
Appendix A

Review of Vectors

This appendix is a summary of the mathematical aspects of vectors used in elec-
tricity and magnetism. For a more detailed introduction to vectors, see Chapter
1.

A.1 DESCRIBING THE 3D WORLD: VECTORS

Physical phenomena take place in the 3D world around us. In order to be able
to make quantitative predictions and give detailed, quantitative explanations, we
need tools for describing precisely the positions and velocities of objects in 3D,
and the changes in position and velocity due to interactions. These tools are math-
ematical entities called 3D “vectors.”

3D Coordinates
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Figure A.1 Right-handed 3D coordinate sys-
tem.

We will use a 3D coordinate system to specify positions in space and other vector
quantities. Usually we will orient the axes of the coordinate system as shown in
Figure A.1: +x axis to the right, +y axis upward, and +z axis coming out of
the page, toward you. This is a “right-handed” coordinate system: if you hold the
thumb, first, and second fingers of your right hand perpendicular to each other, and
align your thumb with the x axis and your first finger with the y axis, your second
finger points along the z axis. (In some math and physics textbook discussions of
3D coordinate systems, the x axis points out, the y axis points to the right, and
the z axis points up, but we will also use a 2D coordinate system with y up, so it
makes sense always to have the y axis point up.)

Basic Properties of Vectors: Magnitude and Direction

A vector is a quantity that has a magnitude and a direction. For example, the
velocity of a baseball is a vector quantity. The magnitude of the baseball’s velocity
is the speed of the baseball, for example 20 meters/second. The direction of the
baseball’s velocity is the direction of its motion at a particular instant, for example
“up” or “to the right” or “west” or “in the +y direction.” A symbol denoting a
vector is written with an arrow over it:

�v is a vector.

Position
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Figure A.2 A position vector �r = 〈4, 3, 2〉m
and its x, y, and z components.

A position in space can also be considered to be a vector, called a position vector,
pointing from an origin to that location. Figure A.2 shows a position vector that
might represent your final position if you started at the origin and walked 4 meters
along the x axis, then 2 meters parallel to the z axis, then climbed a ladder so
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2 Review of Vectors

you were 3 meters above the ground. Your new position relative to the origin is a
vector that can be written like this:

�r = 〈4, 3, 2〉m

x component rx = 4 m

y component ry = 3 m

z component rz = 2 m

In three dimensions a vector is a triple of numbers 〈x, y, z〉. Quantities like the
position of an object and the velocity of an object can be represented as vectors:

�r = 〈x, y, z〉 (a position vector)

�r1 = 〈3.2,−9.2, 66.3〉m (a position vector)

�v = 〈vx, vy, vz〉 (a velocity vector)

�v1 = 〈−22.3, 0.4,−19.5〉m/s (a velocity vector)

Components of a Vector

Each of the numbers in the triple is referred to as a component of the vector. The
x component of the vector �v is the number vx. The z component of the vector
�v1 = 〈−22.3, 0.4,−19.5〉m/s is −19.5 m/s. A component such as vx is not a
vector, since it is only one number.
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Figure A.3 The arrow represents the vector
�r = 〈4, 3, 2〉m, drawn with its tail at location
〈0, 0, 2〉.

It is important to note that the x component of a vector specifies the difference
between the x coordinate of the tail of the vector and the x coordinate of the tip
of the vector. It does not give any information about the location of the tail of the
vector (compare Figure A.2 and Figure A.3).

Drawing Vectors

In Figure A.2 we represented your position vector relative to the origin graphically
by an arrow whose tail is at the origin and whose arrowhead is at your position.
The length of the arrow represents the distance from the origin, and the direction
of the arrow represents the direction of the vector, which is the direction of a direct
path from the initial position to the final position (the “displacement”; by walking
and climbing you “displaced” yourself from the origin to your final position).

