SummaryL of unit 1 (update: $9 / 21 / 12$)

Constants(SI): $m_{e}=9 \times 10^{-31}, m_{p}=1.7 \times 10^{-27}, e=1.6 \times 10^{-19}, c=3 \times 10^{8}, k=9 \times 10^{9}, \epsilon_{0}=8.85 \times 10^{-12}$.
Electric Field. Electric force on q exerted by a field \mathbf{E} is given by $\mathbf{F}=q \mathbf{E} . \mathbf{F}=m \mathbf{a}$.
$\underline{\text { Mom-Pr: }} \Delta \mathbf{p}=\mathbf{F} \Delta t . \Delta \mathbf{v}=\mathbf{a} \Delta t$, NR. Energy-Pr: $\Delta K=K-K_{0}=W=\int_{0}^{\mathbf{r}} \mathbf{F} \cdot d \mathbf{r}^{\prime}$, where $K \approx \frac{1}{2} m v^{2}$, NR. Special case (1d, NR, a=const): At $t=0, v=v_{0}$. At tlater $(\Delta t=t), v=v_{0}+a t, x=\frac{v_{0}+v}{2} t=v_{0} t+\frac{1}{2} a t^{2}$. Field at \mathbf{r} due to point charge Q at origin, $\mathbf{E}=\left(k Q / r^{2}\right) \hat{\mathbf{r}}$,
Force on q_{2} at \mathbf{r} due to q_{1} at origin: $\mathbf{F}_{o n 2}^{d u e 1}=\frac{k q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}$. Same sign charges repel, opposite sign charges attract. Dipole field. Math: Small ϵ expansion: $(1+\epsilon)^{a}=1+a \epsilon+O\left(\epsilon^{2}\right) \approx 1+a \epsilon$. Dipole moment: $\mathbf{p}=q \mathbf{s}$ along x, centered at 0 . At $\langle x, 0\rangle, E_{x}^{p}=-\frac{d}{d x} E_{x}^{q} s=\frac{2 k p}{x^{3}}$; at $\langle 0, y\rangle, E_{x}^{p}=2 E_{x}^{q} \cos \theta=\frac{-k p}{y^{3}}$.
Electric field and matter. Matter system electric properties: charged, neutral, polarized.
In a neutral system, the applied field induces a dipole moment: $\mathbf{p}_{\text {induced }}=\alpha \mathbf{E}_{\text {applied }}, \alpha$ is the polarizability. Insulator medium: No mobile charges. When field applied to a neutral atom, it generates an induced dipole. Conductor medium: Two types of conducting media are considered.
Ionization solution: Both positive ions and negative ions are mobile.
At equilibrium, field vector inside is 0 . At the surface, the parallel component of the field vector is 0 .
Drude model: Momentum Principle: $\Delta \mathbf{p}=F \Delta t=e E \Delta t . \quad v_{d r i f t}=p / m=e E \Delta t / m, \overline{v_{d r i f t}}=\bar{p} / m=$ $e E \Delta \bar{t}_{c} / \mathrm{m}$. At room temperature $\bar{v}_{\text {therm }} \sim 10^{3} \mathrm{~km} / \mathrm{s}, \mathbf{v}_{\text {drift }} \sim 10^{-3} \mathrm{~m} / \mathrm{s} . \overline{\mathbf{v}}=\overline{\left|\mathbf{v}_{\text {drift }}+\mathbf{v}_{\text {therm }}\right|} \sim\left|\mathbf{v}_{\text {therm }}\right|$. Write $\mathbf{v}_{\text {drift }}=u \mathbf{E}$, where u is the mobility. At a given temperature, $\Delta t_{c} \sim$ const., or $u \sim$ const.
Example: Ball and Wire. Based on Fig15.38, determine $F_{\text {ball-wire }}$. What is the polarizability of the wire? Hints: Being in a metal medium, we take the total field at the center of the wire is 0 . The magnitue of the field at the center due to the ball is $k Q / r^{2}$. Verify at the center the field due to the charges at ends of the wire is $2 k q /(L / 2)^{2}$. What is the polarizability of the wire?
$\frac{1}{r^{n}}$ dep. forces: Verify $F_{q-p} \propto 1 / r^{3}$, where the force is between charge q and dipole moment p . They are at distance r apart. Verify $F_{q-a t o m} \propto 1 / r^{5}$. Determine n for F_{p-p}. Also determine n for $F_{p-a t o m}$.

