SummaryL of unit 3 (update: 11/11/12)

E-field \& circuits. Electron \# current: $i=n A \bar{v}$, with $\bar{v}=u E$ (Drude model). Convent. current: $\mathrm{I}=|q| \mathrm{i}$. Steady flow, $\mathrm{I}=$ constant. At wire surface, charge density gradients lead to constant E within the wire. Battery: $e m f=\mathcal{E}=F_{N C} s / q, F_{N C}$ is the Noncolumb Force. Node eqn: $i=i_{1}+i_{2}+\cdots$
Loop equation: $\Delta V_{\text {roundtrip }}=\Delta V_{1}+\Delta V_{2}+\cdots=0$. Brightness of a bulb: Power $=i(e \Delta V)=I \Delta V$.
Capacitors \& Resistors Capacitance: $C=\frac{Q}{\Delta V}=\frac{Q}{E s}$. \|-plate: $\frac{V}{s}=E=\frac{Q / A}{\epsilon_{0}}, C=\frac{\epsilon_{0} A}{s}$.
Series: $Q=Q_{1}=Q_{2}, V=V_{1}+V_{2} . \frac{Q}{C}=\frac{Q_{1}}{C_{1}}+\frac{Q_{2}}{C_{2}}$. Parallel: $V=V_{1}=V_{2}, Q=Q_{1}+Q_{2}, V C=V_{1} C_{1}+V_{2} C_{2}$. Ohm's Law1: $J \equiv \frac{I}{A}=\sigma E$, with $\sigma \equiv|q| n u$, since $I=(|q| n u) A E=\sigma A E . \rho \equiv \frac{1}{\sigma}$ (increases with temp.why?)
Ohm's Law2: $V=I R, R=\frac{\rho l}{A}$. Here $V \& I$ depend on conductor dimension, but in OL1 $E \& J$ do not.
Series: $I=I_{1}=I_{2}, V=V_{1}+V_{2}, I R=I_{1} R_{1}+I_{2} R_{2}$. Parallel: $V=V_{1}=V_{2}, I=I_{1}+I_{2}, \frac{V}{R}=\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}$.
RC-Charging: $\mathcal{E}-I R-\frac{q}{C}=0 . \frac{d I}{d t}=-\frac{I}{\tau}$, time-constant: $\tau \equiv R C . I=I(0) \exp \left(-\frac{t}{\tau}\right)$, Find $I(0)$ and $q(t)$.
RC-Discharging: $I R-\frac{q}{C}=0 .-\frac{d q}{d t} R=\frac{q}{C}$. It leads to $q=q(0) \exp \left(-\frac{t}{\tau}\right)$. Find $q(0)$ and $I(t)$.
Electric Power: $P=\frac{d W}{d t}=\frac{d q \Delta V}{d t}==I \Delta V$. Battery delivers $I \mathcal{E}$. R consums $I V_{R}, \mathrm{C}$ stores or releases $I V_{C}$.
Energy stored in C: In vacuum, $U=Q\left[\frac{Q / A}{2 \epsilon_{0}}\right] d=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} C V^{2}, u=\frac{U}{\text { volume }}$. With dielectrics $(\kappa>1)$, $E^{\prime}=\frac{E}{\kappa}, V^{\prime}=\frac{V}{\kappa}, C^{\prime}=\frac{Q}{V^{\prime}}=\kappa C$. (a) Fixed Q case: $U^{\prime}=\frac{1}{2} \frac{Q^{2}}{C^{\prime}}$, (b) Fixed V case: $U^{\prime}=\frac{1}{2} C^{\prime} V^{2}, u^{\prime}=\frac{U^{\prime}}{\text { volume }}$. Magnetic force [E.M. constants: $\frac{\mu_{0}}{4 \pi}=10^{-7} \frac{T \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}} . k=\frac{1}{4 \pi \epsilon_{0}} \approx 9 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}$.]
On $q \mathbf{v}: \mathbf{F}=q \mathbf{v} \times \mathbf{B}$. On $I \Delta \mathbf{l}: \Delta \mathbf{F}=\Delta N q \mathbf{v} \times \mathbf{B}=I \Delta \mathbf{L} \times \mathbf{B}$, since $\Delta N q \mathbf{v}=\Delta N q \frac{\Delta \mathbf{L}}{\Delta t}=q \frac{\Delta N}{\Delta t} \Delta \mathbf{L}=I \Delta \mathbf{L}$. Circular motion: $\frac{m v^{2}}{r}=q v B . \omega=\frac{2 \pi}{T}=\frac{v}{r}=\frac{q B}{m}$. Given q, B and m, ω is a fixed, independent on $\mathrm{v} \& \mathrm{r}$. Velocity selector. \mathbf{E} is perpendicular to \mathbf{B}. At critical speed $v_{c}, F_{E}=F_{M}$. What is v_{c} in terms of $E \& B$? Parallel wires: Force on $I_{2} \Delta L$ is $\Delta F_{2}=I_{2} \Delta L \times \mathbf{B}_{1}$. What is B_{1} in terms of $I_{1} \& \mathrm{~d}$ (distance between wires)? Hall effect: Derive V_{H} based on the mechanical battery model, where $e m f=\frac{F_{N C} h}{q}$, and $\mathbf{F}_{N C}=q \mathbf{v} \times \mathbf{B}$. $\underline{\text { Motional } e m f}$. Metal bar of length L is moving with $\mathbf{v} \perp$ to \mathbf{B}. Determine $\mathcal{E}_{\text {ind }}$. Which end has + charges? Find mech. force which leads to a constant v. Verify the electric power consumed in R equals to mech-power. $\underline{\text { Mag. force on loop. }} \mathbf{F}_{l o o p}=I \Sigma_{i} \mathbf{L}_{i} \times \mathbf{B}_{i}=I\left(\mathbf{L}_{1} \times \mathbf{B}_{1}+\cdots+\mathbf{L}_{4} \times \mathbf{B}_{4}\right)$. Show that if $\mathbf{B}=$ const., $\mathbf{F}_{\text {loop }}=0$. Mag. torque on loop: Show for a loop with area A where \mathbf{B} is perpendicular to the area, torque on the loop is given by $\tau=\mu \times \mathbf{B}$, where $\mu=\hat{\mathbf{n}} I A$, where $\hat{\mathbf{n}}$ is determined by RHR3. Why $\tau=\mu_{\perp} \times \mathbf{B}$ is also valid?