Since it is difficult to draw a 3D diagram on paper, when working on paper
you will usually be asked to draw vectors which all lie in a single plane. Figure
A.4 shows an arrow in the xy plane representing the vector 〈−3,−1, 0〉.

x

y

Figure A.4 The position vector 〈−3,−1, 0〉,
drawn at the origin, in the xy plane. The com-
ponents of the vector specify the displacement
from the tail to the tip. The z axis, which is
not shown, comes out of the page, toward you.

Vectors and Scalars

A quantity which is represented by a single number is called a scalar. A scalar
quantity does not have a direction. Examples include the mass of an object, such
as 5 kg, or the temperature, such as −20C. Vectors and scalars are very different
entities; a vector can never be equal to a scalar, and a scalar cannot be added to a
vector. Scalars can be positive or negative:

m = 50 kg

T = −20 C

Although a component of a vector such as vx is not a vector, it’s not a scalar either,
despite being only one number. An important property of a true scalar is that its
value doesn’t change if we orient the xyz coordinate axes differently. Rotating
the axes doesn’t change an object’s mass, or the temperature, but it does change
what we mean by the x component of the velocity since the x axis now points in
a different direction.
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Magnitude of a Vector

In Figure A.5 we again show the vector from Figure A.2, showing your displace-
ment from the origin. Using a 3D extension of the Pythagorean theorem for right
triangles (Figure A.6), the net distance you have moved from the starting point is√

(4 m)2 + (3 m)2 + (2 m)2 =
√

29 m =
√

5.39 m

We say that the magnitude |�r| of the position vector �r is
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Figure A.5 A vector representing a displace-
ment from the origin.

|�r| = 5.39 m

The magnitude of a vector is written either with absolute-value bars around the
vector as |�r|, or simply by writing the symbol for the vector without the little
arrow above it, r.

The magnitude of a vector can be calculated by taking the square root of the
sum of the squares of its components (see Figure A.6).

x

y

z÷(x2 + z2)

÷(x2 + z2) + y2

Figure A.6 The magnitude of a vector is the
square root of the sum of the squares of its
components (3D version of the Pythagorean
theorem).

MAGNITUDE OF A VECTOR

If the vector �r = 〈rx, ry, rz〉 then |�r| =
√

r2
x + r2

y + r2
z (a scalar).

The magnitude of a vector is always a positive number. The magnitude of a vector
is a single number, not a triple of numbers, and it is a scalar, not a vector.

The magnitude of a vector is a true scalar, because its value doesn’t change if
you rotate the coordinate axes. Rotating the axes changes the individual compo-
nents, but the length of the arrow representing the vector doesn’t change.

Can a Vector be Positive or Negative?

QUESTION Consider the vector �v = 〈8× 106, 0,−2× 107〉m/s. Is
this vector positive? Negative? Zero?

None of these descriptions is appropriate. The x component of this vector is
positive, the y component is zero, and the z component is negative. Vectors aren’t
positive, or negative, or zero. Their components can be positive or negative or
zero, but these words just don’t mean anything when used with the vector as a
whole.

On the other hand, the magnitude of a vector such as |�v| is always positive.

Mathematical Operations Involving Vectors

Although the algebra of vectors is similar to the scalar algebra with which you are
very familiar, it is not identical. There are some algebraic operations that cannot
be performed on vectors.

Algebraic operations that are legal for vectors include the following opera-
tions, which we will discuss in this chapter:

• adding one vector to another vector: �a + �w

• subtracting one vector from another vector: �b − �d

• finding the magnitude of a vector: |�r|
• finding a unit vector (a vector of magnitude 1): r̂

• multiplying (or dividing) a vector by a scalar: 3�v or �w/2

• finding the rate of change of a vector: Δ�r/Δt or d�r/dt.

In later chapters we will also see that there are two more ways of combining two
vectors:
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the vector dot product, whose result is a scalar

the vector cross product, whose result is a vector

Operations that are Not Legal for Vectors

Although vector algebra is similar to the ordinary scalar algebra you have used
up to now, there are certain operations that are not legal (and not meaningful) for
vectors:

A vector cannot be set equal to a scalar.
A vector cannot be added to or subtracted from a scalar.
A vector cannot occur in the denominator of an expression. (Although you

can’t divide by a vector, note that you can legally divide by the magnitude of a
vector, which is a scalar.)

