SummaryL of unit 3 (update: 11/11/12)

E-field & circuits. Electron # current: $i = nA\bar{v}$, with $\bar{v} = uE$ (Drude model). Convent. current: I = |q|i. Steady flow, I=constant. At wire surface, charge density gradients lead to constant E within the wire. Battery: $emf = \mathcal{E} = F_{NCS}/q$, F_{NC} is the Noncolumb Force. Node eqn: $i = i_1 + i_2 + \cdots$ Loop equation: $\Delta V_{round trip} = \Delta V_1 + \Delta V_2 + \cdots = 0$. Brightness of a bulb: $Power = i(e\Delta V) = I\Delta V$. **Capacitors & Resistors** Capacitance: $C = \frac{Q}{\Delta V} = \frac{Q}{Es}$. ||-plate: $\frac{V}{s} = E = \frac{Q/A}{\epsilon_0}, C = \frac{\epsilon_0 A}{s}$. Series: $Q = Q_1 = Q_2, V = V_1 + V_2$. $\frac{Q}{C} = \frac{Q_1}{C_1} + \frac{Q_2}{C_2}$. Parallel: $V = V_1 = V_2, Q = Q_1 + Q_2, VC = V_1C_1 + V_2C_2$. Ohm's Law1: $J \equiv \frac{I}{A} = \sigma E$, with $\sigma \equiv |q|nu$, since $I = (|q|nu)AE = \sigma AE$. $\rho \equiv \frac{1}{\sigma}$ (increases with temp.why?) Ohm's Law2: V = IR, $R = \frac{\rho l}{A}$. Here V & I depend on conductor dimension, but in OL1 E & J do not. Series: $I = I_1 = I_2$, $V = V_1 + V_2$, $IR = I_1R_1 + I_2R_2$. Parallel: $V = V_1 = V_2$, $I = I_1 + I_2$, $\frac{V}{R} = \frac{V_1}{R_1} + \frac{V_2}{R_2}$. RC-Charging: $\mathcal{E} - IR - \frac{q}{C} = 0$. $\frac{dI}{dt} = -\frac{I}{\tau}$, time-constant: $\tau \equiv RC$. $I = I(0)exp\left(-\frac{t}{\tau}\right)$, Find I(0) and q(t). RC-Discharging: $IR - \frac{q}{C} = 0$. $-\frac{dq}{dt}R = \frac{q}{C}$. It leads to $q = q(0)exp\left(-\frac{t}{\tau}\right)$. Find q(0) and I(t). Electric Power: $P = \frac{dW}{dt} = \frac{dq\Delta V}{dt} == I\Delta V$. Battery delivers $I\mathcal{E}$. R consums IV_R , C stores or releases IV_C . Energy stored in C: In vacuum, $U = Q\left[\frac{Q/A}{2\epsilon_0}\right]d = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}CV^2$, $u = \frac{U}{volume}$. With dielectrics ($\kappa > 1$), $E' = \frac{E}{\kappa}, V' = \frac{V}{\kappa}, C' = \frac{Q}{V'} = \kappa C. \text{ (a) Fixed Q case: } U' = \frac{1}{2} \frac{Q^2}{C'}, \text{ (b) Fixed V case: } U' = \frac{1}{2} C' V^2, u' = \frac{U'}{volume}.$ Magnetic force [E.M. constants: $\frac{\mu_0}{4\pi} = 10^{-7} \frac{T \cdot m^2}{C^2}. k = \frac{1}{4\pi\epsilon_0} \approx 9 \times 10^9 \frac{N \cdot m^2}{C^2}.$] On $q\mathbf{v}$: $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$. On $I\Delta \mathbf{l}$: $\Delta \mathbf{F} = \Delta N q\mathbf{v} \times \mathbf{B} = I\Delta \mathbf{L} \times \mathbf{B}$, since $\Delta N q\mathbf{v} = \Delta N q \frac{\Delta \mathbf{L}}{\Delta t} = q \frac{\Delta N}{\Delta t} \Delta \mathbf{L} = I\Delta \mathbf{L}$. <u>Circular motion</u>: $\frac{mv^2}{r} = qvB$. $\omega = \frac{2\pi}{T} = \frac{v}{r} = \frac{qB}{m}$. Given q, B and m, ω is a fixed, independent on v & r. Velocity selector. **E** is perpendicular to **B**. At critical speed v_c , $F_E = F_M$. What is v_c in terms of E & B? <u>Parallel wires</u>: Force on $I_2\Delta L$ is $\Delta F_2 = I_2\Delta L \times \mathbf{B}_1$. What is B_1 in terms of I_1 & d (distance between wires)? <u>Hall effect</u>: Derive V_H based on the mechanical battery model, where $emf = \frac{F_{NC}h}{q}$, and $\mathbf{F}_{NC} = q\mathbf{v} \times \mathbf{B}$. Motional emf. Metal bar of length L is moving with $\mathbf{v} \perp$ to **B**. Determine \mathcal{E}_{ind} . Which end has + charges? Find mech. force which leads to a constant v. Verify the electric power consumed in R equals to mech-power. Mag. force on loop. $\mathbf{F}_{loop} = I \Sigma_i \mathbf{L}_i \times \mathbf{B}_i = I(\mathbf{L}_1 \times \mathbf{B}_1 + \dots + \mathbf{L}_4 \times \mathbf{B}_4)$. Show that if $\mathbf{B} = const.