure profile form, or the pressure on axis, is enough to allow
separation even for circular discharges. It is generally found that a distortion of the shape to b/a ~

1.3 is needed to make the separation.

A significant problem is that, having made specific assumptions about the form of the current

density profile, we do not know how general our results are.
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16. FAST SURFACE RECONSTRUCTION

Here we want to investigate 'fast' methods of determining the plasma boundary, and fields on that
boundary. If we can do this, then we can exactly derive parameters such as By + 1i/2, and g, on the

boundary, as well as parameterizing the boundary shape itself. Here we specifically do not want

to obtain any information on fields and fluxes inside the plasma boundary.

In the vacuum region Sgyacuum bounded by the contour Ipjasma and 1, the flux function satisfies

the homogeneous equation L*y = 0. A solution for this equation which agrees with boundary
conditions on 1, and that is valid in a region containing S¢vacuum, must then be valid on the

plasma boundary itself.

In general we choose to approximate Y by a series solution
0 N
=y, =y +ZCJ'ZJ 16.1
j=1

With W9 any known terms, and the basis functions all satisfy the homogeneous equilibrium
equation on some region Sgo which includes the vacuum region Sgyvacuum- Following the
discussion in section 8 we can write Y = Wext + Wint from Equations 8.12 through 8.15. Usually
we take an interior solution Yip associated with current distributions inside S¢, and an exterior
part Wex¢ associated with currents in the exterior region Sgext. For example Wext may be known
from measured currents in external conductors, or calculated directly from the measurements

using Green's functions. Various representations for the plasma current have been used;
an expansion in toroidal eigenfunctions,
discrete current filaments,
single layer potential on a control surface,

To date no purely analytic answers are available; generally the coefficients in an expansion, of
position or currents in filaments, are altered numerically to provide a minimum "chi squared"

between some measured and computed fields or fluxes. For example, suppose the actual
measurements are represented by q;, with i running from 1 to M. There is a response matrix Q

such that

0 N
qest,i = qem‘,i + ijlch'j 162
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where et j 15 the value expected for q; when Equation 15.1 holds. qestO,i is associated with o,
and the known Qjj is associated with y;. Then the usual least squares approach will determine the

coefficients cj to minimize the function

ﬁﬂi 163

i=1 o

l

With o; the standard error of the ith measurement. This procedure may not be stable, in which

case some numerical damping is added

One technique which avoids the iterations necessary to match the measured and predicted field
components is as follows. From the measured fields construct the multipole moments Y, using

the techniques outlined in sections 9 and 10. Then m toroidal filaments with current (Ip/m) can
be positioned to give the same moments Y, as those measured. Because we have analytic forms
for the Y, produced by discrete current filaments (the integral Yo, = qu,fmdSq) only takes a finite
value at the filament location) we can derive analytic expressions for the filament positions in
terms of the measured Yp,'s, thus avoiding the need for the iterative procedure. Just as discussed
above, we then use toroidal filaments with known currents for external windings, the m filaments
for the plasma, and plot the flux contours immediately. Solutions up to the plasma boundary are
as exact as our set of moments allows. I am not sure how unique the solution is, or to what extent
I should consider taking more than m filaments. We have still to ask if our solution is unique:

that is, do the m moments uniquely specify the fields on the contour 1?

An example of such a procedure is shown in Figure 16.1a. Figure 16.1b shows a full
equilibrium reconstruction with jo(r) iterated until a good fit between measured and computed

moments was obtained. Clearly the 3 filament approximation, with the filaments chosen to give
the measured moments Y,Y2 and Y3, gives a good description of the outer surface.

In principle we should be able to extend the "moments with filaments" method of finding the

plasma shape to the use of an analytic representation for the current density. Indeed, we did this
in section 11 to find a relationship between the second moment Y, and ellipticity. However,

there we made an arbitrary choice that the current density be flat. In fact we should specify that jg
satisfy the Grad Shafranov equation: this problem is considerably more complicated. However, if

solved, we should be able to obtain analytic relationships between the measured moments and the
plasma shape. We would still have to parameterize the form for jg: this would be restricted by,

for example, a knowledge of the ratio of q on axis to q at the edge.
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Imy’

R
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. Flux surfaces, computed for a three-filament plasma 02 o
Current, with the experimentaily measured moments. The Flux surfaces predicted by a free-boundary equilibrium
broken line represents the plasma surface, the circle the calculation. Flux-independent current, with poloidal beta= 0.5,
"cuum vessel around which the line intergrals were measured. gives moments similar to those measured

Fi
gure 16.1a. External surface reconstruction Figure 16.1b. External and internal
surface reconstruction
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17. FLUCTUATING FIELDS
(MIRNOV OSCILLATIONS and TURBULENCE)

Mirnov Oscillations

In tokamaks it is expected that magnetic islands play a role in determining transport. Their
structure is approximately of the form exp(i(m6+n¢)), and they are located at surfaces where q =

m/n, a ratio of integers. This is illustrated in Figure 17.0.

resonance 1

- resonance 2

Figure 17.0. The envelopes of two adjacent magnetic islands.

In terms of the Fourier coefficients of the radial component of perturbing field by at the

resonant surface ry, (where q = m/m), the island full width w is given by:

17.1

Note that if the current distribution is uniform, (so 0q/0r=0) and a resonance exists, this predicts

that an infinitesimally small perturbing field will destroy the circular flux surfaces completely.
Mirnov first studied their presence using bg loops, actually measuring obg/ct outside the plasma

(B denotes total fields, while b denotes just the oscillating part). Because the coils are outside the

plasma they do not measure the field strength at the integer q surface where the perturbation is
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resonant, so that we cannot immediately calculate the magnetic island width using Equation 17.1.
Other problems to cope with include how to determine the poloidal (m) mode number from a set
of coils measuring bg if they are not on a circular contour, so that a simple Fourier analysis is not

possible, and toroidal effects.

If the field perturbation is b, then outside the circular plasma at some radius r > a, we have

ab . .
Veb="24+2p, +2p, =0 17.2
or r R
im in
(Vxb)ee, =7b¢—;bg 17.3

Form the second equation we have

b, _mR
2 =

17.4

P nr

which for low m, nis >>1, i.e. bg >> by. Therefore with Equation 17.2 we determine that the
most important contributions to measure are by and bg, not by. If we are measuring just inside a
conducting wall (e.g. the vessel) then b, = 0, so that only bg should be monitored (but note the

conducting wall also affects the value of bg: it can also affect the instability which produces bg
itself).

coil atr n

=

e filamentatr=a ,0=9

Figure 17.1a Figure 17.1b

A common representation of the fluctuations is as current filaments aligned along the field lines.

Initially let us consider the fields produced in a straight cylinder by a current filament (current I)
aligned along the cylinder, located at poloidal angle 0 = 0, at r = a (see Figure 17.1). Then.

