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MULTI - A COMPUTER CODE FOR ONE-DIMENSIONAL MULTIGROUP

RADIATION HYDRODYNAMICS
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The basic physical equations as well as a computer code for the simulation of one-dimensional radiation hydrodynamics are
described. The hydrodynamic equations are combined with a multigroup method for the radiation transport. The code, written
in standard FORTRAN-77, is characterized by one-dimensional planar geometry with multilayer structure. A time-splitting
schema has been adopted with implicit finite-differencing formulation (including the hydrodynamics), and Lagrangian
coordinates. Tabulated equations of state and opacities are used.

PROGRAM SUMMARY

Title of program: MULTI

Catalogue number: ABBV

Program obtainable from: CPC Program Library, Queen’s Uni-
Yersity of Belfast, N. Jreland (see application form in this
issue)

Computer: CRAY-XMP; Installation: RZ Garching
Operating system: COS

Programming language used: FORTRAN 77

High speed storage required: 340000 words

No. of bits in a word: 64

No. of lines in combined program and test deck: 14231

Keywords: inertial confinement fusion, multigroup radiation
hydrodynamics, one-dimensional implicit Lagrangian code

Nature of physical problem

In inertial confinement fusion and related experiments with
Jasers and particle beams energy transport by thermal radia-
tion becomes important. Under these conditions, the radiation

* On leave from Bscuela Técnica Superior de Ingenieros
Aeronauticos, Universidad Politécnica de Madrid, 28040
Madrid, Spain.

field strongly interacts with the hydrodynamic motion through
frequency-dependent emission and absorption processes.

Method of solution

The equations of radiation transfer coupled with Lagrangian
hydrodynamics are solved using a fully implicit numerical
scheme. Frequency and angle dependence is included via a
multigroup treatment. A time-splitting algorithm is adopted
which feeds in all the groups successively during one hydrody-
namic time step. Tabulated equation of state data, Planck and
Rosseland opacities, and non-LTE properties of the matter are
used which have to be generated externally.

Restrictions on the complexity of the problem

The MULTI code assumes one-dimensional plane symmetry.
The target may consist of upto ten layers with up to three
different materials. Laser energy deposition is modeled by
inverse bremsstrahlung absorption and a dump at the critical
density. Electronic heat conduction is flux limited in the usual
way. Radiation transport is treated stationary assuming that
the matter velocity is much less than the speed of light.
Scattering is neglected. There is a single matter temperature
and opacities are assumed to depend only on this temperature,
the density and frequency.

Typical running time
On the CRAY-XMP the computing time is below 10™* s /(zone
timestep group) if the number of groups is not too small.

Unusual features
Call to system routines DNAMEOQ and ERREXIT. These can
be replaced or simply eliminated.

0010-4655 /88 /$03.50 © Elsevier Science Publishers B.V.
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LONG WRITE-UP
1. Introduction

At the extreme thermodynamic conditions
found in inertial confinement fusion (ICF) and
related experiments, energy transport by thermal
radiation plays an important role [1,2]. The radia-
tion field is strongly coupled to the hydrodynamic
motion through emission and absorption phenom-
ena, both essentially frequency dependent. In order
to achieve a thorough understanding of the
processing going on in such situations a numerical
simulation code has been developed. This report
describes the physical model and the numerical
methods used, and gives also a detailed descrip-
tion of the internal functioning of the code.

The code is called MULTI (MULTIgroup radi-
ation transport in MULTIlayer foils) and solves
the one-dimensional planar hydrodynamic equa-
tions coupled to the radiation transfer equation.

The equations used in the code are the first
terms in the expansion of the radiation hydrody-
namic equations in the small parameter v/c (char-
acteristic velocity /light velocity). This means that
relativistic effects as well as the time derivatives in
the transfer equation are not taken into account.
Obviously, this imposes limits on the area of ap-
plicability of the code. However, this is not a
major shortcoming because in a wide range of
situations the matter velocity is really well below
the light velocity.

The frequency and angle variables in the equa-
tion of transfer are handled by a multigroup
method which amounts to a discretization of these
variables [3,4]. In this respect, the present treat-
ment goes beyond the usual ‘grey’ approximation
[5,6].

In addition, the code can use the grey descrip-
tion of the radiation, as a particular case in which
the number of groups is one. This ability has been
intensively used to test the code. The results were
compared with that of the grey-approximation
code MINIRA [7]. They agree within an error of
one percent.

Electronic heat conduction is treated as usual:
Spitzer’s formula [8] together with a limitation of
the flux to a certain fraction of the so-called
free-streaming value.

The present version of the code includes laser
absorption by inverse bremsstrahlung [9]. Anoma-
lous absorption mechanism are mocked up by a
dump at the critical density. Other forms of en-
ergy deposition can be easily implemented by
changing the appropriate routines.

The properties of the matter are given through
tabulated equations of state (usually taken from
the SESAME library [10]) and tabulated opacities.

The non-LTE option requires the knowledge of
the emission properties of the matter depending
only on temperature, density and frequency. These
are generated off-line using a stationary model
[14] and fed into the code in tabular form.

