Projectile motion (Section 4.3)

1. Which target got hit first?
 • Context of the textbook: Before Example 4.

2. Projectile range
 • A problem comparable to Example 7, except here the initial values given are v_{0x} and v_{0y}.

3. Gun and target

4. Gun and target on the moon
 • Questions 4.3 and 4.4 are supplementary problems for projectial motion.

Motion along a circular arc: These two questions are conventional problems in other engineering physics textbooks beyond the uniform circular motion discussed in this section. They may be introduced after Example 9 of Section 4.5.

5. Deceleration of a train

6. Motion of a simple pendulum

Relative velocity and the addition of velocities.
These questions may be used before Example 10 in Section 4.6.

7. Definition of relative velocity
 • A basic conceptual question.

8. Crossing a river
 • A simplified version of Example 10.
Two projectiles are launched simultaneously and with the same launching speed from point O as shown $v_0' = v_0$. The first is launched at angle θ and hits target A in time t_A. The second is launched at a greater angle $\theta' > \theta$ and hits target B in time t_B. Compare the flight times for the two projectiles:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_B > t_A$</td>
<td>$t_B = t_A$</td>
<td>$t_B < t_A$</td>
<td></td>
</tr>
</tbody>
</table>

Explanation: Consider the projected motion along the vertical direction. The flight time for the first case is given by $t_{\text{flight}} = 2t_{\text{rise}} = 2v_{0y}/g$. For the second case, the y component of the initial velocity $v_{0y} = v_0 \sin \theta$ is replaced by $v'_{0y} = v'_0 \sin \theta'$, where $\theta' > \theta$ and $v_0 = v'_0$ are given. Therefore $v'_{0y} > v_{0y}$, which means that the flight of the second case takes longer. Answer = A.
Given $v_{0x} = 20 \text{ m/s}$ and $v_{0y} = 10 \text{ m/s}$ and $g = 10 \text{ m/s}^2$. Find R. Choose one of the following:

\[
\begin{array}{l}
A \quad 2v_0^2/g = 2(20^2 + 10^2)/10 = 100 \text{ m} \\
B \quad v_{0x}v_{0y}/g = 20 \times 10/10 = 20 \text{ m} \\
C \quad 2v_{0x}v_{0y}/g = 2 \times 20 \times 10/10 = 40 \text{ m}
\end{array}
\]

Hint: The rising time $t_{\text{rise}} = v_{0y}/g$, $v_0^2 = v_{0x}^2 + v_{0y}^2 = 500 \text{ m}^2$.

Extra: Keep v_0 fixed and vary θ to find the maximum value of R.

Explanation: $R = v_{0x} (2t_{\text{rise}}) = 2v_{0x}v_{0y}/g$. Answer = **C**

Explanation—extra: $R = 2v_0^2 \sin \theta \cos \theta/g = v_0^2 \sin 2\theta/g$. So the maximum value of R when v_0^2 is fixed is $R = v_0^2/g = 50 \text{ m}$.
Consider a gun at O aiming at a target located at point A. The gun fires at time $t = 0$, and at the same time the target begins to fall from rest. Let $v_{Ox} = 10$ m/s and $v_{Oy} = 20$ m/s. Also, let $OB = 20$ m and $AB = 40$ m. Find the height BP as the bullet passes the vertical line AB:

<table>
<thead>
<tr>
<th>BP (in m)</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hint: In the x direction $t_{OP} = OB/v_{ox} = 2$ s. To find BP, use $y = v_{Oy}t - gt^2/2$ for the motion of the bullet along the y direction. Assume $g = 10$ m/s2.

Explanation: From point O to point P, the time that the bullet spends traveling vertically is the same as the time it spends traveling from O to P, $t_{BP} = t_{OP} = 2$ s. Use the equation of motion in the vertical direction: $BP = v_{Oy}t_{BP} - gt_{BP}^2/2 = (20)(2) - (10/2)(2)^2 = 20$ m. Answer $= B$.