- (r—acos(6-4,))
* 27 (@ +r —2arcos(6-6,))

17.5
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1 asin(6 - 6,
b =Lt — (0-6) 17.6
27 (@* +r* —2arcos(6- 6,))
These can be rewritten by expanding the denominator into [r - a exp(i(6—6¢))].[r - a.exp(-

1(6—0¢))]. For example:

I 1

bo= 'ZO;I— (r— aeli(g_gO ))+ (r— cz.el_"(g_g(’))J| 7
These new expressions can be expanded in powers of (r/a), so that
r<a r>a
inside filament i outside filament
bg —él—;ii(fl) cos(n(H— o, )) 5—;’;;(2) cos(n(e— 490))
by _5_;;;(%)" sin(n(@— o, )) — éljzig(g)n sin(n(e— o, ))
17.8

1.e. we have the fields as a Fourier series. A certain sum of the coefficients allows us to look only

at the current inside the cylinder, while ignoring external currents:

2r 2z m
r [ b,(8)cos(mO)do—r [b,(6)sin(m8)d6 = ﬂol(ﬁ) cos(m8,) if a < r (outside)
T
0 0

2z 2z

r [ b,(8)cos(mO)do—r [b,(6)sin(mO)do=0 if a > (inside)
0 0

2z 2z

r [ b,(8)sin(m®)d6 +r [ b,(6)cos(m)d6 = ,uol(ﬁ) " sin(m6, ) if a < r (outside)
0 0 r

2r 2z
r [ b,(8)sin(m®)d6 +r [ b,(6)cos(mO)dO=0 if a > r (inside)
0 0

17.9

Consider just the m = 1 component . These equations tell us that, in straight geometry the sum of
a modified Rogowski coil with winding density proportional to cos(8), and saddle coil with width

proportional to sin(0), tells us the horizontal position. A modified Rogowski coil with winding
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density proportional to sin(8), and saddle coil with width proportional to cos(0), tells us the
vertical position. Actually we already new this; section 9 tells us how to do better and correct for

toroidal effects as well. Note if the Mirnov coils are mounted just inside a conducting vessel then
b = 0, and the second terms are zero.

Now we must consider a general distribution j(r,0) instead of the line current at r = a. Then using
complex notation, and assuming a conducting vessel where b, = 0:

m27w

2 r '
rjbg(e)eimedé?: i, j dr'(%) j rdej(r , 0™ 17.10
0 0

0

thus relating moments of the external field to moments of the current density. Rogowski coils
with winding density cos(m8) and sin(m0) would directly measure the LHS of this equation
(again we knew this from section 9). Now we see a problem: the LHS is an integral over 0 while
the RHS is an integral over r’ and 6. Without some assumptions we cannot work back from the
externally measured fields to the currents at the surface. This is exactly the same problem that
we came across in dealing with reconstructing the plasma shape from the multipole moments
without invoking equilibrium: varying the assumed j¢ distribution gives different plasma shapes.

A typical assumption is

ir,0)= o)+ e S (=) 17.11

with jo(r) the equilibrium current, ry, the radius of the resonant surface, d(r-rmp) the delta
function restricting the currents to r = ry,. The perturbed field measured at r, produced by the

current perturbation jy, at ryp, 1S

") for r > Ty 17.12

. (rmn e i(m@+no—w
bH(r9 0’¢):ﬂ0]mnrmnk r ) e( P

Here we have introduced a frequency f = @/(27) into the problem: the filaments are rotating. If
we want to consider by and bg, and work in real space, then

. m+1
b,= —'uoj’g’r’"” (ﬁ) cos(mb+ngp-w,,1) 17.13
r
. m+1
b, = —%(ﬁ) sin(mé+n¢ - w,,1) 17.14
r
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Often we will write an expression for the Fourier coefficients of the field at the resonant surface,
bmn(’, =r ) — IUO.]mnrmn

mn

5 . Note if we were working on a rectangular vessel we would measure

for example by, (see Figure 10.1):

m+1
b, = b, cos(8)+b,sin(6) = bmn(r”r’”) cos((m +1)0+ng -, 1) 17.15

i.e. we see that working with a rectangular contour the phase varies as (m+1)0, instead of m0

when working with a circular contour.

Now in toroidal geometry there are complications. We must consider that
a) jmn produces a stronger field at the inner equator
b) the perturbation are displaced because of a Shafranov shift
c) the pitch of the field lines is no longer constant

We will now derive the toroidal corrections for a case where we are considering surface current

perturbations for our model equilibrium of section 6. We start with the field line equation for the
total equilibrium fields, evaluated at a radius r = ap, the plasma minor radius:

adg _ Rdg 17.16
B, B,
With
R=R, + acos(6) 17.17
B, (R=R
B, = wlR=R) 17.18
(1 +icos(9)j
8
I
B, —0n L Acos(é?)j 17.19
27a R,
l
A=pi+3-1 17.20
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Figure 17.2. Field lines around a torus, for the case q = 2.

We can derive what is sometimes called qppg, sometimes qp. This is the number of toroidal field

revolutions a field line must be followed to make one poloidal revolution. Figure 17.2 shows the

field lines for the case where q = 2. Generally we have

_1 Ta—BﬂdH 17.21
9 mrp = 271 RB, :

Keeping (a/R)? terms gives

Do = %ﬁzo[l + (Rﬁgjz(u o.s(ﬁ, +i2)zﬂ

—q.. [1 + (R%ﬂl + 0.5(/3, + %)zﬂ

17.22

8

The toroidal angle covered when a field line is followed around a poloidal angle of O is

aB, ] a N a N
¢ = J-R_Bg do= qcm_.ﬂt 1+ (Ej cos(e)j 1+ (EJACOS(Q)j J|d0

I 1

- qmte—i(z +A)sin(8))
Rg

where we have written qcjrc for the value in a straight cylinder. In this straight cylinder we would

have the toroidal angle ¢ covered in following a field line a given poloidal angle 0 given by
Equation 17.23 with a/Rg = 0, i.e. 0 = (circf. Now we see that, in transferring to toroidal

geometry, we must replace the poloidal angle 6 by 6%, where
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o =2

_, a L )
=6- R B+ S+ 1]sin(8) 17.24

9mup

i.e. the perturbing fields must have the form (for ryy, = a)

m+1
b,=b (r’”r”) cos(me* +ng— a)mnt) 17.25

mn

Figure 17.3 illustrates the field line trajectories in (¢,0) space. Here we have assumed that

(D) = % +(q, — 4, )(i) , with qg the value at r = 0, q, the value at r = a (the plasma edge).

41
M} . In the figure we show examples for a = 0.25 m,
qa - qO

Rg=1m, qo=0.9, qa =32, Br=0.5,1; =0.9. The solid lines are for qyyp = 3.2 (the plasma

This allows us to express r = a(

edge), and the broken lines for quyp = 2. The shear in the q profile is apparent.

¢ Pif
3 Pit
2 Pit
Pi}

-Fi
-2 Pi
-3 Pi
-1 Pi

inside

outside

Figure 17.3. The trajectory of field lines in ¢, 0 space for q =2
(broken lines) and q = 3.2 (solid lines).

Analysis techniques

With a set of Mirnov coils spanning a poloidal cross section of a low beta, circular cross section
tokamak, we can take a Fourier transform in 0 to obtain the amplitude of each component
cos(mO+nd-mynt). If we have a rectangular vessel, then we have shown that the relevant

expression is cos(m6+6+n¢-wynt). This has been done both computationally, and using analog
multiplexing. We should allow for the toroidal corrections discussed above when performing

this Fourier analysis; so that 0 is replaced by 0*. Figure 17.4 shows the placement of the coils

124



Magnetic fields and tokamak plasmas Alan Wootton

around a circular vessel. Both poloidal and toroidal arrays are required to determine poloidal (m)
and toroidal (n) mode numbers.