A time-splitting scheme is used; the physical
phenomena are treated successively during the
time step. The numerical stability is guaranteed by
using a fully implicit method in every substep [11].
Although a time-splitting scheme has only a first
order accuracy, several advantages justify its use,
namely

i) Since the hydrodynamic equations are solved
implicitly, the Courant limit in the time step usu-
ally found in the explicit schemes [12], can be
exceeded.

ii) The necessary numerical work increases only
linearly with the number of photon-groups (in
simultaneous resolution schemes this increase oc-
curs quadratically).

ili) A modular design can be easily imple-
mented.

LINPACK library routines {13] have been ap-
plied to solve the linear system of equations.

2. Physical model
2.1. Radiation transfer equation
The equation of transfer, also called the trans-

port equation, is the mathematical statement of
the conservation of photons. In quite general form

N
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it is given by

1
(zﬂ,-&-n'v)l(r, n,v,t)

=q(r,n,v,t)—x(r,n, v, )I(r,n, v, 1),

(2.1)

I(r, n, v, t)is the specific intensity of radiation of
frequency » at a position r travelling in direction
n at time z, 7 is the total emissivity and x is the
total opacity. The term on the right hand side is
the effective rate of energy emission (emission
minus absorption) by the matter per unit of
volume, frequency and solid angle. The relation-
ship between the photon momentum p and its
energy e is given by: p=(e/c)n. Consequently
the specific rate of momentum emission is ((n —
x I)/c)n. The total emission rates per unit volume
of energy Q and momentum R are obtained by
integrating over all frequencies and directions

Q=fooo/‘;ﬂ('q—xl)dn dv,

R=f0°°f4 -(-"—"c’@ndndv.

(2.2)

(2.3)
Under the assumptions that scattering is not im-
portant the emissivity may be written as

n{r,n, v, t)=x(r, n,n, t)Is(r, n, v, t),
(2.4)

where I is the source function [4]. Under condi-
tions of local thermodynamic equilibrium (LTE)

~ Kirchhoff’s law is valid and Ig becomes equal to

14

Planck’s function (T is the matter temperature)

3

I(T,v)= 2—’22"—(&'"/”— D (2.5)

Deviations of Ig from I, may become im-
portant in laser plasma problems, in particular in
the thin plasma corona. MULTI allows for non-
LTE physics, details are described further below.

The velocity of the matter is assumed to be
small in comparison with the light velocity. Conse-
quently the opacity and the source function can be
considered as isotropic (this is equivalent to ne-
glecting the Doppler effect). In addition they are
assumed to depend only on the frequency and the

thermodynamic properties of the matter: tempera-
ture T and density p. This is obviously correct for
thermodynamic equilibrium and is the simpler
choice for more complicated situations:

x(r,n, v, t)=x(T, p, v, N),

2.6
Is(r,m, v, t)=I(T, p, », N), (26)

N(r, t) represents the matter composition iLe. a
number associated to a specific material. The order
of magnitude of the time derivative in (1) is I/ct
whereas the convective derivative is of the order
I/1, with I, t and ! being characteristic values of
radiation specific intensity, time and length, re-
spectively. The assumption of small enough matter
velocity (I/t < c) implies then that the time de-
rivative can be dropped in (1). With all those
simplifications the equation of transfer, in unidi-
mensional planar geometry reads

pd I (x, p, v, t)
=x(T, p, 7, N)
x(L(t, o, v, N)=I(x, p, », 1)), (2.7

where p is the cosine of the angle between the
photon direction and the x axis, and T, p and N
are functions of x and ¢. Analogously the relations
(2) and (3) take the form

o(x. 0= [x(T. 0.7 N)[4wIS(T, 0, 7. V)

__2¢rf1 I(x, p, v, t) du] dv, (2.8)
-1

© 1
[x(T, p, v, N)f_ll(x, B, v, E)p du] dv,
(2.9)

R,(x, 1)=R,(x, t)=0. (2.10)

2.2. Hydrodynamic equations

The fluid motion is governed by a set of three
equations that state the conservation of mass,
momentum and internal energy

Dp=~pV*v, (2.11)
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pDvo=~VP—R,
pDe=—PV-v-v.q—Q+S.

(2.12)
(2.13)

The main variables matter density p(r, ), velocity
v(r, t), specific internal energy e(r, t) and pres-
sure P(r, t) are considered here to be functions of
coordinate and time. D, is the time derivative in a
frame moving with the fluid velocity: (D, =9,+ v+
v). R and Q are the radiated momentum and
energy per unit volume, respectively, g is the
thermal flux and S includes other energy sources
like laser or ion beam energy deposition. The
Eulerian fluid equations for the one-dimensicnal
planar case can be obtained easily from the system
(11)-(13), but instead it proves convenient to use
the Lagrangian formulation. The Lagrangian coor-
dinate is defined here by
X
m(x, r)=f p(x’, t) dx’, (2.14)
— o0

m is in fact the total mass per unit area at the left
of the considered point. The system (11)-(13)
becomes in planar geometry

3p=—p> 3,0, (2.15)
v = =0, (Pey+ Ps), (2.16)
0,e= — (PCq +Ps) 3,0 — 0,9 — % + %’ (2.17)

P, is an artificial viscous pressure that must be
included in order to achieve numerical stability
and

Py=Py(p, e, N) (2.18)

is the matter pressure that is assumed to depend
only on the thermodynamic variables. Diffusive
mixing of different materials is assumed to be not
important, consequently the matter composition
N depends only on m.