Multiplying a Vector by a Scalar

A vector can be multiplied (or divided) by a scalar. If a vector is multiplied by a
scalar, each of the components of the vector is multiplied by the scalar:

If �r = 〈x, y, z〉 then a�r = 〈ax, ay, az〉

If �v = 〈vx, vy, vz〉 then
�v

b
= 〈vx

b
,
vy

b
,
vz

b
〉

(
1
2
)〈6,−20, 9〉 = 〈3,−10, 4.5〉

1
2

p

p

2p

–p

–2p

–3p

3p

Figure A.7 Multiplying a vector by a scalar
changes the magnitude of the vector. Multi-
plying by a negative scalar reverses the direc-
tion of the vector.

Multiplication by a scalar “scales” a vector, keeping its direction the same but
making its magnitude larger or smaller (Figure A.7). Multiplying by a negative
scalar reverses the direction of a vector.

Magnitude of a Scalar

You may wonder how to find the magnitude of a quantity like −3�r, which involves
the product of a scalar and a vector. This expression can be factored:

| − 3�r| = | − 3| · |�r|
The magnitude of a scalar is its absolute value, so:

| − 3�r| = | − 3| · |�r| = 3
√

r2
x + r2

y + r2
z

Direction of a Vector: Unit Vectors

One way to describe the direction of a vector is by specifying a unit vector. A
unit vector is a vector of magnitude 1, pointing in some direction. A unit vector is
written with a “hat” (caret) over it instead of an arrow. The unit vector â is called
“a-hat”.

QUESTION Is the vector 〈1, 1, 1〉 a unit vector?

The magnitude of 〈1, 1, 1〉 is
√

12 + 12 + 12 = 1.73, so this is not a unit vector.
The vector 〈1/

√
3, 1/

√
3, 1/

√
3〉 is a unit vector, since its magnitude is 1:√

(
1√
3
)2 + (

1√
3
)2 + (

1√
3
)2 = 1

Note that every component of a unit vector must be less than or equal to 1.
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In our 3D Cartesian coordinate system, there are three special unit vectors,
oriented along the three axes. They are called i-hat, j-hat, and k-hat, and they
point along the x, y, and z axes, respectively (Figure A.8):

ı̂ = 〈1, 0, 0〉
ĵ = 〈0, 1, 0〉
k̂ = 〈0, 0, 1〉

k
x

z

y

Figure A.8 The unit vectors ı̂, ĵ, k̂.

One way to express a vector is in terms of these special unit vectors:

〈0.02,−1.7, 30.0〉 = 0.02̂ı + (−1.7)̂j + 30.0k̂

We will usually use the 〈x, y, z〉 form rather than the ı̂̂jk̂ form in this book, because
the familiar 〈x, y, z〉 notation, used in many calculus textbooks, emphasizes that a
vector is a single entity.

v = ·1.5, 1.5, 0Ò m/s

v = · , 0Ò,÷2
2

÷2
2

Figure A.9 The unit vector v̂ has the same di-
rection as the vector �v, but its magnitude is 1,
and it has no physical units.

Not all unit vectors point along an axis, as shown in Figure A.9. For example,
the vectors

ĝ = 〈0.5774, 0.5774, 0.5774〉 and F̂ = 〈0.424, 0.566, 0.707〉

are both unit vectors, since the magnitude of each is equal to 1. Note that every
component of a unit vector is less than or equal to 1.

Calculating Unit Vectors

Any vector may be factored into the product of a unit vector in the direction of the
vector, multiplied by a scalar equal to the magnitude of the vector.