An alternative method: BP may also be determined by considering the fall of the target. $AP = (1/2)gt_{BP}^2 = (10/2)(2)^2 = 20$ m. $BP = AB - AP = 40 - 20 = 20$ m.
Consider the “gun and target” setup of the previous problem, where the initial velocity vector v_0, the length of the base line OB, and the height AB are kept fixed. Compare the height BP, when the experiment is carried out on Earth to the height BP', when the experiment is done on the Moon:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$BP' < BP$</td>
<td>$BP' = BP$</td>
<td>$BP' > BP$</td>
</tr>
</tbody>
</table>

Explanation: Because v_{0x} and OB are the same for the two cases, the time of flight $t = OB/v_{0x}$ is also the same. During this time, on Earth the target falls by a distance $AP = (1/2)gt^2$. Because on the Moon the gravitational acceleration g' is less than g, $AP' < AP$. In turn, $BP' > BP$. Answer = C.
A train is moving along a circular track of radius \(r = 100 \) m. At point A, \(v = |v| = 10 \) m/s.

It is slowing down with a tangential deceleration of a magnitude \(a_{\text{tangent}} = |a_{\text{tangent}}| = 1 \) m/s\(^2\).

Sketch \(\mathbf{a}_{\text{total}} \) at A. Which quadrant should it be in?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrant</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
</tbody>
</table>

Extra: Find the magnitude \(|\mathbf{a}_{\text{total}}| \).

Explanation: From the sketch at point A, \(\mathbf{a}_{\text{total}} \) is in the third quadrant. Answer = C.

Explanation—extra: At point A, centripetal acceleration \(a_c = v^2/r = 10^2/100 = 1 \) m/s\(^2\). So \(a_{\text{total}} = \sqrt{a_c^2 + a_{\text{tangent}}^2} = \sqrt{1^2 + 1^2} = \sqrt{2} \) m/s\(^2\), or \(\approx 1.4 \) m/s\(^2\).
A simple pendulum consists of a string of length r and a ball attached to its end. When the string makes an angle θ with the vertical and the tangential velocity of the ball is pointing toward the vertical line, determine the corresponding tangential acceleration:

The angle θ is measured from the vertical line in a counterclockwise manner.

Extra: Compare θ with ϕ in the sketch.

Explanation: From the sketch, we see that the tangential acceleration is pointing toward the vertical line; thus it has a sign opposite to that of θ. Answer = C.

Explanation—extra: Notice in the top sketch, the centrepetal vector $\mathbf{a}_r = g_r$ where g_r is shown in the second sketch. Since both vectors \mathbf{a} and \mathbf{g} are diagonals of two rectangles with same sides a_r and g_r, $\phi = \theta$. One can see this equality visually, if \mathbf{a}_r is drawn to scale.

6. Motion of a Simple Pendulum
Car A travels at a speed of 30 mph to the right (positive x direction) and car B travels at 10 mph to the left. Consider the velocity $\mathbf{v}_{AB} = \mathbf{v}_{AB} \hat{i}$ to be the velocity of car A observed by the driver in car B (in other words, \mathbf{v}_{AB} is the velocity of A relative to B). Given the x axis orientation as shown, find \mathbf{v}_{AB} and \mathbf{v}_{BA}.

Choose one (in mph):

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbf{v}_{AB}</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>\mathbf{v}_{BA}</td>
<td>20</td>
<td>-20</td>
<td>40</td>
<td>-40</td>
</tr>
</tbody>
</table>

Explanation: Notice that the driver of car B sees that car A is moving toward him or her—that is, along the positive x direction with a speed greater than $\mathbf{v}_A = 30$ mph. The algebra involved is given here:

$\mathbf{v}_{AB} = \mathbf{v}_A - \mathbf{v}_B = 30 - (-10) = 40$ mph.

$\mathbf{v}_{BA} = \mathbf{v}_B - \mathbf{v}_A = -\mathbf{v}_{AB} = -40$ mph. Answer = D.
The diagram here shows a boat attempting to cross a river. Assume that the boat’s speed relative to the water $v_{bw} = 10 \text{ m/s}$ and that the current (the water’s speed relative to the Earth) $v_{we} = 5 \text{ m/s}$.

Find θ such that the boat crosses the river at a right angle to the bank:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>30°</td>
<td>45°</td>
<td>60°</td>
</tr>
</tbody>
</table>

Extra: What is v_{be}, the boat’s speed relative to the Earth?

Explanation: Because $\sin \theta = v_{we}/v_{bw} = 5/10 = 0.5$, $\theta = 30^\circ$.

Explanation—extra: $v_{be} = v_{bw} \cos 30^\circ \approx 8.7 \text{ m/s}$.

8. Crossing a River PhysiQuiz 37