Vacuum
I Vessel

Set of 8
Mirnov Coils
To Determine m

Mirnov Coil Other Mirnov
Which Measures  ¢,iis To Determine n

SIDE VIEW Be TOP VIEW

Figure 17.4. The placement of Mirnov coils (magnetic pick-up coils) around a vessel

Figure 17.5 shows an example of data obtained from PBX, a machine with a non circular vessel
but operated with a circular plasma. Coils 1 through 5 are located on a vertical line at the outer
equator, with coil 1 the lowest. Coils 6 through 10 are located on a vertical line at the inner
equator, with coil 6 the highest. Coils 11 through 14 are elsewhere; but in particular coil 12 is at
the outer equator (0 = 0) while coil 13 is at the inner equator (0 = 7). Data is shown for a period
of 10 ms. The scale in volts is shown on the right hand side. A peak first appears on coil 1, and

then progresses to coil 5. An outside to inside asymmetry (coil 12 to coil 13) is evident.
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MIRNOV SIGNALS B,

Another technique is to look in the frequency domain.
poloidally and toroidally around the plasma.

rectangular vessel as an example (we measure by), then the fundamental component of the ith coil

e

-l

0

T T
280 252 254 286 288 290
TIME (msecs)

VaVaVaVvaVvaVve Ve Ve Ve VA Ve Ve Ve

INNNNNNNNNNNN,
VV VNV NN NNV NNNN N

Figure 17.5. Data from PBX.

signal will be of the form

S, =

Acos(w, t— ) 17.26

with @y, identified from power spectra. The relative phase shift §; will be, for the m,n mode,

1

where (0;,0;) locates the ith coil, 8y+2pk; expresses the multi-valued phase property. If we were

r
o =m 6 —
I

AN
{14+ LJsino)| -0, 4n0,+ 4 20, 17.27

4

in a circular vessel, then the phase shift would be
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Suppose we have coils placed both
Then the relationship between the phases of
different signals identifies m and n without the amplitudes being known. By looking in the
frequency domain we can reject noise, and other modes at frequencies other than ®y,,. Taking a
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rmn( li O —I
= K1+/3,+5)sm(6’i)J+n¢)i+§0+27£ki 17.28

8

By performing a best fit of the measured phase with this expression gives m and n. For example
plotting d;-n¢; against 6; (to remove the toroidal effects) should give a line of slope m+1. An

example is shown in Figure 17.6, data from PBX. The best fit to the data was obtained using m
=2,n=1.

5 T | T
o) ™ - 2
n

4 ! i
(o]
W
[.2]
I 3
-4
(L]
s
W
(o)

2 -
w
wn
L- 4
x
a.

= _

0 | I |

-90 0 90 180 270

POLOIDAL ANGLE
Figure 17.6. The phase of the experimental data shown in
Figure 17.5, together with the phase given by equation 17.28.

withm=2,n=1

Turbulence

Magnetic coils outside the plasma measure not only the low m,n “Mirnov” oscillations (tearing
modes), but also higher frequency, higher mode number fluctuations. Many m, n modes are

possible; Figure 17.7 shows an example where 1 < m < 40, and 1 < n < 12 are considered.
Each point represents a possible mode combination, the dark area shows those possible when q,

=3.2,qo=1, and constraints to m are applied (in this case 6 < m < 12).
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0@ 1 2 3 & 5 6 7 & @4 1011 12
Figure 17.7. The (m,n) space, with the limits imposed by qo = 1
and g, = 3.2. The darker shaded area represents the space
considered in the analytic model described in the text.

The measurements of the fluctuating fields are usually restricted to root means square (rms)
fields, byrms and bgrmg, at r > a, the limiter radius. We would like to know how this is related to

the field components at the resonant surface, so that we can calculate associated island widths.
Typically we want to determine by, from a measured bgryg outside . There is no unique

transformation from bgymg t0 bymn, SO @ model must be invoked.

We proceed by assuming the fluctuating self generated field bgys measured with magnetic
probes at r > a is proportional to the required by at rpyp = a. Evidence for such a model comes
from correlation measurements between Langmuir probes and magnetic probes; the measured
berms at r > a is apparently determined by plasma current fluctuations at r = a, i.e. at the plasma

edge. Outside the fluctuating current filaments (r > ry) the magnetic fields can be approximated
by

—(m+1)
b,=>(b,,) (—’”j cos(m@+ng+6,,) 17.29

m,n — mn
’ =T

with ¢ the toroidal angle, 6 the poloidal angle, and &y, a random phase. This ignores toroidal
effects, which introduce terms proportional to (m#1), and is strictly valid only for small n. If a
conducting wall is present at r = b then the expression is modified by the factor [1-(r/b)2™]. For
stationary ergodic turbulence the time and spatial averages are the same, so that the root mean

square is found as a spatial average. Outside the singular surface we measure
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—2(m+1)
. (—rj 17.30
mn r

mn

br mn

Brs = by s =Bpoms = Jo.sz

m,n

To go further and obtain a relationship between bgrmys at r > a in terms of by at r = 1y We must
specify

a given current density or safety factor profile q(r),

the dependence of by, on m and n,

locate all possible m and n pairs where q = m/n,

specify upper and lower limits to either m or n.

In general this must be done computationally. However, some progress can be made analytically.
We can approximately solve Equation 17.30 for bg;mg at r > a in terms of by at r = 1y if we

take bymp independent of m and n over some range to be specified, and a q profile relevant to the

2
r . .
plasma edge, for example g = g, \_) . Then we can relate the resonance location ry, to a given
a
1

1 1

2 2
Lo (ij - (—m j 17.31
a \q, nq,

With p = r/a defining the measurement position and q = m/n, Equation 17.30 is written as

b 2 1 2(m+1) (m+1)
Sl o 0.52(—) (ﬂj 17.32
b \p nq,

rmnl/ 51

p =1 is a constant, namely the location of the magnetic pick-up coils used to measure bypyg.

We now replace the summation by integrals. The space we are considering is shown in Figure
17.4. The first integral, Jdn, is from m/q, to m, allowing all n values in between. The second

integral, [dm, is from mp to mp, with mp >> mj. In Figure 174 m; = 6 and mp = 12.
Unfortunately our chosen profile allows q < 1 (when ryp/a < 1/\/qa). To restrict n > 1 we should

choose mj > q, = 3. The result of the integration is

o 1=

1 ( 11 j
b 4qa ln(p) IOZ(ml +1) p2(m2 +1)

1 1 1
__ 2(1n(qa )+ 2 ln(p))(qgmn +1)p2(m1+1) - qgm2+l)p2(m2+l)]
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17.33

This expression can be further simplified for p > 1 by noting mp >> 1 (so all terms involving mp

disappear) and m; > 1 (so the term involving qa(m1+1) disappears) to give

Do L 17.34

- 2p(lnl+1)JQLl ln(p)

This is the required result, giving us byy, at the plasma edge in terms of the measured bypg

outside the plasma. Because the terms involving my have been ignored in deriving Equation
17.34 it predicts (bymg/Ibrmnl) b1 = The more complete expression, remains finite, and

(”_] _ |Gy —m) 17.35

lp 2q,

rmn

We conclude that the measured rms field outside the plasma (p > 1) is determined only by the
lowest m number (mj); the higher m numbers fall off too rapidly to contribute. Indeed, if

Equation 17.34 is taken to represent the results, then a fit of the form by, o< ¥ gives the result

y=m +1+ 17.36

21n(p)

We can also measure the frequency of the fluctuations. We assume that the observed frequency

is described by an expression of the form

po2__m (K‘Te %—EJ 17.37
B‘P

27 27, leln, or
This is consistent with experimental results, with K a factor of order 1. We also know
experimentally that the term involving E; dominates the term involving K, and that we can

approximate the expression by

—cmE
[ 17.38
2m, B

mn— ¢

with % a factor = 1.5. E; is approximately constant for p < 1. We now relate ry, to ¢ = m/n by

assuming a specific q profile. For the simple q profile used in deriving the analytic results the
transformation from ry,, to m and n is given by Equation 17.31. A more realistic q profile gives
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1 1
1 m 2 m 1 2
rmn:(q_qojzz n qo ~ n

a qa - qO

17.39

Substituting either Equation 17.31 (edge model, f = f]) or Equation 17.39 (f = f3) for ry, into

Equation 17.38 gives an expression for the frequency of a mode of given m and n;
—cE
_ZENb

27ZaB¢

1

17.40
~ —CE,.‘/(qa —1) , m?
L= 27aB, d(ﬂ—lj’
n

These can be normalized to the frequency fy/n=2/1 of the m = 2, n = 1 mode, which is often
measured, to give from Equation 17.40

’mn
fi = Tﬁnm:zn

and from Equation 17.41

17.41

17.42a
17.42b
mhh
1007 4} )
1 5 -
L -
sot |t =3z
F )
[ .
et 4% v
.\:.I .\'l'I -
4I:I i II\'. 11\'. - )
20f I
5 10 15 |

20 26 30
Figure 17.8 The values of m and n included and excluded by restricting f > 50 kHz,

when fi/n=2/1 = 6.5 kHz. The excluded area is to the left side of each filter line. The
dashed straight lines represent the limits imposed by 1 < q< 3.2. The dotted curve
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represents the limits imposed by the frequency filter from Equation 17.42a and
Equation 17.42b.