Although the temperature does not enter ex-
plicitly in the fluid equation, it is needed in the
radiation transfer and thermal flux equations. In
analogy to the pressure the temperature is given
by
T=T,(p,e, N). (2.19)

It must be noticed that the radiation momen-

tum emission has been dropped in (16). This is
consistent with the terms which are also dropped
in the radiation transfer equation. The equations
used in the code are, in fact, the first order equa-
tions in a hierarchy of equations obtained by
developing in powers of the small factor v./c,
where v, is the characteristic velocity (=1./1,).

2.3. Heat flux

Most of the energy transported by heat flux is
carried away by the electrons. In the quasi-equi-
librium limit (small temperature gradients) the
heat flux is proportional to the temperature gradi-
ent according to Spitzer’s formula

g= -1 4T, (220
where K is given by
172
K= __1_0.}_6‘&](__ (2.21)
\/m_ee4Zi 10g A.
with
Z,+024
68, = (.095 1—+6—24—Z—l (222)

being k Boltzmann’s constant, m, and e the
electronic mass and charge, Z; the effective ion
number and log A Coulomb’s logarithm. The last
two quantities are assumed to be constants.
However, for large temperature gradients,
Spitzer’s formula is no longer valid and overesti-
mates the thermal flux. In this case, the usual
procedure is to limit the heat flux artificially by a
certain fraction f of the “free-streaming limit”

Gy = —n kT(KT/m)"">.

The interpolation between Spitzer’s regime and
the flux-limited regime is done by the harmonic
mean of the both. Typical values f are determined
experimental and range between 0.03 and 0.08.

2.4. Laser deposition
The laser beam is assumed to come from the

right (x — o). Electromagnetic waves propagate
in a plasma only when the density is below the
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critical value. If this density is reached at some
point they are reflected. Thus, in general, there are
two laser beams, once incident and one reflected
whaose respective intensities I, (x, t) and I_(x, 1)
are governed by the equations

9.7, =«l,,
ax1-= -—KI—:

(2.23)
(2.24)
where « is the attenuation coefficient. If inverse

bremsstrahlung is assumed to be the attenuation
mechanism, this coefficient is given by

K= C— (ﬂ)z L (2.25)
73/2\e.] T=p/p; '
The critical density p, is determined by p.=
n.m,;/Z,. Here m; and Z; are the ion mass and
charge number, respectively, and n, the electron
number density given by the condition that the
plasma frequency equals the laser frequency vy,

(2.26)

n,=mvim./e’.
On the other hand, the constant C is given by
16mZ;nZe® log A

C= . (2.27)
30211%_(2'1'rmgk)3/2

It must be noticed that the egs. (23), (24) become
singular when p = p..

The incident laser intensity J,.(oo, ) is as-
sumed to be known and consequently eq. (23) can
be integrated from x = co to the point x. where
p=p,. In this way the value I (x., t) can be
achieved. A given fraction ol is absorbed there
and the rest is reflected (I_(x., )= —
a)I, (x,, t)). Starting from this value eq. (24) can
be integrated from x; to oo.

In the case that the density is everywhere below
the critical value, (23) can be integrated from co to
~oo and (24) implies J_(x, t)=0 because
I_(o0, t) =0 (there is no laser incident on the left
hand side).

Once I, and I_ are known the deposition term
is given by
S=29J,—09.J_. (2.28)

The code includes also the possibility that the

laser incidents from the left hand side; the discus-
sion is analogous.

2.5. Other energy sources

There is the possibility to modify the code to
include other forms of energy deposition. Only the
routines QUELLE and QUELIN must be changed.

2.6. Boundary conditions

The preceding equations must be comple-
mented by appropriate boundary conditions. In
planar geometry the problem is confined between
two limiting planes, at the left and at the right
sides, whose position change with time. However,
their Lagrangian mass coordinates, denoted by .
and mp, tespectively, are constant. (my = 0 be-
cause there is no mass to the left of the left
boundary, and my, the total mass per unit area, is
constant if the mass is conserved).

First the specific radiation intensity I(m, u, v,
¢) will be considered. For positive p this function
represents the intensity of radiation travelling from
left to right. Consequently the natural boundary
conditions must be, in this case, imposed on the
left boundary m . Once these are known, (7) can
be integrated and the values at the right boundary
determined. Conversely, the boundary conditions
for I with negative p must be imposed at mg.
Some of the possible combinations at the left
hand side are (for p > 0)
No incident radiation
I(mL’ ", Vs t)=0; (229)

Incident Planckian radiation at temperature T

I(my, p, v, t) =1,(Ty, »); (2.30)
Specular reflection
I(my, p, v, t)=I(my, —p, v, 1); (2.31)
Partial specular reflection
I(my, p, v, t)y=0a l(my, —p, v, t)

(0<ap <1). (2.32)

The third condition can be used in the case of a
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symmetric ‘Hohlraum’, that is two symmetric
layers, each of them receiving the radiation emitted
by the other. The program actually carries out
only one layer computations, the plane of symme-
try is modeled as a mirror. The fourth condition
takes into account some possible losses in the
‘Hohlrau’, ie. non-planar effects, holes in the
layer, and so on. It must be noted that the second
and third condition are particular case of the
fourth one for ey =0 and a; =1, respectively.
That is actually the condition implemented in the
code. The boundary conditions on the right hand
side are completely analogous. The corresponding
‘reflection factor’ is denoted by aj.

