Constant: $\frac{\mu_{0}}{4 \pi}=10^{-7}$ S.I. Integrals: $\int_{\alpha_{1}}^{\alpha_{2}} \sin \alpha d \alpha=\left(\cos \alpha_{1}-\cos \alpha_{2}\right), \int_{a}^{b} r^{n} d r=\left.\frac{r^{n+1}}{n+1}\right|_{a} ^{b}, \int_{a}^{b} \frac{d r}{r}=\ln (b / a)$. Electric Potential: For 1 charged particle: $\Delta K+\Delta U=0, \Delta U=-q \mathbf{E} \cdot \Delta \mathbf{l}$ (work against $F=q \mathbf{E}$).
Potential: $\Delta V=\frac{\Delta U}{q}=V_{f}-V_{i}=-\mathbf{E} \cdot \Delta \mathbf{l}=-E \Delta l \cos \theta=-\left(E_{x} \Delta x+E_{y} \Delta y+E_{z} \Delta z\right)$. Units: $\mathrm{V}=\mathrm{Nm} / \mathrm{C}$.
From V to $\mathbf{E}: \mathbf{E}=-(\partial V / \partial x, \partial V / \partial y, \partial V / \partial z) \equiv-\nabla V$. For spherically symm. case: $E_{r}=-d V(r) / d r$. Potential diff: $V_{f}-V_{i}=-\int_{i}^{f} \mathbf{E} \cdot d \mathbf{l}$. For Q at origin, define $V(\infty)=0 . V(r)=-\int_{\infty}^{r} \frac{k Q}{r^{\prime 2}} d r^{\prime}=k Q / r$.
For a potential function, path integral along any closed loop $\Delta V=0$. This implies conservation of energy. Potential energy U_{A} : work required to move q from ∞ to A, assume $U_{\infty}=0$. Potential: $V_{A}=\frac{U_{A}}{q}, V_{\infty}=0$.
 Potential functions: Various cases.
Metal: Within a metal region: $\Delta V=V_{f}-V_{i}=0$. Connected metal-regions become an equal potential body. Spherical shell(Q, R): What is $\mathrm{V}(\mathrm{r})$ for $r>R$ and for $r<R$?
Solid sphere with radius R: For $r>R$, what is $\mathrm{V}(\mathrm{r})$?
For $r<R, V(r)-V(R)=-\int_{R}^{r} E d r$, with $E=k Q(r / R)^{3} /\left(4 \pi r^{2}\right)=C r$. Here C is defined by $k Q / R^{2}=C R$. Long rod (R, Q, linear charge density $\frac{\Delta Q}{\Delta y}=\lambda$). Verify that Gauss law leads to:
for $r>R, E=\frac{\lambda}{2 \pi \epsilon_{0}} \cdot \frac{1}{r}$, and for $r<R, E=\frac{\lambda}{2 \pi \epsilon_{0}} \cdot\left(\frac{r}{R}\right)^{2} \cdot \frac{1}{r} \cdot V(r)=V(R)-\int_{R}^{r} E d r$.
$\underline{\operatorname{Ring}}(\mathrm{Q}, \mathrm{R}): V_{\text {ring }}=k Q / \rho$, where $\rho=\sqrt{R^{2}+z^{2}}$. Verify that $E_{z}=-\partial V / \partial z$ agrees with Ch16, p639.
Verify that for large z , it reduces to point charge limit. Inspect the motions of \pm test charges near $\mathrm{z}=0$. Parallel plate capacitor $(\mathrm{Q}, \mathrm{A}$, and gap $s)$. Based on Gauss Law, verify that for one plate: $E_{1}=\frac{Q / A}{2 \epsilon_{0}}$.
Determine $E_{\text {gap }}$, V, force between plates, energy stored, show the energy density is given by $u \equiv \frac{U}{A s}=\frac{1}{2} \epsilon_{0} E^{2}$. Parallel plate capacitor filled with dielectrics of $\kappa: E^{\prime}=\frac{E}{\kappa} . \kappa=\frac{E}{E^{\prime}}=\frac{Q}{Q-Q_{p o l}}, Q_{p o l}=Q\left(1-\frac{1}{\kappa}\right)$.