If only modes with f > fy,,;, are considered, we can derive myjp, a function of fiin/f/m=2/1 and n,

which separates modes which are and are not included in any subsequent analysis. The results
are shown in Figure 17.8 for fihin = S0kHz, fin=2/1 = 6.5 kHz. In general, frequency filtering

should be considered more a restriction on n than on m.
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18. INTERNAL PLASMA MEASUREMENTS

So far we have been concerned with measurements of fields taken outside the plasma. In
comparatively low temperature plasmas (say Te < 50 to 100 ev), we can design pickup coils to
make internal measurements. There is always the worry that the insertion of such a coil changes
the very plasma characteristics we would like to determine. This fear is usually allayed by
monitoring certain characteristic plasma features (sawtooth activity, Mirnov activity, loop
voltage) to make sure they do not change significantly during probe insertion. Figure 18.1 and
Figure 18.2 show a possible coil set up which might be used. The coil itself must be protected
from the plasma, typically by a stainless steel case, possibly surrounded by a carbon shield. The
geometry of the surrounding materials must be carefully chosen if we are looking at high

frequencies so as not to cut off the very signals we want to measure.

. Tvpical internal magnetic probe construction

Single-Col Multi-Cail
Probe Probe

| )

icm

\ /‘
Stainless steel "

stem

Sifica Housing

0.0

. Typical probe insertion geometry

Boron Nitride

| / Holaer \\

Vacuum seal

[foXoieXoWeXoNoNeNe:

Boron Nitride

Copper Coit ~ Former
Figure 18.1. A possible internal coil Figure 18.2. A typical coil placement,
construction. showing the flexible belows.
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Equilibrium

We first discuss the equilibrium. From the basic field measurements themselves we can,

assuming circular straight geometry, reconstruct the current from the equations

Jo=—— rB,,) 18.1

jo=-—<L(,) 18.2

i.e. to obtain jy(r) we only need the radial dependence of Bg. Unfortunately we have to contend
with non circularity and toroidicity. One technique which has been applied is illustrated by the
results shown in Figure 18.3, where small pick-up coils were used to measure the poloidal
magnetic field at current peak in a small tokamak (TNT inJapan).

.__I_._T__.r.
oo

—
1

IN

=

i

g
100G

BEREE

v

S —— _‘z\to —
The measured poloidal magnetic field at

the current peak (700 usec). The dimensions are _
in millimeters.

Figure 18.3. Equilibrium poloidal fields measured in TNT

We move to the coordinate system of Figure 1.7. The radial component BR(R(,z) is measured
along a vertical line R = R, and the vertical component B,(R,0) is measured along a line z = 0.

The results are fitted to expressions of the form
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N
B(Ry2)=D a" 18.3
n=0
N
B.(R,0)=D_b,R" 18.4
n=0

The magnetic axis is found where from the zero crossing of the resulting polynomials. The flux

function is found by integration:

N
w(R,,z)= —ROJ. > (a,2" Mz + const 18.5
n=0
N
l//(R ,O)= .[ > (b, R MR + const 18.6
n=0

The current density is then obtained as

0B, OB
._9B; 0B 18.7
Hof==7 =g

The constants (giving 0Br/0z at z = 0 and 0B,/0R at R = R() must be determined by making
some assumptions concerning the plasma shape, say that it is mostly elliptic. Some examples of
the results of this analysis, where N = 5, are shown in Figure 18.4 for the fluxes and Figure 18.5
for the current density.
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A rough sketch of magnetic
surface at the current maximunm.
The equi-psi surfaces are drawn
for every 1t x 10~3 V-sec. Num-
bers at arrows show the field
component parallel to the arrows
in unit of gauss. The shaping
coil current is presented in
kAt, and minus sign means that
the coil current is parallel to
the plasma current. Coil current
has up-to-down Symmgtry.
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A typical example of the current density
profile at the current rising stage (¢ =500 usec) and
at the current peak (£=700 usec). Origins of the
graphs correspond to the center of the vacuum
vessel.
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Figure 18.5. Current density profiles for TNT
Given the current density we can also attempt to deduce the safety factor q.

Internal magnetic measurements are also used to determine the internal electric field. From

Faraday's law

f»E-dl:—%(jBonde 18.8
1

N

we have, applying this to the geometry of Figure 18.6,

td
E,(r)=E,(a)- [ —Bdr 18.9

Figure 18.6. The geometry used to describe the
measurements of internal electric field
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Toroidal electric field evolution

Figure 18.7. The internal electric field prior to a disruption (from Hutchinson)

Figure 18.7 shows some spatial profiles of Eg from this analysis just before and at a disruption.
Although the edge electric field goes negative (the negative voltage spike) the internal electric

field strongly positive. In principle, having measured j and E we could derive the local
conductivity.

Mirnov Oscillations

The same probes used to measure the internal equilibrium properties can be used to look at the
Mirnov fluctuations (as long as the coils have a sufficiently high frequency response). Data from
such experiments has isolated the radial dependence of the fluctuating by, bg fields, as shown in
Figure 18.8. It agrees with our discussion in section 17, namely b o (rpy,/r)™*! for r > rmn

without a vacuum vessel. In the presence of a conducting vessel at r = ry, we must account for

the image currents which flow, so for example we would expect
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Amplitude of m=2
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Radial dependance of m=2/n=1
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Alan Wootton

Figure 18.8. The measured radial dependence of the fluctuating poloidal fields
(Mirnov oscilations) from and m = 2 tearing mode (measurements in TOSCA).
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19. THE CONDUCTING VACUUM VESSEL
Skin depths

There is a vacuum vessel surrounding the plasma. Early experiments used insulating vessels (e.g.
quartz or ceramic), which were later replaced by metal (stainless steel). In order to introduce the
toroidal electric field necessary to initiate the discharge, this vessel must be highly resistive. This
is ensured either by making a thin vessel, using convolutions, or adding at least one insulating
break.

(b)

- Clreult formation by the symmetrical (a) and noa-symmetrical

(b} components of the current in the casing in the prescnce of transverse
8aps.

Figure 19.1. The currents flowing in a vessel or shell with a poloidal (or
transverse) gap or insulating break.

Circuit formation by the non-symmetrical component of the
current in te casing in the presence of longitudinal and transverse gaps:
(a) longinudinal gaps causing no distortions of the transverse field:

(b) longimdinal gaps distorting the transverse field.
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Figure 19.2. The currents flowing in a vessel or shell with toroidal
(i.e. longitudinal) and poloidal (i.e. transverse) gaps.

There are two types of insulating breaks, as shown in Figure 19.1 and Figure 19.2, (taken from
Mukhovatov and Shafranov). For transverse gaps (Figure 19.1) any symmetric component of
current must flow on the vessel surfaces. However, non symmetric components, introduced for
example by axisymmetric plasma motion, will produce volume currents. At the gap the non
symmetric currents flow in opposite directions. They will produce a local vertical field, which
must affect the plasma position, as well as the interpretation of magnetic coil signals. The two
(surface and bulk) currents have different decay times, as discussed later.

