
SummaryL of unit 1 (update: 9/21/12)

Constants(SI): 𝑚𝑒 = 9×10−31, 𝑚𝑝 = 1.7×10−27, 𝑒 = 1.6×10−19, 𝑐 = 3×108, 𝑘 = 9×109, 𝜖0 = 8.85×10−12.

Electric Field. Electric force on q exerted by a field E is given by F = 𝑞E. F = 𝑚a.

Mom-Pr: Δp = FΔ𝑡. Δv = aΔ𝑡, NR. Energy-Pr: Δ𝐾 = 𝐾 −𝐾0 = 𝑊 =
∫ r

0
F ⋅ 𝑑r′, where 𝐾 ≈ 1

2𝑚𝑣
2, NR.

Special case (1d, NR, a=const): At 𝑡 = 0, 𝑣 = 𝑣0. At t later (Δ𝑡 = 𝑡), 𝑣 = 𝑣0 + 𝑎𝑡, 𝑥 = 𝑣0+𝑣
2 𝑡 = 𝑣0𝑡+

1
2𝑎𝑡

2.

Field at r due to point charge Q at origin, E = (𝑘𝑄/𝑟2)r̂,

Force on 𝑞2 at r due to 𝑞1 at origin: F𝑑𝑢𝑒1
𝑜𝑛2 = 𝑘𝑞1𝑞2

𝑟2 r̂. Same sign charges repel, opposite sign charges attract.

Dipole field. Math: Small 𝜖 expansion: (1 + 𝜖)𝑎 = 1+ 𝑎𝜖+𝑂(𝜖2) ≈ 1 + 𝑎𝜖. Dipole moment: p = 𝑞s along x,

centered at 0. At < 𝑥, 0 >, 𝐸𝑝
𝑥 = − 𝑑

𝑑𝑥𝐸
𝑞
𝑥𝑠 =

2𝑘𝑝
𝑥3 ; at < 0, 𝑦 >, 𝐸𝑝

𝑥 = 2𝐸𝑞
𝑥𝑐𝑜𝑠𝜃 =

−𝑘𝑝
𝑦3 .

Electric field and matter. Matter system electric properties: charged, neutral, polarized.

In a neutral system, the applied field induces a dipole moment: p𝑖𝑛𝑑𝑢𝑐𝑒𝑑 = 𝛼E𝑎𝑝𝑝𝑙𝑖𝑒𝑑, 𝛼 is the polarizability.

Insulator medium: No mobile charges. When field applied to a neutral atom, it generates an induced dipole.

Conductor medium: Two types of conducting media are considered.

Ionization solution: Both positive ions and negative ions are mobile.

At equilibrium, field vector inside is 0. At the surface, the parallel component of the field vector is 0.

Drude model: Momentum Principle: Δp = 𝐹Δ𝑡 = 𝑒𝐸Δ𝑡. 𝑣𝑑𝑟𝑖𝑓𝑡 = 𝑝/𝑚 = 𝑒𝐸Δ𝑡/𝑚, 𝑣𝑑𝑟𝑖𝑓𝑡 = 𝑝/𝑚 =

𝑒𝐸Δ𝑡𝑐/𝑚. At room temperature 𝑣𝑡ℎ𝑒𝑟𝑚 ∼ 103𝑘𝑚/𝑠, v𝑑𝑟𝑖𝑓𝑡 ∼ 10−3𝑚/𝑠. v̄ = ∣v𝑑𝑟𝑖𝑓𝑡 + v𝑡ℎ𝑒𝑟𝑚∣ ∼ ∣v𝑡ℎ𝑒𝑟𝑚∣.
Write v𝑑𝑟𝑖𝑓𝑡 = 𝑢E, where u is the mobility. At a given temperature, Δ𝑡𝑐 ∼ 𝑐𝑜𝑛𝑠𝑡., or 𝑢 ∼ 𝑐𝑜𝑛𝑠𝑡.

Example: Ball and Wire. Based on Fig15.38, determine 𝐹𝑏𝑎𝑙𝑙−𝑤𝑖𝑟𝑒. What is the polarizability of the wire?

Hints: Being in a metal medium, we take the total field at the center of the wire is 0. The magnitue of the

field at the center due to the ball is 𝑘𝑄/𝑟2. Verify at the center the field due to the charges at ends of the

wire is 2𝑘𝑞/(𝐿/2)2. What is the polarizability of the wire?

1
𝑟𝑛 dep. forces: Verify 𝐹𝑞−𝑝 ∝ 1/𝑟3, where the force is between charge q and dipole moment p. They are at

distance r apart. Verify 𝐹𝑞−𝑎𝑡𝑜𝑚 ∝ 1/𝑟5. Determine n for 𝐹𝑝−𝑝. Also determine n for 𝐹𝑝−𝑎𝑡𝑜𝑚.

