Lecture 31

Demo: Levitation of a cubic magnet **Jumping Ring** Falling magnet in a metal tube Single faraday's law demo

Flux ϕ_B through 1 loop: $\phi = BA$

Change of magnetic flux defined by the solenoid \Rightarrow induced emf.

Inducing magnetic flux: $\odot \Rightarrow \text{CW } E_{ind}$

Faraday's Law:
$$\oint E \cdot dl = -\frac{d\phi_B}{dt}$$

Direction: $\langle E_{ind} \rangle$: CW

$$RHS: \left\langle -\frac{d\phi}{dt} \right\rangle = \left\langle \Delta \phi \right\rangle =$$
 "Opposite the change"

Lenz Law: Current loop has magnetic inertia.

It has the tendency to maintain its flux state.

Initial: 10 lines out

Next: 12 lines out (2 lines in to maintain original 10 lines out status

$$I_{ind} \otimes E_{ind} \text{ CW}$$

Figure 23.4 Four cases: magnetic field out or in, increasing or decreasing.

Figure 23.3 There is a curly electric field in the presence of a time-varying magnetic field (top). In this case B_1 is increasing with time (bottom).

Application: Falling magnet in a metal tube

Demo: The falling magnet moves slowly

Do the current below the magnet

You will do the case where the loop is above the magnet.

The loop has magnetic inertia:

Now: 3 lines **Ψ**

Next: 5 lines **Ψ**

Loop generates B_{in} , 2 lines up to maintain original 3 lines.

 $\therefore B_{in} \uparrow \text{ opposing the fall.}$

 I_{ind} CCW. Or E_{ind} CCW pattern.

Now for the current loop above the magnet

It affects the falling magnet:

- ... Loop below opposes its fall (by repulsion)

 Loop above opposes it's fall (by attraction)
 - : It takes the loop a longer time to fall.

Choice	Direction of I_{ind} in the loop above the falling magnet, as viewed from above	Direction of the magnetic dipole moment in the loop below the falling magnet, as viewed from above
1	CW	Down
2	CW	Up
3	CCW	Down
4	CCW	Up

Jumping Ring Demo:

Show current loop as magnetic initial. Initial flux = 0

After we turn on B of the solenoid, the ring jumps away to maintain net flux state.

<u>Understanding the force affecting the ring:</u>

31.3.1 Levitation of a magnet

Consider levitation of magnet by a superconducting surface. The north pole is pointing downward. The direction of induced current as viewed from above is:

1	2	3	
clockwise	0	counterclockwise	

Hint: The loop of induced current should correspond to an equivalent induced dipole which repels the magnet.

Extra: If the polarity of susupending magnet is reversed, what is the direction of induced current? Will the magnet fall?

As the magnet is moved in the z direction, what is the...

Choice	direction of $-d\mathbf{B}/dt$ at the	direction of induced current	
	origin?	at A from Faraday's Law?	
1	$\hat{\mathcal{Z}}$	$-\hat{x}$	
2	$-\hat{z}$	$-\hat{x}$	
3	$\hat{\mathcal{Z}}$	\hat{x}	
4	$-\hat{z}$	\hat{x}	

31.4.1 Varying flux & Induced emf

Given: r=1m. At $t_1=0$ sec, $B_1=1T$. At $t_2=2$ sec, $B_2=2T$.

Find: Induced emf ε_{ind} , in volts.

	1	2	3	4
ε _{ind} (in volts)	π	π/2	π	π/2
dir of ε _{ind}	clock- wise	clock- wise	counter- clockwise	counter- clockwise

Hint:
$$\varepsilon_{ind} = \left| \frac{d\phi}{dt} \right| = \left| \frac{B_2 A - B_1 A}{t_2 - t_1} \right|$$
. Use Lenz law