If both a transverse and a longitudinal gap exists, Figure 19.2 shows that for the non symmetric
components the placing of the break in poloidal angle is important. A longitudinal gap at the

outer equator does not distort the field, while a gap at the top or bottom does.

X

A
v
d
A a

_______________________ »Z
Figure 19.3. The geometry of a conducting shell or vessel.

We are concerned with the currents induced in a resistive vacuum vessel lying outside the
plasma, and their effects on all the measurements we have discussed. As a characteristic
example, consider a homogeneous field B = Bgsin(mt) parallel to the plane of a conducting plate;
the inner and outer boundaries of the plate are at a distance b and a from the symmetry plane (see

Figure 19.3). Maxwell's equations reduce to

oB
Vx(VxB):—ﬂOO'E 19.1
When the ratio of the plate thickness to the layer thickness is much less than unity, i.e. d/b << 1,

the penetration of the field is characterized by a time constant

o= Hoobd
2

19.2

Now we can consider two cases, depending on the ratio of plate to skin depth, d/dgkin, where dgkin
= (2/(uow))/2. If d >> dgkin, (i.e. at high frequency) we have a thick plate, and we can consider
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the plate to be perfectly conducting. If d << dgin we have a thin plate, and then the characteristic

penetration time is given by equation 19.2, namely T = ucbd/2.

The result is the same for the penetration of a longitudinal field into a hollow cylinder, i.e.
(approximately) a toroidal field into the toroidal vacuum vessel. T is the L/Q time for the decay
of the poloidal current, with Lg = Tuga2 the inductance per unit length, and Qg = 27a/(cd) the
resistance per unit length. The same result applies for the penetration of a transverse field into a

cylindrical shell, i.e. a vertical field into a toroidal vacuum vessel.

When we first initiate some perturbing field, the vessel will first appear as a thick plate, then
change over to a thin plate after some time Tg. This time Tg is just the time it takes any dipole
currents to become homogeneous, and is obtained from T ~ T/(2w), where ® is the value for
which dgkin = d/2. We take (d/2) to allowing for penetration from both inside and outside the

plate (from gaps in the plate), and obtain.

_ muyod’

T, 19.3
16

Application to a diamagnetic loop

Here we are considering poloidally flowing currents. Consider an N turn loop wrapped around a
vessel with minor radius ay, used to measure the plasma diamagnetic current Iy = <p | >/Bgy. After

a time t > Tg we can consider the vessel as thin, and need correct only for the long time inductive

time constant L/Q. The voltage around the loop is

Ly A 19.4
N ar T dr

with I the diamagnetic current, I the vessel current, M = mpap? and L = a2, The vessel

current is given by

O=QIV+M%+L% 19.5
dt dt

where Q = 2ma,/(cd). From 19.4 and 19.5, we have

1o ]
I :WL;{ €dt+§€J 19.6

Therefore we can correct the measured voltage € to obtain the required diamagnetic current I.
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Application to position measurement

Here we are considering toroidally flowing currents. If we are using the moment coil method to
measure the plasma position, then the coils measure the current center of any currents within the
contour on which the modified Rogowski and saddle coils are wound. Therefore, if these coils

are outside the vacuum vessel, they will be sensitive to any currents induced in the vacuum vessel
itself. If we consider times t > T, then we need only worry about the homogeneous vessel

currents, driven by any non symmetric part of the flux function, W,. A vessel current with

equivalent surface current density

d o
i = 0B d, =2 Oy 19.7
27R, ot

will appear, where subscript v refers to the vessel. This asymmetric part of the flux function can

be taken, for example, from the analytic expressions given in section 6.

Another method of calculating the induced vessel (toroidal) currents is to represent the vessel as a
number of filaments, as discussed in section 1. Induced currents are then calculated through a
mutual inductance matrix. The plasma might be specified analytically or as a single, or number
of, filaments. Each vessel filament must be given a minor radius, which might be taken as d,/2,
half the vessel thickness, so that the self inductance is finite. Even the non homogeneous current
components can be calculated in this way, if enough filaments suitably spaced and connected are
included.
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20 . THE IRON CORE

Many tokamaks have an iron core to ensure good coupling between the primary winding and the
plasma. This iron core has the additional advantage of keeping 'stray' fields away from
diagnostic apparatus. However, it complicates the study of the plasma equilibrium, because the
free space expressions for the fields produced by circular conductors are no longer applicable.

Here all I want to do is to point out that iron is a pain to deal with.

@)

poloidal field

iron

Figure 20.1. A straight iron cylinder Figure 20.2. An iron core with an air
surrounding a plasma gap, with a linked plasma (current I).

The iron core introduces a new boundary condition. It is often stated incorrectly that the lines of
force enter a medium of infinite permeability (the iron) perpendicularly, but this is not always
true. A simple example of a straight iron cylinder surrounding a straight wire with current shows
this not to always be the case: in Figure 20.1 the field lines are tangential to the iron boundary.

A correct boundary condition, for the normal component of the induction, is
B (air) = u,H, (air) = uH, (iron) = B, (iron) 20.1
For permeability u very large we can take Hy, approaching O just inside the iron, so that
H, (iron)=0 20.2
(from the continuity of B;) and add the boundary condition

H_ is continuous 20.3
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In reality W is not infinite, but the limit works well.

First consider an air gap inductor, as shown in Figure 20.2. We assume that inside the iron there

are laminations which ensure no current, so that

VxH=0 20.4
Then H is derived from a single valued potential given by Laplace's equation

Viy=0 20.5
and the boundary condition on B, (Equation 20.2) is equivalent to

a_lﬂ =0 in the iron. 20.6
on

The only possible solution of equation 20.5 and equation 20.6 is ¥ = constant . Therefore H (but
not B) must be zero inside the iron. Continuity of the tangential component of H then shows that
the lines of force in the air must be perpendicular to the iron. Therefore in air the magnetic fields

are given by the usual equations, together with the boundary condition

e, xH =0 on the iron surface. 20.7

In the iron H = 0, but B is finite. Since VB = 0 in the iron, B(iron) = V&, and & satisfies

V=0 20.8
9 = B, (air) 20.9
on

which is known.

contour 1
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Figure 20.3. The geometry of an iron core and
a linked plasma of current I. The contour 1
considered in the text is shown.

Now consider the case shown in Figure 20.3, an iron core with a central limb as on TEXT. If the
total number of turns linking the center core is 0, and there is no current in the iron (Equation
20.4) then [H.dl = 0 for any contour 1 inside the iron. Then H derives still from a single
potential, and all our previous steps are valid. However, if a finite number of amp turns I links
the iron, then [H-dl = . This means that we can still write the field in the iron as V&, but now &
is multi valued, increasing by +I once around the contour 1. That is, in this case, Equations 20.8

and 20.9 apply in the iron, but with the additional constraint

fchodl: I 20.10
1

In this case, had we assumed perpendicularity, we would have obtained [H-dl = 0, while in reality
[H-dl = 1. Thus the field lines only enter the iron core perpendicularly if no current flows in the

iron, and the net ampere turns is zero.

The only place that the iron really affects magnetic diagnostics is in the equilibrium
reconstruction. No longer can we use the free space expressions for a circular current filament,
but they must be modified to satisfy the boundary condition. In toroidal plasma devices we
almost always satisfy the conditions necessary for the boundary condition Equation 20.7. One
way to model the effect of iron is by placing additional circular filaments inside the iron itself,
with currents chosen to satisfy Equation 20.7 at a given number of locations. This is illustrated
in Figure 20.4: the 'image" filaments must have a current flowing in the same direction as the
filament in air, so that there is an attraction between the filament in air and the iron itself. As the
filament in air gets closer to the iron, the "image" current must increase, and so the attraction

must increase. This means that an iron core can lead to an axisymmetric, or n = 0, instability.
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/

\iron

— R

) NN
image filament in iroy

\

filament in air

///é/

iron boundary
where exH =0

Figure 20.4. An iron core and plasma current (filament), together
with the image currents necessary to ensure the boundary condition
are satisfied.