$, $\mathbf{F}_{loop} = 0$. Mag. torque on loop: Show for a loop with area A where \mathbf{B} is perpendicular to the area, torque on the loop is given by $\tau = \mu \times \mathbf{B}$, where $\mu = \hat{\mathbf{n}}IA$, where $\hat{\mathbf{n}}$ is determined by RHR3. Why $\tau = \mu_{\perp} \times \mathbf{B}$ is also valid? Pattern of fields: Gauss law: See unit 1. Study cases using nonsymmetric S. Conducting medium: At the surface $E_{\parallel} = 0$, $E_{\perp} = \sigma/\epsilon_0$. <u>Ampere's law</u>: See unit 2. B-pattern leads to choice of path and direction of I. <u>Gauss Law for magnetism</u>: No mag. monopole(s). $\Phi_S^B = \oint_S \mathbf{B} \bullet d\mathbf{A} = 0$. Mag. flux $\Phi^B = BA_{\perp} = \mathbf{B} \bullet \mathbf{A}$. **Faraday's law**. $emf = \oint_{path} \mathbf{E}_{NC} \bullet d\mathbf{l} = -d\phi_B/dt$. Lenz-rule: Flux change in wire loop is opposed by B_{ind} . Motional emf, a special case of Faraday's law: Verify they lead to the same emf (magnitude & direction) Rotating 1-loop in B: $\frac{d\phi}{dt} = \frac{d}{dt}BA_{\perp}$. For $A_{\perp} = A\cos\omega t$, $\omega = \frac{2\pi}{T} = 2\pi f$. It leads to $\mathcal{E} = -\frac{d\phi}{dt} = BA\omega \sin\omega t$. <u>Inductance</u>. Change variable: let $\phi = constI$. $\mathcal{E} = -N \frac{d\phi}{dt} = -(Nconst) \frac{dI}{dt} \equiv -L \frac{dI}{dt}$. So $L = Nconst = N \frac{\phi}{I}$. Long solenoid: N turns, length d and cross section A: $B = \mu_0 \frac{N}{d} I$. $L = N \frac{BA}{I} = N \left(\mu_0 \frac{N}{d} \right) A$. Energy stored in L: $P = \frac{dU}{dt} = \frac{dq(V)}{dt} = IV$. $U = \int Pdt = \int IVdt$, where $P_L = V_L I$, $V_L = L\frac{dI}{dt}$. $\overline{U_L} = \int_0^I I'\left(L\frac{dI'}{dt}\right) dt = \frac{1}{2}LI^2 = \frac{1}{2\mu_0}B^2Ad, \ LI^2 = (LI)I = (NBA)\left(\frac{Bd}{\mu_0N}\right) = \frac{B^2}{\mu_0}Ad \text{ was used.}$ Energy density: $u = \frac{U}{volume}$. $u_E = \frac{U_C}{volume} = \frac{1}{2}\epsilon_0 E^2$. $u_B = \frac{U_L}{volume} = \frac{1}{2\mu_0}B^2$, with $U_C = \frac{1}{2}\frac{q^2}{C}$, $U_L = \frac{1}{2}LI^2$. LR circuit: $\mathcal{E} - L\frac{dI}{dt} - IR = 0$. Buildup: $I = I_0(1 - exp[-\frac{t}{\tau}]), \tau = \frac{L}{R}$. $L\frac{dI}{dt} = -IR$. Decay: $I = I_0 exp[-\frac{t}{\tau}]$. LC oscillator. Power-eqn: $I\left[L\frac{dI}{dt} + \frac{q}{C}\right] = \frac{d}{dt}\left[\frac{1}{2}LI^2 + \frac{1}{2}\frac{q^2}{C}\right]$, For $t \ge 0$, $U_C + U_L = U_{Cmax} = U_{Lmax} = const$. LC circuit. Loop-eqn: $\frac{d^2q}{d^2t} = -\frac{q}{LC}$. Solution: $q = q_0 \cos(\omega t + \delta)$. $\omega = \frac{1}{\sqrt{LC}}$, δ the initial phase of oscillation. LRC circuit: What is the loop equation? Sketch the oscillation pattern for I(t) and q(t). See Figure 23.49. **Maxwell equations:** Relationship between fields (E and B) & sources $(q, q\mathbf{v})$: G-L, mag-G-L, A-L, F-L.