Lecture 7 15.7-15.8, Review math. Field due to a long rod. iq05

- 1. Clicker **8-1** (Discussion related to **h3-11**): Effect on the measured field when the magnitude of the test charge is non-negligible.
- 2. Discussion on h3-16. (see p605, E=0 and q=(Q/8)(L/r)^2)

 Model estimate on the polarizability of a neutral atom: clicker 82.
- 3. Charging and discharging.
 - o Qualitative discussion on charging by induction.
 - Discharging: Spread the charges through the conducting medium.
- 4. Review Math (see class notes, **second bullet**): Trig functions, derivatives and an integral.
- 5. Field along x-axis (more generally along r-axis) due to a charged rod, **follow textbook**.

Class Announcements:

O Clarification on iq-drops:

The 4-drops in our iq-grading system is <u>not</u> intended to be as an "entitlement", i.e to give student the "right" to miss four classes without legitimate excuses. During the semester each class is important. <u>I expect students to attend/participate every class, except for legitimate excuses</u>. Examples of legitimate excuses are: illness, a justified out of town trip, battery failure (hopefully the student will fix the problem right away, so that it will only cost one iq-credit). Absence due to religious holiday is another legitimate excuse. Use 1 of the four drops.

Our 4-drops policy is the quick way (the e-way) to allow students to have up to 4 legitimate excuses without going into details to account for individual excuses. If any student who wants to 1905

 $E = \dim \frac{F}{g}$

What Leppus when & is finte. Look at 2 examples 9279,70,

9 70 g,

 $E_p = \frac{kQ}{f^2}$

Test change 3, at P.

Includes p. A. Tig.

 $E_{A} = E_{A}^{P} + E_{A}^{P}$

 $E_{A} = E_{A}^{\dagger} + E_{A}^{R}$

 $E_{A} = E_{A}^{0} + E_{A}^{R} =$ $E_{A} = E_{A}^{0} + E_{A}^{R} =$

Find g, L.

Assum each of the pipe: $F = E_0 + E_0$ $\int_{-\infty}^{\infty} \frac{1}{2} dx = 2 \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2}$

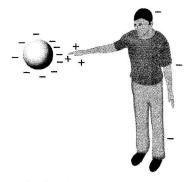


Figure 15.43 The metal is charged, and the person is uncharged but slightly polarized.

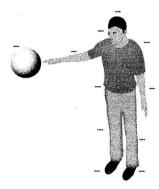


Figure 15.44 The net negative charge is distributed over a much larger area, nearly neutralizing the metal.

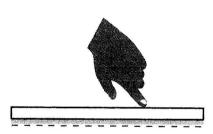
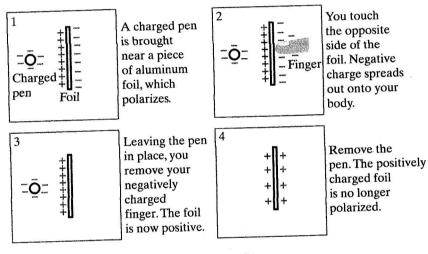



Figure 15.45 You run your finger along the slick side of the tape, and the tape seems to become neutralized.

Figure 15.47

Charging by induction

■ Related experiment: 15.EXP.24

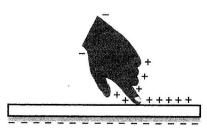


Figure 15.46 Positive ions from the salt solution on your skin are attracted to the negatively charged tape.

I new tradize.

The tape "

Revis mart:

Sint =
$$\frac{a}{c}$$
, $\cos \frac{b}{c}$
Sint = $\frac{a}{c}$, $\cot \frac{b}{c}$

2. Derivatives :

$$=\frac{\cos \theta + \sin \theta}{\cos \theta} = \frac{1}{\cos^2 \theta} = \frac{c^3}{62}$$

3. Integration - dead = - sin 6 do

$$\int_{\theta_1}^{\theta_2} \sin \theta d\theta = \int_{\theta_1}^{\theta_2} \sin \theta d\theta = \left(\cos \theta_2 - \cos \theta_1\right) = \cos \theta_1 - \cos \theta_2$$

$$\int_{X_1}^{X_2} \frac{1}{x^2} dx = -\frac{1}{x} \int_{X_1}^{X_2} = \frac{1}{x_1} - \frac{1}{x_2}$$

AF AN TIE $E_X = \sum \Delta E_X$ $E_Y = \sum \Delta E_Y = 0$. by symmetry SEx= & Sg. ess Esso = * Put logdhir: SEX = KSQX Uniform charge - $\frac{dS}{dy} = \frac{9}{L}, \quad dS = \frac{9}{L} dy \quad dz \quad dE_x = \frac{kS}{kS}x \frac{dy}{F3}$ $E_x = \frac{kS}{L}x \int \frac{dy}{F3} dy \quad dz \quad E_x = \frac{kS}{L}x \sum_{F3} \frac{dy}{F3}$ Pravies Analytic Result Change variable of Internation Math ID: $\frac{dy}{r^2} = \frac{d\lambda}{R}$ Ex = RD Sdy sind. DE X P Ex = kg Jadsma $\frac{1}{2} = \sqrt{\frac{n^2 + (\frac{L}{2})^2}{2}}$ $\frac{L}{2} = \sqrt{\frac{2}{1}} = \frac{L}{1}$ $\frac{L}{2} = \frac{L}{1}$ $\frac{L}{2} = \frac{L}{1}$ $\frac{L}{2} = \frac{L}{1}$ Ex = 29. 1 (- cod) T-d. = kg 2000 = kg L =