In principle the method of images can model a true three dimensional iron core, although it
would not help much because most of our equilibrium work involves two dimensions only.
Therefore we often assume a two dimensional iron core which is produced by the toroidal
revolution of the actual core. In this case there are analytic expressions for the additional field

components produced by the iron.

Because the iron core is really three dimensional, it introduces a perturbation with a toroidal
mode number n equal to the number of outside return limbs, Nj. As such any fields, such as the

vertical maintaining field, will have an n = Nj; component. Calculations show that this
perturbation can be as much as 10%, which might be thought to introduce a toroidally dependent
plasma position. It does, but only by a very small amount. Suppose the toroidally symmetric

vertical field B, has an additional perturbing component b,cos(Nj9). From the field line equation

this variable field component will displace lines of force according to

dz Rd¢

= 20.11
b.cos(N,¢) B,

or

dz = ;{e [ b.cos(N,¢)dg 20.12
[4
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Therefore the maximum displacement is

Rb,

Zmax =

~ N,B,

which is typically a few mm.
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21. TOKAMAK POSITION CONTROL
The axisymmetric instability

We first calculate the growth rate of an axisymmetric instability in a tokamak. We only consider
vertical motion, because it is easier than the calculation for horizontal motion. The driving force
is written in terms of the decay index n = -(R/B,)(dB,/dR). We consider a tokamak surrounded
by a conducting vacuum vessel. There is assumed to be a transverse (poloidal) insulating gap in

this vessel, so that only dipole currents can flow. The equation determining the vacuum vessel
current I is

spTp

Here I, is the plasma current, Lg is the vessel inductance, € the vessel resistance, Mgp the
mutual inductance between plasma and vessel. We introduce the vessel time constant Tg = L¢/Qg

We can approximate the vessel as a circular shell, so that

2
L =T R 212
Ty
z =%§vrf 213

where R, rg, Og are the vessel major radius, minor radius, thickness, and G is the conductivity.

Approximating the plasma as a filament initially centered within the vessel (R =Rg=Rg, z=7¢ =

0), the mutual inductance and its spatial derivative are given by

R
M, =H=E 214
2,
M, _ MR, 215
0z 2r

From equations 22.1, 22.2 and 2.5 we can derive the relationship between the dipole current in

the vessel and the plasma displacement z:

d, 1 I, d
Sy g2 = 21.6
d 7, 7, dt
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The equation determining the plasma displacement z is

d’z
m?zO:—ZﬂRPIP[BR+BS+AB] 21.7

with Br the equilibrium major radial field, Bg the major radial field from the vessel currents, and
AB a perturbation to BR. We can take the mass m of the plasma to be zero in the presence of the
vessel; we will find the vessel slows the motion sufficiently for the m(d2z/dt?) term to be
vanishingly small. Using

B
B, == 21.8
R
Tu I
_Hoy 21.9
' 47nR
)4
S8R\ 1 3
len(_zJ+_t+ﬁ1__ 21.10
r, 2 2
B _
K =22 Hy 21.11
’ IS 4r

where 1 is the plasma minor radius, and we assume Ry = R = R. Taking AB = 0, equation 22.7

can be written

— nrﬂolﬁz + IUOIS

= > 21.12
47R 4r,
Equations 22.12 and 22.6 define the problem; they have solutions
z=z,¢" 21.13
I =1," 21.14
The growth rate is
1 n
- 21.15
4 T.n+n,
2R
n,=— 21.16
o
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From equation 22.15 we see the plasma is unstable if n < 0.

Consideration of in-out motion is more complicated, because we must conserve poloidal

magnetic flux. This is ensured by using the equation

d 2
E[Lplﬁ-i_ﬂRsz +Mpx1s]:0 2117

where the plasma inductance is

SR .
L= ,uORp(ln[—Ej -2 +£2] 21.18
r,

p

The unstable motion we nave derived for a plasma with decay index n < 0 must be controlled by
feedback. Figure 21.1 shows such a system. Sensing coils might be the multipole moment coils

discussed in an earlier chapter, or single coils. Sensors can be placed inside or outside the vessel.

_ - = =) feedback winding

4 N

4
/A [ coil 1 N

\ /
\ /
\ /
\ /

\ s
AN H coil 2 e
N 7
N I
AN 7
~ r 7
~ ~_ f - -

S feedback winding

Figure 21.1. Geometry of a feedback system
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Analysis of sensor coils allowing for vessel currents

If single coils were used, the analysis used to determine plasma displacement z is to take the
difference signal, and divide by the sum signal. For a positive plasma current (into the plane)
and a positive vertical plasma displacement z, the upper coil signal is Bg; = Holp/(27(rc-2)) and

the lower signal is Bg2 = Holp/(2n(rc+2)), so that for z << r¢:

1 B 1
B, -B, L—z rn+z| z
=|—= < == 21.19
B, +B,, L+ 1 r.
L—z r+z

We now consider what happens when we allow for the presence of vacuum vessel currents I and

feedback currents If, both of which produce fields seen by the sensing coils.

The dipole model

The feedback windings are represented by a shell of radius r¢ and thickness &¢ with a dipole

current distribution, with current (area) density jof = jofosin(0). Then

I. =

= jyr6,d0=2r,3,j,, 21.20

O ey N

I is positive when the upper winding current is into the plane. This feedback circuit produces a

major radial field for vertical position control, and (1. < rp):

B =KI. K =—*2

, =- 21.21
f i f 4r,

That is, a positive If produces a signal Bgj = Bf (which will be negative for positive If) in the

upper sensing coil and a signal Bgp f = -Bf (which will be positive for positive If) in the lower

sensing coil.

The vacuum vessel is also assumed to be a shell, of radius rg and thickness O, carrying a dipole

current jgs = jososin(8). Then

21.22

IS = .[.](Dvrvavde = 2’;5&]‘@0
0

This produces a major radial field for sensors inside the vessel (r¢ < ry)
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=

21.23

os)
|
ia
o~
X
I
|
2
P

Therefore the signals seen by the sensing coil are Bg 5 i = By j in the upper coil and Bgp i = -Bs

in the lower coil. If the sensing coils are outside the vacuum vessel (rc > rg), then the major

radial field is

K, =4£n 21.24

Therefore the upper coil sees a signal Bgj s e = Bs i, and the lower sensing coil a signal Bgp s ¢ = -

Bse. These results are summarized in table 1.

Table 1. Fields seen by the Bg sensing coils,

dipole current model.