Magnetic Field. Long wire: The thumb points along the current, direction of \mathbf{B} pattern is given by RHR1. Horizontal Component of $\mathbf{B}_{\text {earth }}$ is $\sim 2 \times 10^{-5} \mathrm{~T}$, in much of US.
Biot-Savart law for source $q \mathbf{v}, B=\frac{\mu_{0}}{4 \pi} \cdot(q \mathbf{v} \times \hat{\mathbf{r}}) \frac{1}{r^{2}}$. For a current segment: $\Delta B=\frac{\mu_{0}}{4 \pi} \cdot(I \Delta \mathbf{l} \times \hat{\mathbf{r}}) \frac{1}{r^{2}}$.
In the Drude model, $\Delta Q \overline{\mathrm{v}}=\Delta Q \cdot \frac{\Delta \mathrm{l}}{\Delta t}=\frac{\Delta Q}{\Delta t} \Delta \mathrm{l}=I \Delta \mathrm{l}$, where $\Delta \mathrm{l}$ is the drift distance in time Δt.
In terms of electron number density n, $I=q \frac{\Delta N}{\Delta t}=q \frac{n A \bar{v} \Delta t}{\Delta t}=q i$, where $i=n A \bar{v}$. Caution: Among Quest problems, the symbol i is often used for the conventional current. When in doubt, please ask for clarification.

Circular Arc: (I, $s=r \theta$, with finite arc length): $\Delta \mathbf{B}$ at center, $\Delta \mathbf{B}=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{I R \Delta \theta}{R^{2}} \hat{\mathbf{n}}, \hat{\mathbf{n}}$ by RHR2, RHR3. Wire segment, Fig18.24 (I, a): Direction: $\Delta \mathbf{B}=-\hat{k} \Delta B_{z}$, RHR1. $\Delta B_{z}=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{I \Delta y \sin \theta}{r^{2}} \cdot r=\sqrt{a^{2}+y^{2}}$. Use $\frac{\Delta y}{r^{2}}=\frac{\Delta \theta}{a} \cdot B_{z}=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{I}{a} H, H=\left(\cos \theta_{1}-\cos \theta_{2}\right) \xrightarrow{s y m m} 2 \cos \theta_{1} \xrightarrow{\text { long }} 2$. For $\pm \frac{L}{2}$ case: $\cos \theta_{1}=\frac{L / 2}{\sqrt{a^{2}+(L / 2)^{2}}}, \mathrm{p} 722$. $\underline{\operatorname{Ring}(\mathrm{I}, \mathrm{R}): ~} B_{z}=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{I \cdot 2 \pi R}{\rho^{2}} \cdot \frac{R}{\rho}, \rho^{2}=R^{2}+z^{2}$. At $\mathrm{z}=0, \rho=R . B=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{2 \pi I}{R}$.
At $z \gg R, B=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{2 \pi R^{2} I}{\rho^{3}} \equiv\left(\frac{\mu_{0}}{4 \pi}\right) \frac{2 \mu}{z^{3}}$, where dipole moment $\vec{\mu}=A_{\text {loop }} I \hat{\mathbf{n}}$. $\hat{\mathbf{n}}$ is defined by RHR3.

Magnetic moment of a bar magnet.

Atomic model: $\mu_{\text {orbit }}=\pi R^{2} I=\pi R^{2} \frac{e v}{2 \pi R}=\frac{e}{2 m} L, L=m v R$. Ground state of H-atom $L \sim \hbar \sim 10^{-34} \mathrm{~J} \mathrm{~s}$ Exp-check: $\mu_{\text {magnet }} \sim \mu_{\text {atom }} \times($ number of atoms). RHS agrees with LHS to within factor of 2 (see p.731).
Ampere's Law: $\oint_{\mathcal{L}} \mathbf{B} \bullet d \mathbf{l}=\mu_{0} I_{\mathcal{L}}$. Application: 1) Cyl-symmetry: LHS $=2 \pi r B$. Find RHS for long wire, solid wire, cyl-conducting shell. 2) Packed loops(LHSs): Solenoid(Bd), Toroid ($2 \pi r B$), current sheet (2Bd).