The boundary conditions for the hydrody-
namics take the usual form. At a free surface the
pressure must be zero, while the density, specific
internal energy and velocity can take in principle
arbitrary values (in the case of a gas this condition
implies also zero density). At a rigid wall the
velocity must be zero whereas all the other varia-
bles can take arbitrary values. The input variable
IFLAG?2 controls these conditions. It must be set
to 1 to have free left and right surfaces and 0 for
rigid walls.

In addition a condition for the thermal flux is
needed. It is assumed always to have isolated
boundaries g(m;, t) = g(mpg, t)=0.

Although the program manages composed
layers there are no explicit boundary conditions at
the interfaces. Instead a matter composition func-
tion N(m) (usually taking integer values) is given,
which enters as a parameter in the opacity and
equation of state.

3. Multigroup radiation model
3.1. Introduction

The radiation transfer equation can be rewrit-
ten as

po, I(m, u, v, t)
=x(T, p, v, N)
X (Is(T, p, v, N)—I(m, v, », 1)). (3.1)

Now the radiation intensity is considered to de-

pend on the Lagrangian coordinate. The quantity
k (=x/p) is the opacity expressed in units of
surface per mass. The above equation is obviously
very complicated; the specific intensity depends
on four variables. Careless discretization can easily
lead to an enormous amount of computational
work or a substantial loss of accuracy. The ap-
proach adopted here carries out the discretization
in two steps. First eq. (1) is replaced by its in-
tegrals over the variables » and p in a finite
number of domains called ‘groups’. This proce-
dure leads to a finite number of differential equa-
tions involving a finite number of variables de-
pending only on m and f. In the second step,
discussed in the next sections, this set of equations
together with the fluid, thermal flux and laser
equations is discretized in a computational mesh
in the m, ¢ space, generating finite difference
equations.

3.2. Group definition

Let us consider the set of possible pairs of
values (7, p) of frequency and cosine (0 <» <
o0, —1<p<1). This set can be partitioned in a
finite number NG of subsets that will be called
here ‘groups’ (although properly speaking a ‘group’
is formed by the photons whose frequency and
cosine belong to such a subset). The groups con-
sidered here are defined by two boundary frequen-
cies (#¥ < »f) and two boundary cosines (0 < u¥ <
p¥), where the superindex k stands for the num-
ber of the group. The group k is thus the set of
photons whose frequency verifies »* < » < »£ and
whose cosine verifies p¥ < pu < p% (photons travel-
ling to the right) or —pXAp < —p* (travelling to
the left). It is assumed, of course, that the groups
do not overlap and that they cover the whole », u
space.

3.3. Group equations

It proves convenient to introduce first a few
definitions. If f is an arbitrary function of the
variables m, », p and ¢, it can be transformed into
a function of m and ¢ only through the use of the
integral operators L, L* and L* defined by

k pk
LE(f) =2ﬂf/g*’fﬁ"f(m, vou, t)dvdp,  (32)
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LE(f)=2m [ Ym0 1) dvdu, (3.9)

Ry TPy

LE(f)=L5(f) + LE(f). (3.4)

The last of these operators is the integration over
all the frequencies and angles in the group k. The
density of the energy U, and the energy flux S, of
the photons belonging to the group k can be
expressed as

U, = %—L"'(I), (3.5)

S, = LE(uI). (3.6)

Analogously the rate of energy emission per
volume by the photons of this group is given by

Qi =L (x(Is—1)) (3.7)

and consequently the total rate is computed ad-
ding all the groups

Q= E Q- (3-8)
1<k<NG

This expression coincides with eq. (2.8). The fol-

lowing properties of these operators will be needed

below: if g is some function of m, » and ¢ but not

dependent on p, it is verified that

L% (g)=L"(g)=3L"(g), (3.9)

LK (ng) = — L (ng) = 4(ui+u5) L),
(3.10)

LE (wg) =LA (p%g)
=4(u + kb ) L5 (0). (1)

In order to obtain the group-k equations, eq. (1) is
integrated separately over the photons travelling
to the right and over the photons travelling to the
left. This is done by applying the operators Lk
and L*, respectively,

3, Lk (uI) = L (xIs) — L% (1), (3.12)
Lk (nl) = LX (Ig) — LE (kT ). (3.13)

In order to make these equations useful, it is
necessary to make some reasonable assumptions
about the form of the function I. Between the
wide range of possible choices, I is selected such

that one is able, with a reduced number of groups,
to manage situations near the thermodynamical
equilibrium with a reasonable accuracy. In these
situations J = I, a_md applying perturbation meth-
ods to (1) results in

1
I=I,=p-28,T+ -, (3.14)

where I, and I (=0I,/0T) are functions of »
and T only. This equation suggests to assume for
the group & the following form of 1

I(m, p, v, t)=a,(m, t)I,(T, »)

I(T, »)
+uBy(m, f)m,

(3.15)

a, and B, being the functions that describe com-
pletely the group. If there is local quasi-equi-
librium they take the values 1 and —3d,7, respec-
tively; this makes it possible to manage correctly
situations with one group only. On the other hand,
when the system is far away from the equilibrium,
the present assumption is not worse as any other;
in this case the accuracy can be reached only by
taking a large number of groups. Using the prop-
erties (9)—(11) the energy density and flux expres-
sions take now the form

U, = —i—akLk(Ip), (3.16)
Sem B (W ik 4 ) (1), (B7)