E of distributed charges. (i)Divide charges into elememts: Δ𝑞 =< 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > × < 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 >

(ii) The projected componentΔE. (iii) Integral expression. (iv) Use derivative identity to integrate.

Rod, Fig16.9: Length L along y, centered at O. At < 𝑥, 0, 0 >, Δ𝐸𝑥 = 𝑘 (𝑄/𝐿)Δ𝑦
𝜌2 𝑠𝑖𝑛𝛼, 𝜌2 = 𝑥2 + 𝑦2,

𝐸𝑥 = 𝑘𝑄
𝐿 𝐼, 𝐼 =

∫
𝐿/2

−𝐿/2

𝑑𝑦
𝜌2 𝑠𝑖𝑛𝛼. Math ID: 𝑑𝑦

𝜌2 = 𝑑𝛼
𝑥 . [Proof: 𝑡𝑎𝑛𝛼 = −𝑥

𝑦 ,
𝑑𝑦
𝑑𝛼 = 𝑑

𝑑𝛼

( −𝑥
𝑡𝑎𝑛𝛼

)
= 𝑥

𝑠𝑖𝑛2𝛼 = 𝜌2

𝑥 ].

𝐼 =
∫

𝑑𝛼
𝑥 𝑠𝑖𝑛𝛼 = −𝑐𝑜𝑠𝛼

𝑥

∣∣𝛼2

𝛼1
. For 𝑦2 = −𝑦1 = 𝐿

2 , 𝛼2 = 𝜋 − 𝛼1, 𝐸𝑥 = 𝑘𝑄
𝐿

2𝑐𝑜𝑠𝛼1

𝑥 = 𝑘𝑄
𝑥[𝑥2+(𝐿/2)2]1/2

.

Ring, Fig16.17: The ring is centered at O, with r. At < 0, 0, 𝑧 >, 𝐸𝑧 = 𝑘𝑞 𝑧
(𝑟2+𝑧2)3/2

.

Disk, Fig16.24: Consider a flat ring of average radius r, width Δ𝑟, and charge Δ𝑄 = 𝑄
𝐴 × (2𝜋𝑟Δ𝑟). At

< 0, 0, 𝑧 >, Δ𝐸𝑧 = 𝑘
[
𝑄
𝐴2𝜋𝑟Δ𝑟

]
1
𝜌2 𝑐𝑜𝑠𝛼, with 𝑐𝑜𝑠𝛼 = 𝑧

𝜌 . Thus 𝐸𝑧 = 1
2𝜖0

𝑄
𝐴 𝐼, where 𝐼 =

∫ 𝑅

0

𝑧
𝜌3 𝑟𝑑𝑟 =

∫
𝑅

0

𝑧
𝜌3 𝜌𝑑𝜌 =

−𝑧
𝜌

∣∣∣
𝑅

0
, where 𝜌𝑑𝜌 = 𝑟𝑑𝑟 was used, since 𝜌2 = 𝑟2 + 𝑧2. 𝐸𝑧 = 𝑄/𝐴

2𝜖0
−𝑧
𝜌

∣∣∣
𝑅

0
= 𝑄/𝐴

2𝜖0

[
1− 𝑧

(𝑅2+𝑧2)1/2

]
.

Verify for large z, 𝐸𝑧 ∼ 𝑘𝑄/𝑧2. Hint: Use small argument approx.: (1 + 𝜖)𝑎 ≈ 1 + 𝑎𝜖.

Disk (one plate), 𝑧 << 𝑅: 𝐸𝑧 = (𝑄/𝐴)/(2𝜖0). Capacitor plates (𝑧 << 𝑅). 𝐸𝑔𝑎𝑝 ≈ 𝑄/𝐴
𝜖0

, neglect fringe.

Gauss law: Φ𝑆 = 𝑄𝑆

𝜖0
. Φ𝑆 ≡ Σ𝑆(E ⋅ΔA) = 𝐸𝐴𝑒𝑛𝑐𝑙𝑜𝑠𝑒

⊥ , flux through S. 𝑄𝑆 are charges enclosed by S.

Spherical case, S is a sphere with radius r. 𝐴𝑒𝑛𝑐𝑙𝑜𝑠𝑒
⊥ = 4𝜋𝑟2. Derive 𝐸 along r at S.

Planar case, S encloses charged plate. Plate area is 𝐴. 𝐴𝑒𝑛𝑐𝑙𝑜𝑠𝑒
⊥ = 2𝐴, 𝑄𝑆 = 𝑄. Derive 𝐸 ⊥ to the plate.

Cylindrical case, S: cylinder with radius r and height L. 𝐴𝑒𝑛𝑐𝑙𝑜𝑠𝑒
⊥ = 2𝜋𝑟𝐿, 𝑄𝑆 = 𝑄. Derive 𝐸 along r at S.

1