�w = |�w| · ŵ

For example, a vector of magnitude 5, aligned with the y axis, could be written as:

〈0, 5, 0〉 = 5〈0, 1, 0〉

Therefore, to find a unit vector in the direction of a particular vector, we just divide
the vector by its magnitude:

CALCULATING A UNIT VECTOR

r̂ =
�r

|�r| =
〈x, y, z〉√

(x2 + y2 + z2)

r̂ = 〈 x√
(x2 + y2 + z2)

,
y√

(x2 + y2 + z2)
,

z√
(x2 + y2 + z2)

〉

EXAMPLE Unit Vector
If �v = 〈−22.3, 0.4,−19.5〉m/s, then

v̂ =
�v

|�v| =
〈−22.3, 0.4,−19.5〉m/s√

(−22.3)2 + (0.4)2 + (−19.5)2 m/s
= 〈−0.753, 0.0135,−0.658〉

Remember that to divide a vector by a scalar, you divide each component of the
vector by the scalar. The result is a new vector. Note also that a unit vector has no
physical units (such as meters per second), because the units in the numerator and
denominator cancel.
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Equality of Vectors

EQUALITY OF VECTORS
A vector is equal to another vector if and only if all the components of the vectors
are equal.

�w = �r means that

wx = rx and wy = ry and wz = rz

The magnitudes and directions of two equal vectors are the same:

|�w| = |�r| and ŵ = r̂

EXAMPLE Equal Vectors

�r = 〈4, 3, 2〉
|�r| =

√
(42 + 32 + 22) = 5.39

r̂ =
〈4, 3, 2〉

5.39
= 〈0.742, 0.557, 0.371〉
If �w = �r

�w = 〈4, 3, 2〉
|�w| = 5.39

ŵ = 〈0.742, 0.557, 0.371〉

Vector Addition

ADDING VECTORS
The sum of two vectors is another vector, obtained by adding the components of
the vectors.

�A = 〈Ax, Ay , Az〉
�B = 〈Bx, By, Bz〉

�A + �B = 〈(Ax + Bx), (Ay + By), (Az + Bz)〉

EXAMPLE Adding Vectors

〈1, 2, 3〉+ 〈−4, 5, 6〉 = 〈−3, 7, 9〉

Warning: Don’t Add Magnitudes!

x

y

A + B

x

y

x

y

B

B

B

A

A

A

Figure A.10 The procedure for adding two
vectors graphically: draw vectors tip to tail.
To add �A + �B graphically, move �B so the tail
of �B is at the tip of �A then draw a new arrow
starting at the tail of �A and ending at the tip of
�B.

The magnitude of a vector is not in general equal to the sum of the magnitudes
of the two original vectors! For example, the magnitude of the vector 〈3, 0, 0〉 is
3, and the magnitude of the vector 〈−2, 0, 0〉 is 2, but the magnitude of the vector
(〈3, 0, 0〉 + 〈−2, 0, 0〉) is 1, not 5!

Adding Vectors Graphically: Tip to Tail

The sum of two vectors has a geometric interpretation. In Figure A.10 you first
walk along displacement vector �A, followed by walking along displacement vec-
tor �B. What is your net displacement vector �C = �A + �B? The x component Cx
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of your net displacement is the sum of Ax and Bx. Similarly, the y component Cy

of your net displacement is the sum of Ay and By .

GRAPHICAL ADDITION OF VECTORS

To add two vectors �A and �B graphically (Figure A.10):

• Draw the first vector �A

• Move the second vector �B (without rotating it) so its tail is located at the tip
of the first vector

• Draw a new vector from the tail of vector �A to the tip of vector �B

Vector Subtraction

The difference of two vectors will be very important in this and subsequent chap-
ters. To subtract one vector from another, we subtract the components of the
second from the components of the first:

�A − �B = 〈(Ax − Bx), (Ay − By), (Az − Bz)〉
〈1, 2, 3〉 − 〈−4, 5, 6〉 = 〈5,−3,−3〉

Subtracting Vectors graphically: Tail to Tail

To subtract one vector �B from another vector �A graphically:

• Draw the first vector �A

• Move the second vector �B (without rotating it) so its tail is located at the
tail of the first vector

• Draw a new vector from the tip of vector �B to the tip of vector �A
B

A

A − B

Figure A.11 The procedure for subtracting
vectors graphically: draw vectors tail to tail;
draw new vector from tip of second vector to
tip of first vector.