Whereas the egs. (12), (13) can be rewritten as

k k
9, | + El:_&akl‘k(lp)

m

K kok o K
a + +’J" ’
| Hally b ,BkLk(Ip/K)

+ 6

oy
M) - 21K (sy)
Gk k
e ,
+—az“£/3kLk(Ip)- (3.18)

Now these equations are linearly combined adding
and substracting each other; after some straight-
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forward algebra this results in

amSk(m, t)
=CK1]§(P, T’ N)(USk(p’ Ta N) - Uk(my t))’
(3.19)
glfcamUk(m’ t)= —'Kli(p’ T, N)Sk(m’ t)'
(3.20)

The source energy density Uy, is written in the
form

USk(P7 T, N)“—“Ek(P: T, N)UPk(T)

with the Planckian energy density
du(pt — ) [ok
Upi(T) =—£—";———)—/ka1°(:1’, v)dv. (3.21)

The material coefficients k& and k% are usually
named Planck and Rosseland mean opacities and
are defined by

Vk Vk
ef= [ e, av / 1 a, (3.22)
o [ an] [ (3.23)
KR—j;k 5 dy _/;k 4. .

Deviations from LTE conditions in the source
function are taken into account by the coefficients

_ [ vh
ek-—fvak Kl dv/fya/c klp dw.

This is done in the approximation that €,(p, T, N)
can be expressed as a function of the local density,
temperature and material species alone. In prac-
tice, one may use some interpolation between
SAHA (LTE) and corona equilibrium [14]. In
LTE, all ¢, are equal to unity.

The coefficients k%, % and ¢, have to be
provided in tabular form. The constant g? plays
the role of the Eddington factor for the group and
is given

2 2
_ o] Ba Framt 4y
8k = 3 .

(3.24)

Finally, eq. (7) can be rewritten as

Oi(m, 1) =cp(m, )xz(p, T, N)

X (Usk(0, T, N) = U(m, 1)).
(3.25)

3.4. Boundary conditions

As had been pointed out, every group is com-
posed of photons traveling in two directions. Let
us consider the partial energy densities U, and
U of the photons traveling to the right and to the
left, respectively, and also the corresponding en-
ergy fluxes S and Sy . They are given by

1 M T 1%
Ur==Lk(I})=iU +22 S, 3.26
k ¢ d:( ) 2V 4cg,% k ( )
+ k
sE =14(1) = 1S, e, (3.27)

The boundary conditions (2.32) can be written in
terms of energy fluxes instead of specific intensi-
ties. Multiplying by p and carrying out the in-
tegration over frequencies between » and »§ and

cosines between u* and p¥ results in
St(my, t)=—arS; (my, t). (3.28)

Taking into account the previous expressions it
becomes

k k
+pk (11—
S, (my, t) = _ﬁa__“_b( ap

7 'i:'a—L)CUk(mR, t).
(3.29)

Analogously, the corresponding condition at the
right boundary is

k k
[T ol T B s
Sk(mR, t) = 2 b ( I +a:)CUk(mL, t).

(3.30)

3.5. Alternative model

Besides the above outlined model, it is interest-
ing to consider other possible assumptions for the
specific intensity. One simple choice is, for the

e
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group k, given by

I (m, p, v, t) =of (m, I(T, v), (p>0),
(3.31)

Li(m, p, v, t) =o; (m, 1)I,(T, »), (p<0).

(3.32)

Proceeding analogously as in the previous sections
the equations for the groups become

amSk(mﬂ t)
=cxp(p, T, N)(Usi(p, T, N) = U,(m, 1)),
(3.33)
gi::zc amUk(n’» t) = *‘K{g(p, T, N)Sk(m, I),
(3.34)

where the Eddington factor g/* is given now by
gi=(pi+uk)/2. (335)

On the other hand, the boundary conditions are
the same, provided that g; is used instead of g,.
These equations can be compared with the system
(19), (20). There are two differences, namely: the
appearance of the Planck opacity instead of the
Rosseland opacity and the different expression for
the factor g, in (34). Nevertheless, both descrip-
tions are equivalent. In fact, they coincide when
the size of the groups is made arbitrarily small.
That is: k§ = «§ and gi — g, when »f - »{ and
pk - ub . The advantage of the previous model had
been already pointed out. On the other hand, the
alternative model has an interesting property: eqs.
(33), (34) can be linearly combined giving

k
’ . K ’
B (Si + gieUy ) = exfUsy — g_z (Sy + gxely)
(3.36)

while the boundary condition in m, implies S +
grclU, >0 there, because o must be less than
unity. The above equation implies that Sy + gieUy
> 0 everywhere (otherwise, starting from positive
values of S, + gfcU, at the left hand side implies
that as soon as this quantity changes sign the
slope needs to be negative, in contradiction to the
above equation). Consequently S, < gicUy. Analo-
gously the condition S, > —gicUy i obtained.

Thus the alternative model supplies a natural
‘flux-limit’ without the need of ad-hoc assump-
tions. The program is written in such a way that
both models can be easily used.

3.6. Specific intensity

Although the equations actually solved by the
code have been already given in the previous
sections, it is interesting to write down expressions
for the specific intensity of the radiation that
could be used to display the results. This is done
assuming two constant intensities (I} ) and (I )
for the photons traveling in two directions in
every group. They are defined by the condition
that by integrating over their respective half-groups
the energy densities Uy and U, are obtained.
This gives

Ui'
1= = €k )
SR e

Obviously, these expressions make only sense when
the number of groups is large enough.

