SummaryL of unit 1 (update: 9/21/12)

Constants(SI): $m_e = 9 \times 10^{-31}$, $m_p = 1.7 \times 10^{-27}$, $e = 1.6 \times 10^{-19}$, $c = 3 \times 10^8$, $k = 9 \times 10^9$, $\epsilon_0 = 8.85 \times 10^{-12}$. Electric Field. Electric force on q exerted by a field **E** is given by $\mathbf{F} = q\mathbf{E}$. $\mathbf{F} = m\mathbf{a}$.

<u>Mom-Pr</u>: $\Delta \mathbf{p} = \mathbf{F} \Delta t$. $\Delta \mathbf{v} = \mathbf{a} \Delta t$, NR. <u>Energy-Pr</u>: $\Delta K = K - K_0 = W = \int_0^{\mathbf{r}} \mathbf{F} \cdot d\mathbf{r}'$, where $K \approx \frac{1}{2}mv^2$, NR. Special case (1d, NR, a=const): At t = 0, $v = v_0$. At t later ($\Delta t = t$), $v = v_0 + at$, $x = \frac{v_0 + v}{2}t = v_0t + \frac{1}{2}at^2$. Field at \mathbf{r} due to point charge Q at origin, $\mathbf{E} = (kQ/r^2)\hat{\mathbf{r}}$,

Force on q_2 at \mathbf{r} due to q_1 at origin: $\mathbf{F}_{on2}^{due1} = \frac{kq_1q_2}{r^2}\hat{\mathbf{r}}$. Same sign charges repel, opposite sign charges attract. Dipole field. Math: Small ϵ expansion: $(1 + \epsilon)^a = 1 + a\epsilon + O(\epsilon^2) \approx 1 + a\epsilon$. Dipole moment: $\mathbf{p} = q\mathbf{s}$ along \mathbf{x} , centered at 0. At $\langle x, 0 \rangle$, $E_x^p = -\frac{d}{dx}E_x^q s = \frac{2kp}{x^3}$; at $\langle 0, y \rangle$, $E_x^p = 2E_x^q \cos\theta = \frac{-kp}{y^3}$.

Electric field and matter. Matter system electric properties: charged, neutral, polarized.

In a neutral system, the applied field induces a dipole moment: $\mathbf{p}_{induced} = \alpha \mathbf{E}_{applied}$, α is the polarizability. Insulator medium: No mobile charges. When field applied to a neutral atom, it generates an induced dipole. Conductor medium: Two types of conducting media are considered.

Ionization solution: Both positive ions and negative ions are mobile.

At equilibrium, field vector inside is 0. At the surface, the parallel component of the field vector is 0.

<u>Drude model</u>: Momentum Principle: $\Delta \mathbf{p} = F\Delta t = eE\Delta t$. $v_{drift} = p/m = eE\Delta t/m$, $\overline{v_{drift}} = \overline{p}/m = eE\Delta \overline{t_c}/m$. At room temperature $\overline{v}_{therm} \sim 10^3 km/s$, $\mathbf{v}_{drift} \sim 10^{-3}m/s$. $\overline{\mathbf{v}} = |\mathbf{v}_{drift} + \mathbf{v}_{therm}| \sim |\mathbf{v}_{therm}|$. Write $\mathbf{v}_{drift} = u\mathbf{E}$, where u is the mobility. At a given temperature, $\Delta t_c \sim const$, or $u \sim const$.

Example: Ball and Wire. Based on Fig15.38, determine $F_{ball-wire}$. What is the polarizability of the wire? Hints: Being in a metal medium, we take the total field at the center of the wire is 0. The magnitue of the field at the center due to the ball is kQ/r^2 . Verify at the center the field due to the charges at ends of the wire is $2kq/(L/2)^2$. What is the polarizability of the wire?

 $\frac{1}{r^n}$ dep. forces: Verify $F_{q-p} \propto 1/r^3$, where the force is between charge q and dipole moment p. They are at distance r apart. Verify $F_{q-atom} \propto 1/r^5$. Determine n for F_{p-p} . Also determine n for F_{p-atom} .

