Summary on unit 3 (update: 11/05/10)

Sec. 6.4-6.17. Pair-interactions and potential energy of multiparticles: \(E_{\text{sys}} = \sum_i (m_i c^2 + K_i) + \sum_{i<j} U_{ij} \).
Potential energy due interaction between one pair A and B:
- \(\Delta U = -W \), W is work done due to the force exerted by A on B, as B moves from initial to final.
- How is the force related to \(U \)? 1-variable cases: \(F_r = -dU(r)/dr \) and \(F_x = -dU(x)/dx \).
- \(U(r) \rightarrow 0 \) as \(r \rightarrow \infty \). \(|u(r)| \) increases, as \(r \rightarrow 0 \). Attractive \(U < 0 \), repulsive \(U > 0 \).
Gravity: \(U = -\frac{G m M}{r} \), \(F = -\frac{G m M}{r^2} \). Electricity: \(U(r) = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r} \), \(F = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2} \).
Satellite (circular orbit). Centripetal force: \(\gamma = \frac{mv}{r} \).
Photon spectra: \(\text{Boltzman factor (BF)}: \ E' = kT \exp(-\frac{E}{kT}) \).

Sec. 7.1-7.11. Energy in Macroscopic Systems
Ideal spring: \(U(x) = \frac{1}{2} k x^2 \), \(F_{\text{spring}} = -k x \). \(K + U = m v^2/2 = k A^2/2 \). \(x = A \cos \omega t \), \(\omega = \sqrt{k/m} \).
Morse potential: \(U_{\text{morse}} = E_M \left[1 - e^{-\alpha (r-r_0) \beta} \right]^2 - E_M \).
\(U(r) \) is a function of position coordinate only. It is independent of the paths how r is reached.
Energy principle: \(\Delta E_{\text{therm}} = Q + W \), \(E_{\text{therm}} = C m T \), where C is specific heat of m in units of J/g/K.
Dissipations: Terminal velocity at \(F_{\text{air}} = mg \). \(F_{\text{air}} = (-1/2)C \rho A v^2 \dot{v} \). Friction: \(F_{\text{static}} = \mu_s N \), \(F_{\text{kin}} = \mu N \).

Sec. 8.1-8.7. Energy Quantization and photons
When \(W_{\text{surr}} \) is negligible, the system is specified by its \(E' \)-state content, where \(E' = K + U \).
The \(E' \)-states in sun-comet (macro-) system compared to those in H-atom (micro-) system.
- Similarities. \(U(r) \propto -1/r \). For \(E' < 0 \), bound states. For \(E' \geq 0 \), continuum and unbound.
- Differences in \(E' < 0 \) region. Macro system can have bound states at any \(E' < 0 \), minimum \(r \) not well defined. Micro system has discrete bound states and has a ground state which defines \(r_{\text{min}} \).
Frank-Hertz experiment: \(e + Hg \rightarrow e + Hg^* \) It illustrates the discreteness of the 2nd level of Hg atom.

Photons: Light is made of wave-energy packets called photons (symbol \(\gamma \)). Size is \(\sim \lambda \) (wavelength).
\(E_\gamma = \hbar \omega = \hbar c / \lambda = 1240(eV nm)/\lambda \), with \(\hbar = h/2\pi \). The Planck constant \(h = 6.6 \times 10^{-34} J \) s.
- Atomic excitations: \(X + \text{atom} \rightarrow X + \text{atom}^* \). Energetic X may kick ground state e to an excited level.
- Emission: Decay from ith level leads to emission of \(\gamma \) with energy \(E_\gamma = E_i - E_j \), \(1 < j < i - 1 \).
- Absorption: Electron at level excited to ith level leads to absorption (dark) line at \(E_\gamma = E_i - E_1 \).

Boltzman factor(BF): \(\exp(-E/kT) \). \(k = 1.38 \times 10^{-23} J/K \). For \(kT << E \) no excitations, \(kT >> E \) excitations. For \(E = 1 \) eV, at \(T=300 \) K, BF\~{}3 \times 10^{-17}. At \(5000 \) K, BF\~{}0.1.
Vibration: Harmonic oscillators, levels with equal spacing. \(E_N = N \hbar \omega_0 + E_0 \), \(N=1, 2, \ldots \). \(\omega_0 = \sqrt{k/m} \).
Photon spectra: \(\gamma \)-ray, \(10^6 \) eV, X-ray \(10^4 \) eV, visible \(1.8 - 3.1 \) eV, microwaves \~{}\(10^{-4} \) eV, radio \(10^{-6} \) eV.

Sec. 9.1-9.5. Multiparticle system
cm-point system: Momentum \(P_{\text{cm}} = M v_{\text{cm}} \), where \(P_{\text{cm}} = P_{\text{tot}} = \sum_i p_i \). \(M = \sum_i m_i \). It moves with \(v_{\text{cm}} \).
Momentum principle applied to the cm-point system: \(\frac{dP_{\text{cm}}}{dt} = F_{\text{net,ext}} \).
Real system: \(\Delta E = \Delta K_{\text{trans}} + \Delta K_{\text{rel}} + \Delta U \). \(K_{\text{trans}} = \frac{M v_{\text{cm}}^2}{2} = \frac{p_{\text{cm}}^2}{2M} \), \(K_{\text{rel}} = K_{\text{rot}} + K_{\text{vib}} \), \(U_g = M g y_{\text{cm}} \).
\(K_{\text{rot}} = \frac{1}{2} I \omega^2 \), where \(\omega = 2\pi/T \), with \(I = \sum_i m_i r_i^2 \), \(I_{\text{ring}} = m R^2 \), \(I_{\text{disk}} = \frac{1}{2} m R^2 \), and \(I_{\text{rod}} = \frac{1}{12} M L^2 \).