E of distributed charges. (i)Divide charges into elememts: $\Delta q=<$ density $>\times<$ geometric element $>$ (ii) The projected component $\Delta \mathbf{E}$. (iii) Integral expression. (iv) Use derivative identity to integrate.
 $E_{x}=\frac{k Q}{L} I, I=\int_{-L / 2}^{L / 2} \frac{d y}{\rho^{2}} \sin \alpha$. Math ID: $\frac{d y}{\rho^{2}}=\frac{d \alpha}{x}$. [Proof: $\tan \alpha=-\frac{x}{y}, \frac{d y}{d \alpha}=\frac{d}{d \alpha}\left(\frac{-x}{\tan \alpha}\right)=\frac{x}{\sin ^{2} \alpha}=\frac{\rho^{2}}{x}$]. $I=\int \frac{d \alpha}{x} \sin \alpha=\left.\frac{-\cos \alpha}{x}\right|_{\alpha_{1}} ^{\alpha_{2}}$. For $y_{2}=-y_{1}=\frac{L}{2}, \alpha_{2}=\pi-\alpha_{1}, E_{x}=\frac{k Q}{L} \frac{2 \cos \alpha_{1}}{x}=\frac{k Q}{x\left[x^{2}+(L / 2)^{2}\right]^{1 / 2}}$.
Ring, Fig16.17: The ring is centered at O , with r. At $\langle 0,0, z\rangle, E_{z}=k q \frac{z}{\left(r^{2}+z^{2}\right)^{3 / 2}}$.
Disk, Fig16.24: Consider a flat ring of average radius r , width Δr, and charge $\Delta Q=\frac{Q}{A} \times(2 \pi r \Delta r)$. At $\langle 0,0, z\rangle, \Delta E_{z}=k\left[\frac{Q}{A} 2 \pi r \Delta r\right] \frac{1}{\rho^{2}} \cos \alpha$, with $\cos \alpha=\frac{z}{\rho}$. Thus $E_{z}=\frac{1}{2 \epsilon_{0}} \frac{Q}{A} I$, where $I=\int_{0}^{R} \frac{z}{\rho^{3}} r d r=$ $\int_{0}^{R} \frac{z}{\rho^{3}} \rho d \rho=\left.\frac{-z}{\rho}\right|_{0} ^{R}$, where $\rho d \rho=r d r$ was used, since $\rho^{2}=r^{2}+z^{2} . E_{z}=\left.\frac{Q / A}{2 \epsilon_{0}} \frac{-z}{\rho}\right|_{0} ^{R}=\frac{Q / A}{2 \epsilon_{0}}\left[1-\frac{z}{\left(R^{2}+z^{2}\right)^{1 / 2}}\right]$. Verify for large $\mathrm{z}, E_{z} \sim k Q / z^{2}$. Hint: Use small argument approx.: $(1+\epsilon)^{a} \approx 1+a \epsilon$. Disk (one plate), $z \ll R: E_{z}=(Q / A) /\left(2 \epsilon_{0}\right) . \underline{\text { Capacitor plates }}(z \ll R) . E_{g a p} \approx \frac{Q / A}{\epsilon_{0}}$, neglect fringe.

Gauss law: $\Phi_{S}=\frac{Q_{S}}{\epsilon_{0}} \cdot \Phi_{S} \equiv \Sigma_{S}(\mathbf{E} \cdot \Delta \mathbf{A})=E A_{\perp}^{\text {enclose }}$, flux through S. Q_{S} are charges enclosed by S. Spherical case, S is a sphere with radius r. $A_{\perp}^{\text {enclose }}=4 \pi r^{2}$. Derive E along r at S .
Planar case, S encloses charged plate. Plate area is $A . A_{\perp}^{\text {enclose }}=2 A, Q_{S}=Q$. Derive $E \perp$ to the plate. Cylindrical case, S: cylinder with radius r and height L. $A_{\perp}^{\text {enclose }}=2 \pi r L, Q_{S}=Q$. Derive E along r at S .