E of distributed charges. (i)Divide charges into elements: $\Delta q = \langle density \rangle \times \langle geometric element \rangle$ (ii) The projected component $\Delta \mathbf{E}$. (iii) Integral expression. (iv) Use derivative identity to integrate.

Rod, Fig16.9: Length L along y, centered at O. At $\langle x, 0, 0 \rangle$, $\Delta E_x = k \frac{(Q/L)\Delta y}{\rho^2} sin\alpha$, $\rho^2 = x^2 + y^2$, $E_x = \frac{kQ}{L}I$, $I = \int_{-L/2}^{L/2} \frac{dy}{\rho^2} sin\alpha$. Math ID: $\frac{dy}{\rho^2} = \frac{d\alpha}{x}$. [Proof: $tan\alpha = -\frac{x}{y}$, $\frac{dy}{d\alpha} = \frac{d}{d\alpha} \left(\frac{-x}{tan\alpha}\right) = \frac{x}{sin^2\alpha} = \frac{\rho^2}{x}$]. $I = \int \frac{d\alpha}{x} sin\alpha = \frac{-\cos\alpha}{x} \Big|_{\alpha_1}^{\alpha_2}$. For $y_2 = -y_1 = \frac{L}{2}$, $\alpha_2 = \pi - \alpha_1$, $E_x = \frac{kQ}{L} \frac{2\cos\alpha_1}{x} = \frac{kQ}{x[x^2 + (L/2)^2]^{1/2}}$. Ring, Fig16.17: The ring is centered at O, with r. At $\langle 0, 0, z \rangle$, $E_z = kq \frac{z}{(r^2 + z^2)^{3/2}}$.

<u>Disk, Fig16.24</u>: Consider a flat ring of average radius r, width Δr , and charge $\Delta Q = \frac{Q}{A} \times (2\pi r \Delta r)$. At $< 0, 0, z >, \Delta E_z = k \left[\frac{Q}{A} 2\pi r \Delta r \right] \frac{1}{\rho^2} cos\alpha$, with $cos\alpha = \frac{z}{\rho}$. Thus $E_z = \frac{1}{2\epsilon_0} \frac{Q}{A} I$, where $I = \int_0^R \frac{z}{\rho^3} r dr = \int_0^R \frac{z}{\rho^3} \rho d\rho = \frac{-z}{\rho} \Big|_0^R$, where $\rho d\rho = r dr$ was used, since $\rho^2 = r^2 + z^2$. $E_z = \frac{Q/A}{2\epsilon_0} \frac{-z}{\rho} \Big|_0^R = \frac{Q/A}{2\epsilon_0} \left[1 - \frac{z}{(R^2 + z^2)^{1/2}} \right]$. Verify for large z, $E_z \sim kQ/z^2$. Hint: Use small argument approx.: $(1 + \epsilon)^a \approx 1 + a\epsilon$. <u>Disk</u> (one plate), z << R: $E_z = (Q/A)/(2\epsilon_0)$. <u>Capacitor plates</u> (z << R). $E_{gap} \approx \frac{Q/A}{\epsilon_0}$, neglect fringe.

Gauss law: $\Phi_S = \frac{Q_S}{\epsilon_0}$. $\Phi_S \equiv \Sigma_S(\mathbf{E} \cdot \Delta \mathbf{A}) = EA_{\perp}^{enclose}$, flux through S. Q_S are charges enclosed by S. Spherical case, S is a sphere with radius r. $A_{\perp}^{enclose} = 4\pi r^2$. Derive *E* along r at S. Planar case, S encloses charged plate. Plate area is *A*. $A_{\perp}^{enclose} = 2A$, $Q_S = Q$. Derive *E* \perp to the plate.

Cylindrical case, S: cylinder with radius r and height L. $A_{\perp}^{enclose} = 2\pi rL$, $Q_S = Q$. Derive E along r at S.