Pattern of fields: Gauss law: See unit 1. Study cases using nonsymmetric S. Conducting medium: At the surface $E_{\|}=0, E_{\perp}=\sigma / \epsilon_{0}$. Ampere's law: See unit 2. B-pattern leads to choice of path and direction of I.

Faraday's law. emf $=\oint_{\text {path }} \mathbf{E}_{N C} \bullet d \mathbf{l}=-d \phi_{B} / d t$. Lenz-rule: Flux change in wire loop is opposed by $B_{\text {ind }}$. Motional emf, a special case of Faraday's law: Verify they lead to the same emf (magnitude \& direction) Rotating 1-loop in B: $\frac{d \phi}{d t}=\frac{d}{d t} B A_{\perp}$. For $A_{\perp}=A \cos \omega t, \omega=\frac{2 \pi}{T}=2 \pi f$. It leads to $\mathcal{E}=-\frac{d \phi}{d t}=B A \omega \sin \omega t$. Inductance. Change variable: let $\phi=$ constI. $\mathcal{E}=-N \frac{d \phi}{d t}=-(N$ const $) \frac{d I}{d t} \equiv-L \frac{d I}{d t}$. So $L=N$ const $=N \frac{\phi}{I}$. $\underline{\text { Long solenoid: }} \mathrm{N}$ turns, length d and cross section $A: B=\mu_{0} \frac{N}{d} I . L=N \frac{B A}{I}=N\left(\mu_{0} \frac{N}{d}\right) A$. Energy stored in L: $P=\frac{d U}{d t}=\frac{d q(V)}{d t}=I V . U=\int P d t=\int I V d t$, where $P_{L}=V_{L} I, V_{L}=L \frac{d I}{d t}$, $U_{L}=\int_{0}^{I} I^{\prime}\left(L \frac{d I^{\prime}}{d t}\right) d t=\frac{1}{2} L I^{2}=\frac{1}{2 \mu_{0}} B^{2} A d, L I^{2}=(L I) I=(N B A)\left(\frac{B d}{\mu_{0} N}\right)=\frac{B^{2}}{\mu_{0}} A d$ was used. $\underline{\text { Energy density: }} u=\frac{U}{\text { volume }} . u_{E}=\frac{U_{C}}{\text { volume }}=\frac{1}{2} \epsilon_{0} E^{2} . u_{B}=\frac{U_{L}}{\text { volume }}=\frac{1}{2 \mu_{0}} B^{2}$, with $U_{C}=\frac{1}{2} \frac{q^{2}}{C}, U_{L}=\frac{1}{2} L I^{2}$. LR circuit: $\mathcal{E}-L \frac{d I}{d t}-I R=0$. Buildup: $I=I_{0}\left(1-\exp \left[-\frac{t}{\tau}\right]\right), \tau=\frac{L}{R} . L \frac{d I}{d t}=-I R$. Decay: $I=I_{0} \exp \left[-\frac{t}{\tau}\right]$. LC oscillator. Power-eqn: $I\left[L \frac{d I}{d t}+\frac{q}{C}\right]=\frac{d}{d t}\left[\frac{1}{2} L I^{2}+\frac{1}{2} \frac{q^{2}}{C}\right]$, For $t \geq 0, U_{C}+U_{L}=U_{C m a x}=U_{L \max }=$ const. LC circuit. Loop-eqn: $\frac{d^{2} q}{d^{2} t}=-\frac{q}{L C}$. Solution: $q=q_{0} \cos (\omega t+\delta) . \omega=\frac{1}{\sqrt{L C}}, \delta$ the initial phase of oscillation. LRC circuit: What is the loop equation? Sketch the oscillation pattern for $I(t)$ and $q(t)$. See Figure 23.49. Maxwell equations: Relationship between fields (\mathbf{E} and \mathbf{B}) \& sources $(q, q \mathbf{v})$: G-L, mag-G-L, A-L, F-L.