BBI BBZ
outside (r, 2r,)
1 1
plasma Mty Mty
272(r. - 2) 27x(r. + 2)
I 1
feedback _Ey By
4r, 4r,
1 I
V€SS€l /’lO szrs _ ILIO szra
4r: 4r.
inside (r,2r)
1 1
plasma Mty Mty
27(r, — 2) 27(r. + 2)
I 1
feedback _Ehy LalFs
4rf 4rf
V€SS€l _ﬂOIx Il'lOIS
4r, 4r,

The apparent displacement z,pp is derived using the equation

Zapp ZBel_zBez

_<
r B +2B, o 1 TN
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where the values of o and o, derived from the expressions in table 1, are given in table 2.
Without the correction factors 0 and 0, Zapp = z. Moving the sensors from inside to outside
changes the sign of os. When the plasma (I, > 0, into plane) moves upwards (z > 0) it will
induce a negative I5. For sensors outside the vessel, the vessel currents then produce an apparent
displacement smaller than the real displacement (i.e the vacuum vessel shields the sensing coils).
For sensors inside the vessel, the apparent displacement is larger than the true displacement. The

feedback windings complicate this simple process. If we wanted to, the effects of the feedback
coupling to the sensors (i.e. finite 0f) can be removed by adding to each signal a term

proportional to If itself. This cannot be done for the coupling from the vessel to the sensors,

because we do not measure the vessel dipole currents.
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Table 2. Correction coefficients o and o
for Bg sensors.

correction
factor
outside (r, 2r,)
.
a, —£ >0
2r,
a, —ﬂs 0
2r;
inside (r,2r)
a o <0
B} 2}/‘ 9
a, —ﬂs 0,
2r;

For comparison, table 2 shows the coefficients oy and o for the multipole moment coil system

[1], with coils either inside or outside the vessel. Note that the multipole moment sensing coils
are only sensitive to currents inside the contour on which they are wound, and thus o = 0.

Table 3. Correction coefficients o and o
for multipole moment sensors.

correction
factor

outside (r, 2r,)
7,

o, —,20

‘ 2r,

o, 0

inside (r,2r)

a, 0

a, 0

Numerical values applicable to TEXT are given in table 4, for r. = 30 cm (inside) or 34 cm
(outside), rg = 32 cm, rf = 50 cm. We see that, as far as pickup from the shell currents (o) is

concerned, the Bg coils outside the vessel are no worse than the moment coils.
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Table 4. Numerical values of the correction factors o and oy.
R =100 cm, r; = 30 (inside) or 34 (outside) cm, rg = 32 cm, rf = 50 cm

Ois of
dipole model, multipole coils outside 1.48 0
dipole model, multipole coils inside 0 0
dipole model, Bg coils outside 1.48 -1.07
dipole model, Bg coils inside -1.67 -0.94

The feedback model

Here I want to illustrate how a feedback system is analyzed. We take the mass-less plasma

model, in which the plasma is always in equilibrium due to currents in the vacuum vessel and the
feedback windings, and the (unstable) driving term Br. The vacuum vessel (i.e. conducting

shell), feedback windings and plasma all having the same major radius R. The equations
describing the plasma motion z, shell current I, feedback current Iy and feedback voltage V¢ are :

dZ

m—s =0 =—27RI, (B, + B, + B,)
I dl

di M, I,)+ Lsi’- +QI + Méfzﬁ =0
d L/

Mpflf)+ sf dt +L T dr + I V 21.26

dV QB
t,—L+V, =- —L(Z— de

dt KR dt
Z:ZO _Zapp

That is, in open loop the plasma displacement induces a dipole shell current as well as a dipole
feedback current. The dipole currents in the shell and feedback circuits are themselves coupled.
In closed loop a proportional (g) and derivative (gtg) gain term are considered The mutual

inductances M;jj and self inductances L;j between the various circuits (i,j = p for plasma, s for

shell, i.e. vacuum vessel, and f for feedback) are:
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M, - IRy,
M, TTRZ
m, =B
Ty
M — IUOﬂRZ
ps 2’,;
2
L = M, TR
4
I = luojz'zR 21.27
’ 4
8R [
L= ,uOR{ln— += - 2}
a, 2

g is the linear gain in the feedback circuit, t, is the time constant of the servo system, tq is the
time constant of the derivative gain, ; is the resistance of the circuit i, zg is the required
position. The equilibrium major radial field BR is given in terms of the equilibrium vertical field
(-B,) and the decay index n =-(R/B,)(0B,/0R) as

=02 21.28

For vertical (up/down) instability without feedback control n < 0; following a vertical
displacement the plasma then experiences a major radial field BR in a direction to cause further
plasma displacement. We can model any unstable motion through the choice of n: without

feedback but with vacuum vessel n should be chosen such that the measured growth rate is:

_1_n
4 tn+n

e 21.29
n,=2--
r’T

Note that the vertical field required for major radial equilibrium is -B, as defined above. We

normalize the equations, letting
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L
5:3, tf__f7 t) :A’ T:—t, l_) :L
R Q, Q. , I,
1, V M, M
i=—L, v, =—L, mf—{:i’ my=—L=m,
Ip Qflp LS Ty Lf
KL AR _ KA, R ROM, 2R
’ B, | B, Ir, ‘L dz
L e
g 02 T
a a.r.
x, == x,=—Lt=
R R

Values of xg and x¢ are derived from the values of o and 0o in table 4. Representative values for
TEXT are given in table 5.

TABLE 5. values of xg and x¢ used in the modeling

Xs Xf
multipole outside 0.5 0
multipole inside 0 0
Bg outside 0.5 -0.3
Bg inside -0.5 -0.3
The normalized equations are:
—nd + ki, + ki, =0
di di di
,us—§+¢+is+msf—l£: 0
drt dt Cdt
g |
P S /L 21.31
dt dr dt 7, ©

’

dv : : d , ,
Vet Tad_; :kif[(go —{-xi - xgdp )= TdE(go =G = xi =Xy )}

These can be solved either numerically or by Laplace transforming. These equations are then

Laplace transformed (a superscript "~" denotes a Laplace transform, s is the Laplace variable) to
give
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~n&(s) +ki () +k,i(s)=0

5 £(5) + (s +1)i, () +msi,(s) =0

ﬂfSé:(S)+smffx(s)+(s+—1]§f(s)_3(i):o 21.32
Tf Z'f

B ,(s) = ki FO (s)—(1- z'zs)(g‘(s) +x,0.(s)+ foTf (S))i|
f

where Ty = T, + Tq. Solutions for the displacement {, vessel current ig, feedback current if and

feedback voltage vf can be obtained; for the displacement { is given by:

£(s)  A+Bs
£(s) D+Es+Fs’

21.33

where
A= gk,
B=—g(km,—k,)=0
D=k, (n+ g)+ngx,
E=—gxm (n+ku)+k, [n ks, + (0 + kfyf)z'f ]— gk, Ty +gx.(n +k, m_—ntg)

F=m, [gxs Ty + Tk, (1 —mgmg )In + ks,us]— tsx.g(n+k.m,)
21.34

The term appearing due to the coupling between sensors and feedback windings are in bold. The
remaining terms are identical to those previously derived, except that the values of xg to be

considered are different (negative values are now permitted).

For stability, the Routh criteria can be applied, which requires 1) D >0, 2) E >0, and 3) F> 0.
These three criteria define the available operating space in (g,Ty) space for a given instability (i.e.

for a given decay index n).

Application of stability criteria.

Values relevant to TEXT Upgrade are tg = 7ms, tf = 137ms, tf = 20, mgf = mgg = 0.67, kg = 2.26,
kf= 1.5, ug = 1.59, us = 1.06, and the pairs of values for x5 and x¢ given in table 5. Experimental

observations of open loop vertical motion show Tistability = 1/Y ~ 100 ms, so that a suitable
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value for the decay index in the modeling is n = -0.2. We now compute the stable regions in
(g,7x space), the results of which are shown in Figures 21.2 through 21.5. For the values

considered the best system is that of multipole sensing coils inside the vessel (Figure 21.2),
closely followed by the single Bg coils inside the vessel (Figure 21.4). For sensing coils outside

the vessel the operational space is restricted, more so in the case of single Bg sensors than for

multipole sensors. This is seen by comparing Figures 21.3 and 21.5.

50, EIK
40 40
301 304
201 201
101 10+

-3 -2 -1 1 2 3 -3 -2 -1 1 2 3
Figure 22.2. Moment coils, inside vessel.  Figure 22.3. Moment coils outside vessel.

