Lecture 41 iq36

1. Light propagation through medium
 - micro-description superposition of fields – very complex
 - macro-description: a light ray + wave fronts

2. Refraction phenomena
 - Snell’s law
 - Apparent depth
 - Total reflection region. Fiber optics
 - Snell’s law

3. Color dispersion
 - Pair prisms, concepts of convergent and divergent rays
 - Wave fronts in the convergent and divergent lenses.

Class announcement:
 - The updated course summary of unit 4 has been posted with the date 4/21/13.
 - Office hour today will be from 9:15 to 10:15. I will be available until 12:30. Let me know immediately after the class if you want to see me between 10:15 to 12:30 today.
 - Mark your calendar: Review on unit 4, 5-6 pm on Wed (May 1). Location TBA.
1. Light propagation thru medium

* Macroscopic point of view

Interaction between EM waves & the medium
(specifically with electrons in the medium)
\[\mathbf{a} = \frac{e\mathbf{E}}{mc} \]

Resultant electric fields are complex
Origins need, radiation field, retardation field...

* Macroscopic description - Light ray + wave front

- Luminous particle (photon).
 - Speed in medium: \(v = \frac{c}{n} \)
 - Index of refraction: \(n \)
- Wavefront: \(f = \frac{c}{n} \) determined by osc. frequency of wave
 - Source: \(n = 1 \)
 - \(f = \frac{c}{n} \cdot n = \frac{c}{n} \)

2. Refraction phenomena

* Snell's law

\[\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1} \]

If \(n_2 > n_1 \):
\[\sin \theta_1 = n_2 \sin \theta_2 \]
\[\theta_2 < \theta_1 \]

\[\text{ecshik, from IG-library, 29.38।} \]
Explanada:

Small angle approximation:

\[\frac{1}{n_1} = 1 \]
\[\frac{1}{n_2} = \approx 1.33 \]

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

\[\Rightarrow n_1 \theta_1 = n_2 \theta_2 \]

\[\frac{OC}{h'} = \frac{n \cdot OC}{k} \quad k' = \frac{k}{n} \]

Total reflection region:

As \(\theta_2 \) increases, \(\theta_1 \) increases more rapidly.
At critical angle: \(\theta_2 = \theta_c \), \(\theta_c = \frac{\pi}{2} \).

Check: Which angular range corresponds to the total reflection region?
Applications: Optical fiber

\[\theta > \theta_c, \quad \phi < \phi_c \]
\[\theta < \theta_c, \quad \phi > \phi_c \quad \text{Total reflection region.} \]

3. Deviation of Snell’s law

\[
\frac{\sin \theta_2}{\sin \theta_1} = \frac{AB}{AB'} = \frac{n_2}{n_1} = \left(\frac{v_2}{v_1} \right)^2 \]

Conclusion:
\[n_1 \sin \theta_1 = n_2 \sin \theta_2. \]

4. Prism

- **Color dispersion**

 At each surface, the ray is bending.

 Violet has more bending.
A pair of prisms: Conv. vs Div.

Conv. wave front

Div. wave front

Initial wave front

Final wave front

Wave fronts in conv. & div. cases.