Summary on unit 1 (update: 10/31/09)

Sec 1.1-1.9. Coord-vector: $\mathbf{r}=<x, y, z>=\hat{r} \mathbf{r}, \quad r=\sqrt{x^{2}+y^{2}+z^{2}}, \hat{\mathbf{r}}=<\cos \theta_{x}, \cos \theta_{y}, \cos \theta_{z}>$. For 2D case, $r=\sqrt{x^{2}+y^{2}+z^{2}}, \hat{\mathbf{r}}=<\cos \theta, \sin \theta>$.
Displacement: $\Delta \mathbf{r}=\mathbf{r}_{f}-\mathbf{r}_{i}$
Velocity: Definition of average velocity- $\mathbf{v}_{a v}=\Delta \mathbf{r} / \Delta t$.

- Position up date: $\mathbf{r}_{f}=\mathbf{r}_{i}+\mathbf{v}_{a v} \Delta t$.
- Instantaneous velocity: $\mathbf{v}=\operatorname{Lim}_{\Delta t \rightarrow 0}(\Delta \mathbf{r} / \Delta t)$. Instantaneous acceleration: $\mathbf{a}=d \mathbf{v} / d t$.
- If acceleration $\mathbf{a}=d \mathbf{v} / d t=\mathbf{F} / m$ is const., $\mathbf{v}_{a v}=\left(\mathbf{v}_{f}+\mathbf{v}_{i}\right) / 2$. If not const. set $\mathbf{v}_{a v} \sim \mathbf{v}_{f}$.

Momentum: $\mathbf{p}=\gamma m \mathbf{v}, \gamma=1 / \sqrt{1-\beta^{2}}, \beta=|\mathbf{v}| / c$.

- Nonrelativistic approximation(NR): $\gamma \rightarrow 1, \mathbf{p}=m \mathbf{v}$.
- Identity: $\beta=\beta \gamma / \sqrt{1+(\beta \gamma)^{2}}$, where $\beta \gamma=p / \mathrm{cm}$.

The extended Newton's law of motion: $\mathbf{F}=\Delta \mathbf{p} / \Delta t$.

- If $\mathbf{F}=0, \mathbf{p}=\hat{p} \mathbf{p}=$ constant. This is Newton's first law.
- In NR case, it leads to $\mathbf{F}=\Delta \mathbf{p} / \Delta t=$ ma. This is Newton's second law, with definition $\mathbf{a}=d \mathbf{v} / d t$.
- For 1-d, a const. Mom-P: $v_{f}=v_{i}+a \Delta t$, pos-update $s=\left(v_{i}+v_{f}\right) \Delta t=v_{i} \Delta t+(1 / 2) a \Delta t^{2}$.
- If $\mathbf{F} \neq 0$, multiplying both sides by Δt, it states that it is the impact of the impulse, $\mathbf{F} \Delta t$, which causes the effect of the change of momentum, $\Delta \mathbf{p}$.
Sec 2.1-2.10. Momentum principle: $\Delta \mathbf{p}=\mathbf{p}_{f}-\mathbf{p}_{i}=\mathbf{F} \Delta t$
For a one-body system: The momentum $\mathbf{p}=\gamma m \mathbf{v}$, the force \mathbf{F} exerts on it.
For a many-body system:
- $\mathbf{p} \rightarrow \mathbf{p}_{\text {total }}=\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}+\cdots$,
- $\mathbf{F} \rightarrow \mathbf{F}_{t o t a l, e x t}=\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3}+\cdots$, where the force \mathbf{F}_{i}, is the external force acting on the particle i.
- The total internal force is 0 . This is due to Newton's 3d law, i.e. for each pair of particles the action force is opposite to the reaction force. (This is the Principle of Reciprocity).
- Center of mass (effective one particle system): $\mathbf{P}_{t o t a l}=\mathbf{P}_{c m}=\gamma_{c m} M \mathbf{v}_{c m}, \mathrm{M}=\mathrm{m}_{1}+m_{2}+\cdots$
- Conservation of momentum: When $\mathbf{F}_{\text {total }}=0, \mathbf{P}_{\text {total,ext }}=0$, e.g. collisions, binary stars ...

Sec 3.1-3.3. Iterative procedure(3d):

- Begin with the object's momentum and position $\left(\mathbf{p}_{i}, \mathbf{r}_{i}\right)$, and the force $\mathbf{F}\left(\mathbf{r}_{i}\right)$ at $t=t_{i}$
- IL, Iterative Loop: Take time step $t_{f}=t_{i}+\Delta t$. Apply Momentum principle to update \mathbf{p}_{i} to \mathbf{p}_{f}.
- Position update moves the object from \mathbf{r}_{i} to \mathbf{r}_{f}.
- Set present $\left(\mathbf{p}_{f}, \mathbf{r}_{f}\right), \mathbf{F}\left(\mathbf{r}_{j}\right), t_{f}$ to next step $\left(\mathbf{p}_{i}, \mathbf{r}_{i}\right), \mathbf{F}\left(\mathbf{r}_{i}\right), t_{i}$ Go to IL.

Spring force(1d): $|F|=k|s|$. With sign: $F=-k s, s=L-L_{0}$. Stretched $s>0$, compressed $s<0$.
Four kinds of forces(or interactions): Gravitational, electromangetic, strong and weak.