Note that you can check this algebraically and graphically. As shown in Figure
A.11, since the tail of �A − �B is located at the tip of �B, then the vector �A should
be the sum of �B and �A − �B, as indeed it is:

�B + ( �A − �B) = �A

Commutativity and Associativity

Vector addition is commutative:

�A + �B = �B + �A

Vector subtraction is not commutative:

�A − �B �= �B − �A

The associative property holds for vector addition and subtraction:

( �A + �B) − �C = �A + ( �B − �C)

The Zero Vector

It is convenient to have a compact notation for a vector whose components are all
zero. We will use the symbol �0 to denote a zero vector, in order to distinguish it
from a scalar quantity that has the value 0.

�0 = 〈0, 0, 0〉
For example, the sum of two vectors �B + (− �B) = �0.
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Change in a Quantity: The Greek Letter Δ

Frequently we will want to calculate the change in a quantity. For example, we
may want to know the change in a moving object’s position or the change in its
velocity during some time interval. The Greek letter Δ (capital delta suggesting
“d for difference”) is used to denote the change in a quantity (either a scalar or a
vector).

We use the subscript i to denote an initial value of a quantity, and the subscript
f to denote the final value of a quantity. If a vector �r i denotes the initial position
of an object relative to the origin (its position at the beginning of a time interval),
and �rf denotes the final position of the object, then

Δ�r = �rf − �ri

Δ�r means “change of �r” or �rf − �ri (displacement)–4 –2 0 2 4 6 m

–2

0

2

4

6 m

–4

r2 – r1r1

r2

Figure A.12 Relative position vector.
Δt means “change of t” or tf − ti (time interval)

The symbol Δ (delta) always means “final minus initial”, not “initial minus final”.
For example, when a child’s height changes from 1.1 m to 1.2 m, the change is
Δy = +0.1 m, a positive number. If your bank account dropped from $150 to
$130, what was the change in your balance? Δ(bank account)= −20 dollars.

Relative Position Vectors

Vector subtraction is used to calculate relative position vectors, vectors which
represent the position of an object relative to another object. In Figure A.12 object
1 is at location �r1 and object 2 is at location �r2. We want the components of
a vector that points from object 1 to object 2. This is the vector obtained by
subtraction: �r2 relative to 1 = �r2 − �r1. Note that the form is always “final” minus
“initial” in these calculations.

x

|A| = 1

θx

A

Ax

String

Figure A.13 A unit vector whose direction is
at a known angle from the +x axis. Unit Vectors and Angles

Suppose a taut string is at an angle θx to the +x axis, and we need a unit vector in
the direction of the string. Figure A.13 shows a unit vector Â pointing along the
string. What is the x component of this unit vector? Consider the triangle whose
base is Ax and whose hypotenuse is |Â| = 1. From the definition of the cosine of
an angle we have this:

cos θ =
adjacent

hypotenuse
=

Ax

1
, so Ax = cos θx

In Figure A.13 the angle θx is shown in the first quadrant (θx less than 90◦), but
this works for larger angles as well. For example, in Figure ?? the angle from
the +x axis to a unit vector B̂ is in the second quadrant (θx greater than 90◦) and
cos θx is negative, which corresponds to Bx being negative.

ry

rz

rx

θx

θy

θz

r

Figure A.14 A 3D unit vector and its angles to
the x, y, and z axes.

What is true for x is also true for y and z. Figure A.14 shows a 3D unit
vector r̂ and indicates the angles between the unit vector and the x, y, and z axes.
Evidently we can write

r̂ = 〈cos θx, cos θy, cos θz〉

These three cosines of the angles between a vector (or unit vector) and the coor-
dinate axes are called the “direction cosines” of the vector. The cosine function is
never greater than 1, just as no component of a unit vector can be greater than 1.