B0
40
304
20 ]
104 / m'\
-3 -z -1 1 ) 3 -3 -z | -1 1 2 3

Figure 22.4. Single Bg coils inside vessel. Figure 22.5. Single Bg coils outside vessel.
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22. MAGNETIC ISLANDS

We consider the effect of a helical perturbation on a tokamak equilibrium. We will not consider
anything other than vacuum fields, i.e. we will not allow the plasma to respond to the applied
fields in any way. I have adapted the work of S. Matsuda and M. Yoshikawa, in Japanese
Journal of Applied Phys. 14 (1975) 87.

The field line equation is

— = const. 22.1

i.e. working in a quasi cylindrical system based on the plasma center
49 _RB, __1

= = =1(r) 22.2
dgp r B¢ q(r)

q is the safety factor, 1 the rotational transform. Expanding 1(r) near r = rp, the radius of the

resonant surface, we obtain

de dur) ,
— =1(r)+ r—r)=1,+1x 22.3
o=t + =)=,
. . - du(r) ) . .
where x =1 - 1, ig =1 (1), and 7 = p . To lowest order in the perturbing field we also
rl,

have

dr  dx b.(r,0,¢)
rd6  rdo B,(r)

22.4

where b(r,0,0) is the radial component of the error field. We ignore the O component because it
is small compared to the equilibrium field Bg. Assuming small islands, we also ignore any radial
dependencies of b; and Bg. b; is expanded as a Fourier series

a, ,sin(mé —ng)+ amn sin(m 6+ ne)

b, (1, 6,0)= 225

o L+, COS(M O — NP) + C .u cOS(M O + )

Because we shall see that only resonant components matter near r = rg, we keep only the first and

third terms which satisfy
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m.1_, 22.6
no 1
Then
b,(1;,6,8)=b,,, sin(m —ng + f) 22.7
b
with b, , = ‘/afm +c,, and tan(f)=—"=
Next we define a new variable
n=mé—-ng+p 22.8
so that equation 22.4 becomes
b s
dx_ by, sint) 22.9
r,d@ B,(r)
We also obtain from equations 22.3 and 22.8
an___n»_ 22.10
dé I,+1x
Substituting equation 22.9 into equation 2.10 gives us a non linear equation
2 d|1 ' "b_sin
L/ - —(1—l—xJ L) B 22.11
de dé| i, ) lzo B, (’6 )
where
b
= el 22.12
& Be(ro)

We can take A > 0 for convenience. We see the behavior of the field lines is analogous to the

motion of a particle in a periodic potential U = A (1-cos(n)), when we regard 1 and 0 as position

and time. Multiplying equation 22.11 by dn/d0 and integrating over 0 gives

ld_ﬂjz_ _ Al -
2(({9 = E— A(l —cos(n))

22.13
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, 1(dn)* . . _—
with E :E(d_zj a constant of integration analogous to a kinetic energy. Let k> =—, so

n=0

22.14

(40 <)

dé
Two types of solution are possible, as shown in Figure 22.1. If E < 2A the field lines move

periodically within a limit of ). Field lines with E > 2A are “passing”.

dn
a0 xE2A

T
Figure 22.1. Behavior of field lines in phase space.

The maximum excursion is found when E = 2A, or k = 1. Then from equation 22.9 we have

b sin

w=|dx=
J. '[ Ba(”o)%

4
Using equation 22.14 the integral in equation 22.15 is found to be ﬁ , so that we finally obtain

b | 1 b, .14’
W:4'E) 2 -| =4 - a 22.16
mBe(ro)_rol VmB‘D—q
dr
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23. SOME EXPERIMENTAL TECHNIQUES
Coils winding

The rogowski coil is simply made by obtaining a delay cable, and returning the wire down the
center of the delay line (to ensure no net single turn is left). More complicated coils must be
made by using variable winding densities (i.e. changing the pitch) or varying the cross sectional

area of the former on which the coil is wound.

Interference suppression

Electrical equipment designed to produced RF energy such as generators, and switching

phenomena in electrical circuits, create RF spectra which must be contended with.

interference
lines propagation radiation
dc coupled capacitive coupling
(inductive coupling)

Ll d Al Ll X8 X X X X X X X X X ¥ X X X X ¥ F Ry Yy Y L XXX

suppression

line decoupling
components screening
capacitiors screen devices
inductors screen lines
filters line arrangement
sensor
coil
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Figure 23.1. An illustration of interference paths and suppression techniques.

The sources of interference are illustrated in Figure 23.1. The interference propagates either
down lines (cables) or by direct radiation. If the wavelength is large compared to the dimensions
of the interference source only minor radiation will result, which is mostly found along the lines.
This is the case for frequencies up to 30 MHz. When the dimension of the interference source is
about that of the wavelength the interference energy will travel by radiation. The dominant
frequencies are those where the interference source are 1/4 or multiples of it. Favorable radiation
conditions imply reduced line propagation (because of increased line attenuation) . Therefore the
two propagation paths, comprising direct and capacitive or inductive coupling, suggest two
means of suppression, either line attenuation or de-coupling attenuation. Line attenuation is
effected by filters. De-coupling attenuation is effected by the construction of the sensor coil and

the associated connecting lines.

A common problem with probes is capacitive pick-up. To test for this pick up on simple sensor
coils, two identical and adjacent coils can be connected in series. Depending on the orientation,
the signal obtained should be twice that measured with a single coil, or zero. If the coils
connected in opposition do not give a zero signal, then capacitive coupling effects should be
considered as a possible source of error. Capacitive coupling can be over using a grounded

screen or can around the sensor.

Screened rooms

The requirement is to screen a room in which a sensitive measurement is being performed from
external interference, or to accommodate apparatus which radiate interference in a screened room
to keep the surroundings free from interference. The basic method is to use cages of wire mesh,
or metal sheet. Both electric and magnetic field components must be considered. Units used for

effectiveness are the decibel :

E.B
s = ZOlog(wj
E B

> “Zwithscreen

and the Napier

( E.B _ j
S — ln noscreen
EB

> “withscreen
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The wire mesh works to screen electric fields because the external flux lines mainly end on the
mesh. The effectiveness depends primarily on the size and type of the mesh. Magnetic screening
is effected by induced currents; DC magnetic fields are not screened, and low frequency AC
magnetic fields are only poorly screened by non magnetic materials. With increasing frequency
the magnetic shielding improves and approaches a finite value. Double screens, insulated from
each other except at one point, improve the screening. These rooms work well to 20 MHz.

Above this the screen room size can equal the cage dimension, causing resonances.

Sheet metal rooms have better screening properties than double walled wire mesh, but breathing
is a problem. The screening against electric fields is ideal since no flux can penetrate. The

screening of the magnetic component improves with increasing frequency due to the skin effect.

Honeycomb inserts are also used. The grids are wave guides (with the frequencies considered
below cut-off), the screening effectiveness of which depends on the ratio of depth to width of the
honeycomb up to cm wavelengths. They are used for 100 kHz < f < 1000 MHz.

Misaligned sensor coils

Typical tokamak requirements include the measurement of poloidal fields in the presence of a
much larger toroidal field. A small misalignment of the coil will then introduce unwanted field

components. There are a number of solution to overcoming this problem

a) subtract data obtained with only the (unwanted) field component by energizing only the

offending windings

b) make use of the differential nature of a pick-up coil signal. For example, consider the
toroidal field to be the offending field, so that the pick-up coil measures

dB dB,,, dB .
E = 'Z, It’”d‘” + Z;"“‘L . If the toroidal field is almost steady state (d/dt = 0) during the times of

interest, then the differential signal during this time is approximately that required (i.e. from the

poloidal field component only). Therefore the temporal integration should be started as late as

possible.
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