Surface Phase Transition Induced by Electron Mediated Long Range Interaction

Junren Shi

ORNL

Biao Wu

ORNL and University of Texas

#### X.C. Xie

Oklahoma State University

E.W. Plummer and Zhenyu Zhang

University of Tennessee and ORNL



## CDW in Sn and Pb on Ge(111)



J.M. Carpinelli, H.H. Weitering, E.W. Plummer, and R. Stumpf, *Direct observation of a surface charge density wave.* 

Nature 381, 398 (1996).



## Theoretical Speculations and Puzzles

- Kohn Anomaly? -- no anomaly in response function
- Fermi surface nesting? -- no
- Surface Mott Insulator? the surface is still metallic after the transition.
- Jahn-Teller effect?





# What We Have



Origin of electron-phonon coupling.

- Each Sn adatom has a dangling bond.
- The dangling bonds form a metallic surface.
- substantial surface density of states
- the strong electron-phonon coupling induced by the rehybridization between dangling bond and back bonds



## Our Theory: Electron Mediated Interaction



**Competition:** Local stress imposed by substrate keeps adatoms in their original positions.

Theories for the electron-mediated long range interaction: Einstein and Schreiffer (1973); Lau and Kohn (1978)

T.T. Tsong (1973); Repp et al. (2000)



## A Formal Theory

$$H = \sum_{is} (\varepsilon_0 - \beta z_i) c_{is}^* c_{is} - t \sum_{\langle ij \rangle} (c_{is}^* c_{js} + c.c.) + \frac{\alpha}{2} \sum_{i} z_i^2 + \cdots$$
Dangling bond energy  
change due to displacement Local stress  
Effective Hamiltonian: 
$$\Delta E = \frac{\alpha}{2} \sum_{i} z_i^2 - \beta \langle n \rangle \sum_{i} z_i - \frac{1}{4} \sum_{ij} J_{ij} (z_i - z_j)^2 + O(z^3)$$

$$\int_{ij}^{0} \int_{0}^{1} \int_{0}^{1} \frac{1}{2nd n.n.} \int_{0}^{1$$

## Consequence: Phonon Instability



Phonon catastrophe

Transition occurs due to the phonon instability!



# Ground States:Competition Between Local Stress and Electron Mediated Interaction



#### Sn/Si

Sn/Ge

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Pb/Ge(?)

#### Phase Diagram





## Defect Blurred Transition







# Summary

•The competition between local stress and electron mediated interaction results intriguing structural phase transitions.

• A high electron density of states and strong electronphonon coupling are needed for the mechanism to work. In many surface systems, both are available.

• The mechanism could be applicable to other surface structural phase transitions, although the details may differ.

