Lecture 8 16.1-4 iq06

- 1. Revisit the charged rod problem. See class notes **bullet 2**.
 - Change variable of integration from linear variable to angular variable.
 - Verify the closed form result agrees with the the result of integration table.
- 2. Field along x-axis (more generally along r-axis) due to a charged rod Clicker **8-3**
 - Far field, at r >> L/2
 - Near field, at r<<L/2.
- 3. Force between a long rod and a dipole , discussion on clicker for **h1-003**.
- 4. Field along z due to a charged ring.
 - \circ Far field, at r>>R
 - Near field, at r << R
- 4. z-component of the field in the intermediate region.
- 5. For positively charged ring, find the motion of an electron near z=0.

Class Announcements:

Lec 8-1. igob Uniformly charged rod, Q, L, Vininschargedunsity 4 = 1 = 2 . sQ=2.54 2. 5g=2.5y $f_{ind}: \vec{E} at \vec{R}$ $\vec{F} = \vec{F} = \vec{F}$ $\vec{F} = \vec{F} = \vec{F}$ $\vec{F} = \vec{F}$ Cylandrically symmetric: at the end replace x by r $\Delta E = \mathcal{R} \left(\frac{x_{AY}}{y} \right), \quad \Delta E_{X} = \Delta E_{x_{AX}}$ Ex= 2 kr sy sind -> kr dy sind

8-2 Definindere p-d, 0 $\frac{f(\frac{L}{2})^2}{2}$ 1 Fi 2 2 1 See à KA L ZI SI P6341 = kQ 7, P. Desive Math D: dy de A tan x = Ed HS= d ten d = log d x = (x) d d (y) = (x) dx d - = (- X) - RHS= The dy = d HS = 52 y2 dx dx HS = 32 y2 0 ly In 90

8-3 Back to Eat P $E_{F} = \frac{kQ}{\Gamma \sqrt{\Gamma^{2} + \frac{L}{2}}^{2}}$ Far fired: 177 12. Er= kg as uspected Nearfield: 1 sec 1 Er= 29. Letu om we will see for Gaars Law r(1/2) One finds the men field be given by A 211-E. RHS: 1 . FL 2 check . 19=x>0 Ford Ford Ford X0 Ty = x>0 Ford Ford X0 Er= 2kr E 4 $-(1+\epsilon) + (1-\epsilon) = -2\epsilon$ $-2\frac{(3/2)}{r}$ 2 Forop ~ F2

-

8-4 Given: Unif changed Fin a JE Jind: E at $\Delta E = \frac{k/10}{p^2}$, SE= DEcord = OF. E $F_{Z} = \begin{cases} dE_2 = \begin{cases} dAQ = 2 \\ p^2 \\ p^2 \\ p^3 \end{cases} = \begin{cases} dF_2 = kQZ \\ p^3 \\ p^3 \\ p^3 \\ p^3 \end{cases}$ P=1R+221 Farfield, ZMR Ez = kg z = kg k ispected Near field: ZKR EZ = ROZ Ez RZ EZ R³ / Ez RZ R³ / Ez RZ R³ / Z bullatinge, Fz-(-e)Ez SHN, Z=-WZ "-dz=-2kg =- kg)Z

clicker h1-003.

Sign of F^{rod}_{drop} : Choices:

1	Repulsive
2	Attractive

Magnitude of the force: $|F^{rod}_{drop}|$

1	$ F^{rod}_{drop} \propto 1/r^2$
2	$ F^{rod}_{drop} \propto 1/r^3$
3	$ F^{rod}_{drop} \propto 1/r^4$