Vector in xy plane

θy = 90º – θx

x

y

θx

Figure A.15 If a vector lies in the xy plane,
cos θy = sin θx.

A common special case is that of a unit vector lying in the xy plane, with
zero z component (Figure A.15). In this case θx + θy = 90◦, so that cos θy =
cos(90◦ − θx) = sin θx, so that you can express the cosine of θy as the sine of θx,
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which is often convenient. However, in the general 3D case shown in Figure A.14
there is no such simple relationship among the direction angles, nor among their
cosines.

FINDING A UNIT VECTOR FROM ANGLES
To find a unit vector if angles are given:

• Redraw the vector of interest with its tail at the origin, and determine the
angles between this vector and the axes.

• Imagine the vector 〈1, 0, 0〉, which lies on the +x axis. θx is the an-
gle through which you would rotate the vector 〈1, 0, 0〉 until its direction
matched that of your vector. θx is positive, and θx ≤ 180◦.

• θy is the angle through which you would rotate the vector 〈0, 1, 0〉 until its
direction matched that of your vector. θy is positive, and θy ≤ 180◦.

• θz is the angle through which you would rotate the vector 〈0, 0, 1〉 until its
direction matched that of your vector. θz is positive, and θz ≤ 180◦.

EXAMPLE From Angle to Unit Vector

A rope lying in the xy plane, pointing up and to the right, supports a climber at
an angle of 20◦ to the vertical (Figure A.16). What is the unit vector pointing up
along the rope?

20°

Figure A.16 A climber supported by a rope.

Solution Follow the procedure given above for finding a unit vector from angles.
In Figure A.17 we redraw the vector with its tail at the origin, and we determine
the angles between the vector and the axes. If we rotate the unit vector 〈1, 0, 0〉
from along the +x axis to the vector of interest, we see that we have to rotate
through an angle θx = 70◦. To rotate the unit vector 〈0, 1, 0〉 from along the +y
axis to the vector of interest, we have to rotate through an angle of θ y = 20◦. The
angle from the +z axis to our vector is θz = 90◦. Therefore the unit vector that
points along the rope is this:

ry

rz

rx

θy = 20º

θx = 70º

θz = 90º

r

Figure A.17 Redraw the vector with its tail
at the origin. Identify the angles between the
positive axes and the vector. In this example
the vector lies in the xy plane.

〈cos 70◦, cos 20◦, cos 90◦〉 = 〈0.342, 0.940, 0〉

FURTHER DISCUSSION You may have noticed that the y component of the unit
vector can also be calculated as sin 70◦ = 0.940, and it is often useful to recognize
that a vector component can be obtained using sine instead of cosine. There is
however some advantage always to calculate in terms of direction cosines. This is
a method that always works, including in 3D, and which avoids having to decide
whether to use a sine or a cosine. Just use the cosine of the angle from the relevant
positive axis to the vector.

EXAMPLE From Unit Vector to Angles

A vector �r points from the origin to the location 〈−600, 0, 300〉m. What is the
angle that this vector makes to the x axis? To the y axis? To the z axis?
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Solution

r̂ =
〈−600, 0, 300〉√

(−600)2 + (0)2 + (300)2 m
= 〈−0.894, 0, 0.447〉

But we also know that r̂ = 〈cos θx, cos θy, cos θz〉, so

cos θx = −0.894, and the arccosine gives θx = 153.4◦.
Similarly,

cos θy = 0, θy = 90◦ (which checks; no y component)

cos θz = 0.447, θz = 63.4◦

x

z

θx = 153.4º

θz = 63.4º

r

Figure A.18 Look down on the xz plane. The
difference in the two angles is 90◦, as it should
be.

FURTHER DISCUSSION Looking down on the xz plane in Figure A.18, you can
see that the difference between θx = 153.4◦ and θz = 63.4◦ is 90◦, as it should
be.

