Lecture 5 Sec 15.3-15.5, 15.6a (a partial coverage of 15.6)

1. Exercises on the dipole field.
3. Insulator:
 a. Induced dipole moment, polarized medium.
 b. Force between a positive Q and a neutral atom.
 c. Force between a negative Q and a neutral atom.
 d. Polarized medium
 e. Two exercises (15X6, 15x7). --- Clicker 6-3.
4. Conductor:
 b. Apply external E to a conducting medium
 1. Initial stage: Drude model, drift velocity \propto Eext.
 2. Intermediate stage: drift velocity $\propto (E_{ext} - E_{pol}) - >0$.

5. Clicker 7-5.

Class Announcements:
MWF: After lecture, brief questions outside of the lecture hall.
 Office hour: 9:15-10:15.
 Other time by appointment (especially in the afternoons of MWF)
1. Rev's dipole field - electric potential

Dipole system - E repelled by distance s.

\[\text{c) } E_1, -E_2 \text{ where } E_1 > E_2 \]

A. Approximate magnitudes:

\[\frac{KE}{d^2} = \frac{KE}{d^2} \]

\[\rightarrow B_0 \frac{KE}{d^2} \]

1. at E which location has E a $\frac{KE}{d^3}$?

A: \[\frac{2KE}{d^3} \]

B: \[\frac{KE}{d^3} \text{ between} \]

C: \[\frac{KE}{d^3} \]

At this point:

\[E^- \leftarrow \]

\[E^+ \leftarrow \]

\[\textit{Magnetic at } S - |E| = |E^-| + |E^+| = 2|E| \]

\[= \frac{9KE}{(\frac{d}{3})^2} \]
Chapter 15 Electric fields & Matter

2. Net charge & conservation of charge
 - Matter: Basic building blocks of matter are made out of +e & -e charge. Matter is made out of +e & -e charge.
 - Bulk of matter: Net charge of matter can be +, - charged dipole.
 - Conservation of charge
 Net charge of a system:

 ![Diagram of charge conservation]

Check both sides of charge for A to B. But net charge will remain 0.

Can also have circulation of charge: $\vec{E} \rightarrow \vec{D}$

![Diagram of electric field and dipole]

In nature, charge is conserved. Total charge of the universe:

3. Insulator: Insulated
 - Matter medium of insulators

Induced dipoles:
- Insulator: Electrons are bound to the atom. No free electron.

Insulator atom:

\[\vec{F}_e = qE \]
\[\vec{F}_p = -qE \]

Induced dipole:

With dipole roll:

\[p = qS \]

Atom is polarized.
From electron Φ (positive) + neutral atom

$F,_{\text{induced}} \Phi = \Phi E'$

\[F_{\text{induced}} \Phi = \Phi \frac{2 \Phi}{x^3} = \frac{\Phi^2}{x^3} \cdot \frac{k \Phi}{x^2} \]

\[F_{\text{induced}} \Phi = \frac{2 \Phi E^2}{x^3} - \frac{\Phi E^2}{x^3} \]

\[F_{\text{induced}} \Phi = \frac{\Phi E^2}{(x^2 - \frac{\Phi^2}{2})^2} - \frac{\Phi E^2}{(x^2 - \frac{\Phi^2}{2})} = \frac{\Phi E^2}{x^2} \left[\frac{1}{(1+\epsilon)^2} - \frac{1}{(1-\epsilon)^2} \right] \]

\[4 \epsilon = -4 \left(\frac{3}{x^2} \right) = -\frac{2x^2}{3} \]

\[\Phi \rightarrow \Phi + \frac{\Phi}{x^2} \]

\[F_{\text{induced}} = -F_{\text{induced}}^{\Phi} \]

Attraction between them

\[\text{Attraction force} = -\text{Recoil force} \]
a. Microscopic view of insulating medium —
 - Polarize by external field, Fig. 15.19
 - Can have excess charge in interior, not at anywhere

b. Exercises: (15X6), (15X7) Which case has a stronger attraction in each of two questions in Sec 6.3?

4. Conduction medium — Charged solution of the metal medium, e.g. NaCl — ± mobile ions Na⁺, Cl⁻
 - Mobile electrons

 Turn on \(E_{\text{ext}} \) — e.g. metal

 \[\begin{align*}
 E_{\text{ext}} & \rightarrow + \\
 & \rightarrow + \\
 & \leftarrow E_{\text{pol}}
 \end{align*} \]

 Initial stage —

 Delivery stage

 \[\nu = \frac{eE_{\text{ext}}}{m} \Delta t \]

 Intermediate: \[|\nu| \sim \frac{e}{m} (\Delta t) (E_{\text{ext}} - E_{\text{pol}}) \]

 NaCl

 \[\begin{align*}
 & \leftarrow E_{\text{pol}} \\
 & \rightarrow E_{\text{ext}} \\
 & \leftarrow E_{\text{pol}}
 \end{align*} \]

 \[\rightarrow 0 \]