(3.37)

4. Spatial discretization
4.1. Introduction

Once the radiation transfer equation has been
replaced by a finite set of group equations, the
only independent variables are the mass coordi-
nate m and the time ¢. The discretization of the
system is carried out in two steps. First the spatial
operators are replaced by finite-difference oper-
ators; the equations thus become a system of
ordinary differential equations with the time as
independent variable. In the second step this sys-
tem is again discretized in time; a set of algebraic
equations are obtained. This section is devoted to
the first step.

In terms of the Lagrangian variable m, the
matter (and thus the problem) is confined between
the boundaries m; and myg. Let us divide this
interval in N subintervals, called ‘cells’, not neces-
sarily equal. Each of them will be referenced by
the index i, that increases from left to right; /= 1
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egs. (3.19), (3.20) for the group k take the form

Ski —Si

"“*—Zl’r;l"‘“lg— =cxf ;(Usyi = Ukt
(i=1,...,N), (4.11)

Cg;% Uk,i—Uk,i—l

%:(Ami+Ami—1)

)Sk,i7 (i=2,...,N)

(4.12)

2
( 1/, + 1/KR -1

and the boundary conditions (3.29), (3.30) can be
written as ’

ko k
N Y
S 3 (——1 oy cUpr, (4.13)
ko ok
pritpg[l—a
Sene1= ) - (1_*:;3) cUgr.- (4‘14)

The values of U,; and U, at the boundaries are
computed by extrapolating the values in the ad-
joint cells (U, is a cell centered quantity)

UpL= (1+ W?%E)Ukvl
+( Amfr]AmZ)Uua (4.15)
Uig = (1+ XnTinZLm,ZT)UM
+(_H1ﬁr—'11:n—,{__l)’]k,~—1- (4.16)

It must be noted that in (12) the Rosseland opac-
ity in the interfaces is obtained as the inverse of
the average of the inverses in the adjoint cells.
This procedure gives smaller values than the direct
average, especially with large gradients. Thus al-
lowing for large fluxes makes it possible to smooth
such gradients.

4.5. Laser equation
Some case is needed in computing specific laser

energy deposition in the cell 7, as the laser equa-
tions are strongly non-linear. The procedure

adopted here computes the energy deposited in
one cell integrating eq. (2.28) between cell
boundaries; the specific deposition is given by this
quantity divided by the thickness of the cell

S 1 Xi+1
(;)i— p; Ax; ];[ §dx

PR Pt TR
- o . (4.17)

The laser intensities I, ; and I_; are computed in
the interfaces between cells as follows. I y.; is
the known incident laser intensity while the other
values 1, ; are computed applying successively the
formula

i+1 (P/pc)2 dx
T=o/b. |

(4.18)

C X
I+,i=I+,i+1 exXp| — I;3/2 ./);i

where the temperature T; is assumed constant
through the cell. If p is assumed to vary linearly
between the values at the interfaces, the integral
can be carried out analytically. The needed inter-
face-centered values of p are assumed to be the
mean between cell centered-values, except the first
and the last ones that are taken equal to zero. This
method can be applied only if the density at x; is
higher than critical. Otherwise, the incident in-
tensity at the critical point can be determined by
the similar expression

2
C  fFig+1 (p/pc) dx

IT=1,; +1exp|— )

];3/2 Lcr Vl - P/Pc

(4.19)

where i, is the cell where the critical density is
located. Once IS is known the reflected intensity
is given by I¥= (1 —a)I%. Then, observing that
(2.23), (2.24) implies I, I_= constant, the values
of the reflected intensity are easily computed by

I_, =101 -a)/I;. (4.20)

Finally, the energy deposition corresponding to 7.
is divided between this cell and its neighbours.
This smoothing is needed in order to prevent
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strong numerical noise when the critical point
jumps from one cell to another.

4.6. Matter equations
The above equations must be completed by the

equation of state, opacities and other matter prop-
erties

P :=Pg(pi» e N), (i=1,...,N), (4.21)
T,=T(p;, e;, N;}), (i=1,...,N), (4.22)
Kllg,i=K’1§(pi7 1, Nz)>

(i=1,...,N, k=1,...,NG), (4.23)
Kl{l,i':'cllct(pis Tia M):

(i=1,...,N, k=1,...,NG), (4.24)
€I\:,i=€k(pi’ T;'s N;),

(i=1,...,N, k=1,...,NG). (4.25)

The composition N, is constant in time. These
relations are implemented in the standard version
of the code interpolating between tabulated val-
ues. Nevertheless it is possible, by changing the
appropriate routines, to use analytic expressions.