A.2 VECTOR MULTIPLICATION

Vectors can be added and subtracted, and they can be multiplied by a scalar. Two
vectors can also be multiplied, but two different kinds of vector multiplication
are defined: the dot product and the cross product. In the previous volume the
dot product was introduced in the context of work, and the cross product was
introduced in the context of angular momentum.

The Dot Product

The dot product is an operation involving two vectors. This is encountered in the
expression for work in Chapter 6:

W = �F • Δ�r = (FxΔx + FyΔy + FzΔz)

If �F = 〈3,−2, 4〉 N and Δ�r = 〈2, 0,−5〉 m, then

�F • Δ�r = ((3 · 2) + (−2 · 0) + (4 · −5)) N · m = −14 N · m

The result of a dot product operation is a scalar (like the quantity work). Note
that the dot product of a vector with itself gives the square of the magnitude of the
vector:

〈rx, ry , rz〉 • 〈rx, ry , rz〉 = (r2
x, r2

y, r2
z) = |�r|2

The magnitude of the dot product can also be calculated as:

�F • Δ�r = FΔr cos θ = F||Δr = FΔr||

where θ is the angle between the two vectors, placed tail to tail. In the VPython
programming language, dot(vector1,vector2) gives the dot product of two vectors.
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Figure A.19 Cross products of unit vectors.

The Cross Product

The cross product is discussed in detail in Chapter 18 in the context of the Biot-
Savart law for finding the magnetic field of moving charges. In the VPython pro-
gramming language, cross(vector1,vector2)gives the cross product of two vectors.

It is possible to evaluate the cross product in terms of unit vectors along the
three axes (Figure A.19). First, note that ı̂× ı̂ = 0, ĵ× ĵ = 0, and k̂× k̂ = 0, since
when we cross a vector with itself the angle between the two vectors is zero, and
sin 0◦ = 0.

Second, ı̂ × ĵ = k̂, since the angle is 90◦ and the right-hand rule gives a
result in the +z direction (out of the page; Figure A.19). On the other hand,
ĵ× ı̂ = −k̂, because the right-hand rule gives a result in the −z direction (into the
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page). Similarly, ĵ× k̂ = ı̂, k̂ × ĵ = −ı̂, k̂ × ı̂ = ĵ, and ı̂× k̂ = −ĵ. Putting this all
together, we obtain the following general result:

�A × �B = (AyBz − AzBy )̂ı + (AzBx − AxBz )̂j + (AxBy − AyBx)k̂ or

�A × �B = 〈(AyBz − AzBz), (AzBx − AxBz), (AxBy − AyBx)〉

This approach to calculating a cross product is particularly useful in computer
calculations. Note the cyclic nature of the subscripts: xyz, yzx, zxy.

Common Errors in Vector Multiplication

(1) A dot product of two vectors results in a scalar, not another vector.
(2) A cross product of two vectors results in another vector, not a scalar.

Technically, although a component of a vector is a single number, it is not a scalar.
If you rotate your coordinate axes, the x, y, and z components of a vector change,
but a true scalar such as m = 5 kg doesn’t change.

A.3 SUMMARY

Vectors

A 3D vector is a quantity with magnitude and a direction, which can
be expressed as a triple 〈x, y, z〉. A vector is indicated by an arrow:
�r.

A scalar is a single number.

Legal mathematical operations involving vectors include:

• adding one vector to another vector

• subtracting one vector from another vector

• multiplying or dividing a vector by a scalar

• finding the magnitude of a vector

• taking the derivative of a vector

Operations that are not legal with vectors include:

• A vector cannot be added to a scalar

• A vector cannot be set equal to a scalar

• A vector cannot appear in the denominator
(you can’t divide by a vector)

The symbol Δ denotes subtraction

The symbol Δ (delta) means “change of”: Δt= tf −ti, Δ�r=�rf −�ri.

Δ always means “final minus initial”.