5. Temporal discretization
5.1. Time splitting

Once the equations have been discretized in
space, the physical system is represented by a
finite set of variables which are continuous in time
but defined only on a finite number of points
(computational mesh). From the mathematical
point of view, the equations consist of the rate
equations for the variables p;, v; and e, joined to
a set of algebraic equations for ¢; (thermal flux
equation), (Q4/p),» S, and U, (group equa-
tions), (S/p);, I, and I_; (laser equations) and
Peyis T lc’1§,,., k% ; and €, ; (matter properties). The
system can be thought of as a set of ordinary
differential equations depending on the main vari-
ables p;, v; and ¢; whose right hand side depend
only on these variables, since all the other vari-
ables can be written in terms of the main variables
solving the algebraic equations. Thus, denoting by

X the vector whose 3N + 1 components are the
functions p;, v; and e;, the system can be rep-
resented schematically by

dX/dt=f(X). (5.1)

This system can be solved, in principle, by stan-
dard methods. For example, denoting by X" the
representation of X at time ¢" (=n At), it is clear
that the recurrence relation

Xn+1__Xn .
—— =/(x") _ (52)

supplies the required solution, provided that Af is
small enough. In general, this explicit scheme needs
a prohibitively small value for the time step At in
order to be numerically stable. This makes it
useless in practice. The numerically stable implicit
scheme

X'n+1 — X"
At
(3<6<1) (5.3)

=(1-0)f(x") +6f(X"),

is unfortunately very complicated, it involves the
simultaneous solution of a set of 3N + 1 non-lin-
ear equations.

Thus, it becomes necessary to use a different
approach which is able to achieve the necessary
stability which a reasonable amount of computa-
tional work. The procedure adopted here is the
so-called ‘time-splitting’. Before continuing, it
proves convenient to explain briefly the basis of
this method. Let us consider the equation

dx
X h(X) +1(X) (5.4)

and the two substeps integration method given by

X*-X"

T=f1(X*), (5.5)
n+l _ yx*
XXz, (5.6)

Where X* is some intermediate value. If the
functions f; and f, have some reasonable
mathematical properties (continuous derivatives),
it is straightforward (but rather cumbersome),
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applying Taylor’s series, to show that

n-+1 n
XX fxe +A(xm +0(8n). (57)
The notation O(At) stands for terms that verify
| ©(At)| <constant X At for Az <Az, This ex-
pression implies the so-called ‘comsistency’ of the
method. If, in addition, the method is stable, this
leads to the appropriate solutions. If both (5), (6)
are stable it is reasonable to think that the two
substeps method is also stable; this occurs in
practice. The global method has only a first order
accuracy (the error is of order @(At)), but this is
scarcely a trouble; the main (and unavoidable)
sources of error had been made in modelling the
physics. The extension to more than two terms on
the right of (4) is straightforward.

Now coming back to the physical equations, it
is clear that the different terms can be grouped in
the following way

ii) Often the structures related to the hydrody-
namics (i.e. shock waves) move faster than the
structures related to the heat or radiation trans-
port (i.e. thermal waves). Consequently, the maxi-
mum bound for the time step would be related to
the fluid motion, usually leading to quite strong
restrictions. This can be overcome using ‘subcy-
cling’ for the hydrodynamics; i.e. the fluid equa-
tions are advanced NS times during one time step.
This is implemented in the code by dividing the
term fyy into NS pieces and placing them between
the radiation transport terms. Although not strictly
necessary, the same is done with the thermal heat-
ing.

Eq. (8) now takes the form

dx
'd—t‘=gﬁ+g§+g§5”+gim”+

fu fr fr RO L

(Hydrodynamics) (Thermal flux) (Group-1) (group-NG) (Laser)
dp=—p"0,0 +0 +0 + -4+ +0 +0
3,0 =—0,(Peg + Pys) +0 +0 +---+ +0 +0
8re:—(Peq_l—Pvis) amv — 0,9 -0/p ~ = —Qna/P +S/p

And thus eq. (1) can be written as

9X fatfrt o ft e AR (59)

Before applying the time-splitting method to this
equation, two points must be taken into account:

i) The laser energy deposition has usually a
very sharp profile. This fact would produce strong
oscillations in the temperature through the time
step; first the deposition of energy produces a very
hot spot that is cooled immediately by the heat
and radiation transport terms. This phenomena
can be the source of important errors. It can be
avoided by splitting the energy deposition in NG
+ 1 pieces, each of them will be solved together
with one of the transport terms. This is made
using weight factors n, (k=1, 2,...,NG) for the
radiation transport, and 7, for the heat flux trans-
port. The appropriate values for these factors will
be discussed at the end of this section.

+gNONSHL 4 g b gyt gRTER

gINST2 4 L +gNO-NS+2 4 g

gt ER T ER R

+gr°+ 8T, (5.9)
where
&u=fu/NS, (5.10)
gr =R+ mSL, (5.11)
gr=(fr+mofL)/NS. (5.12)

Now the time-splitting method can be directly
applied to this equation; the NG + 2NS terms are
added in successive substeps, in the order given
above. However, it proves convenient to introduce
still some minor approximations that, without
spoiling the accuracy, reduce the computational
work:
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i) The laser deposition profile is rather insensi-
tive to the exact temperature and density profiles;
thus the f; term will be computed only after
every hydrodynamic substep and used without
changes until the next hydrodynamic substep (it
will be computed only NS times instead of NG +
NS).

ii) The equations of state will be evaluated only
before every hydrodynamic substep and ap-
proximated by the linearized formulae

P (p, €)= Pey(po, €9) + 3,Pego(po, €0)(p ~ po)
+ 8¢ Pogo (P0, €0)(e—€p), (5-13)

T(p, €) = T(po, €0) + 3, Ty (po, €0) (P — o)
+0.T5(po» €9)(e—eg), - (5.14)

until the next hydrodynamic substep.

iil) Although the substeps involved by the
time-splitting are given fully implicitly (the oper-
ators at the right hand sides of (5), (6) are evaluated
at the new values of the solution), in order to
guarantee numerical stability, the values of the
transport coefficients kf, k% and ¢, are computed
with the old values of the thermodynamical varia-
bles. This does not affect stability.

Details on every of the substeps are given in the
following sections.

5.2. Hydrodynamical substep

As had been pointed out, the fluid state is
advanced NS times every time step. The fluid
variables before and after the advancing will be
denoted by the superindexes O and N, respec-
tively. The substep is then given by
XN _ XO XN
—— =gH(XN)Ef—~—H§IS ) (5.15)
This equation is non-linear and in principle it
would be necessary to use some iteration proce-
dure. However, this is not actually carried out;
instead the equation is linearized expanding the
right hand side into Taylor’s series

. |
L = a0y + Loy x0),

axX
(5.16)

where At’ = Ar/NS. This equation is now linear
in the unknown value XV, 9f,/0X being a 7-di-
agonal matrix. Standard library routines are em-
ployed to solve this system. The dropped terms in
the Taylor series are of the order @(At?) and thus
do not spoil the overall accuracy of the method (of
order O(At)).

5.3. Heat flux substep

All that is said for the hydrodynamics can be
directly applied to the heat flux. However, in this
case; the density and velocity are not advanced (its
derivatives in fr are zero), consequently the re-
sulting system is only tridiagonal.

5.4. Group substep

The equation for a group can be written as

(5.17)

On the right hand side there is only one non-linear
term, namely Up,(T;™). This term will be lin-
earized in the following way

oU,
Upi(TY) = Upe(T*) + 77 (T*) (T - T*),
(5.18)

where T,* is a reference value. The resulting equa-
tion is a tridiagonal system that can be easily
solved once T;* is given. The code uses an itera-
tive procedure; for the first iteration it takes T;* =
T.° and a provisional TN result, for the second
iteration it takes 7;* = . and so on. The number
of iterations is given by the input variable NITER.
Usually, the results are reasonable good with one
iteration only.

5.5. Laser deposition partition

In this section the algorithm used by the pro-
gram to avoid strong oscillations in the tempera-
ture during one time step will be explained. This
problem can be especially serious in the cell i,
where the laser deposition is at its maximum.

Let us consider first the thermal flux substep. It
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is given by

Jde T;N — Tio S
) T =1 (-; -+ transport terms.

2T At

1

(5.19)

If the time step is small enough, the transport
terms are not affected by the deposition. Thus, the
temperature increment in i, can be rewritten as

AT, = noa+ by, (5.20)

where a=(S/p), (0T/9e); Ar, while b, does
not depend on 7,. Analogous relations can be
obtained for the group substeps

AT, =mna+b,, (k=1,2,...,NG), (5.21)

the value a being common to all the transport
processes. The global increment of the tempera-
ture at i,,, is obviously

ATT= Z ATk’
0<k<NG

(5.22)
The factors 0, can be freely chosen. If the values
1( AT

’“‘“Z(NGH _bk)

(5.23)

are selected, the temperature increments in all the
transport processes are the same, supplying the
desired smoothing through the step.

The program initializes first the values of the
factors to

nk=0, (k=0),
ne=1/NG, (k=1,2,...,NG).

(5.24)
(5.25)

These values are applied in the first time step.
During this step the values of AT, are stored and
the values of b, computed by (21). Finally, the
formula (23) provides the most appropriate values
that will be used in the next time step. This
process is carried out in successive time steps. If
the input parameter IWCTRL (normally set to 1)
is set to 0, the initial values of 7, are always used.

6. Program description

6.1. General

The program is written (as much as possible) in
a modular way; only four routines have more than

56 source lines. Some parts of the program (mod-
ules) are completely interchangeable. For exam-
ple, the routines QUELIN, QUELLE and
LASERS3, that compute the laser power deposi-
tion, can be substituted by other routines with the
same name and arguments, but with completely
different physics, without the need of additional
changes in other program units. The modules are
the following:

QUELIN-QUELLE-LASER3
HYDRO-LEICHT-ABLTNG
EOSM-EOSIN1-EOSIN2-EOSBIN-EOSLIN
WFIN-WFLUSS-LEICHT-WFDER
OPA-OPAIN-OPABIN

The program input is done through FOR-
TRAN units 12 to 19. Every unit has assigned a
conceptually different sort of data (i.e. on 16 are
given the laser characteristics). In some units the
read process is carried out until the ‘end-of-file’ is
reached.

Matrices are used at different places of the
program. In general they have a banded structure
and thus can be stored in condensed format. Ev-
ery diagonal of the ‘mathematical’ matrix is stored
in one row of the ‘FORTRAN’ matrix. This for-
mat is required by the library routines that per-
form operations over these matrices.

The program uses the c.g.s. system of units,
with the exception of the temperature which is
given in electron volts. However, for compatibility
with other programs, the equation of state tables
must be supplied in SESAME [10] units.

6.2. Main body

In this section the main program (MULTI) and
some auxiliary routines for input and initialization
(INITVR, GDTGEN, WCTRL, ZONING) will
be described. The different tasks carried out are
the following

i) The program reads from the FORTRAN unit
12 a series of parameters that control the subse-
quent operations. These parameters must be given
in a NAMELIST block with the name INPUT as
in table 1.






