Radiation Induced "Zero-Resistance State" and Photon-Assisted Transport

Junren Shi

Oak Ridge National Laboratory

X.C. Xie

Oklahoma State University

Thanks to: Zhenyu Zhang, Biao Wu, Fuchun Zhang (Cincinnati), R.R. Du(Utah), R.G. Mani(Harvard), N. Read (Yale), A.F. Volkov(Germany)

Outline

- Introduction
- Experiment
- A toy model to understand the phenomena
- Generalized Kubo-Greenwood formula
- Implications of negative conductivity
- New phase formation
- Conclusions

Two-Dimensional Electron Systems

Si MOSFET

GaAs/GaAlAs Heterostructure

Two-dimensional electron (hole) system (2DEG) forms at the interfaces.

Transports in 2DEG

Oscillatory Density of States

New Experiments: Microwave Radiation

Mani et al., Nature, 420, 646 (2002).

Zudov et al., Phys. Rev. Lett. 90, 046807 (2003).

Zudov et al., Phys. Rev. B 64, R201133 (2001).

A typical (quantum) driven system!

New Discovery: Giant Magneto-Resistance Oscillations and "Zero-Resistance State"

• Resistance minima:

 $\omega/\omega_c = n + 1/4$

- Oscillation amplitude increases with the microwave power.
- "zero resistance state" is observed under strong microwave radiation.
- "Fixed points" at:

 $\omega/\omega_c = n \text{ or } n + 1/2$

Oak RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Speculations

- exciton superconductors
- various strong correlation excitations: skyrmion ...
- charge density wave
- plasma
- relativity effect

• . . .

UT-BATTELLE

Simple Theory

Numerical Result

Absolute negative resistance found in the calculation

Durst, Sachdev, Read, Girvin, cond-mat/0301569

What is the origin of these negative resistance states?

Our Study

Junren Shi and X.C. Xie, cond-mat/0302393.

• the transport anomaly (negative resistance) is the result of photon assisted transport and the non-trivial electron density of states of the system.

• The transport anomaly is NOT a special property of 2DEG. Similar anomaly could also be observed in other systems, provided the necessary conditions are met.

• When the conductivity becomes negative, the system will be driven to a far-from-equilibrium regime where nonlinear and self-organization effects dominate.

A Toy Model to Elucidate the Mechanism

• The simplest photon-assisted transport system:

• The density of states for each lead is assumed to be of 2DEG under a weak magnetic field.

Conductance Formula

 $I = eD \int d\epsilon \sum_{n} J_{n}^{2} \left(\frac{\Delta}{\hbar\omega}\right) [f(\epsilon) - f(\epsilon + n\hbar\omega + eV)] \rho_{L}(\epsilon) \rho_{R}(\epsilon + n\hbar\omega + eV)$

Photon assisted tunneling: $\epsilon \longrightarrow \epsilon + n\hbar\omega + eV$

$$\begin{split} \sigma &= dI/dV|_{V=0} = e^2 D \int d\epsilon \sum_n J_n^2 \left(\frac{\Delta}{\hbar\omega}\right) \{ [-f'(\epsilon)] \rho(\epsilon) \rho(\epsilon + n\hbar\omega) \\ &+ [f(\epsilon) - f(\epsilon + n\hbar\omega)] \rho(\epsilon) \rho'(\epsilon + n\hbar\omega) \}. \end{split}$$

Negative conductance results from the negative derivative of the density of states and the photon-assisted tunneling.

UT-BATTELLE

Comparison with Experiments and Numerical Calculations

Qualitative Features

• The positions of the conductance minima are determined by:

$$\tan x = -x/2, \ x = 2\pi\omega/\omega_c$$

$$\omega/\omega_c = n + 1/4$$

$$\circ \sigma (\omega = n\omega_c) = \sigma$$

• Deviation induced by high
power of radiation

Uniform Systems: Generalized Kubo-Greenwood Formula

Generalized Kubo-Greenwood formula for photon-assisted transport:

$$\sigma_{dc} = \frac{\partial}{\partial \epsilon_0} \sum_n \int d\epsilon D_n(\epsilon, \epsilon + n\hbar\omega) \\ \times [f(\epsilon) - f(\epsilon + \epsilon_0 + n\hbar\omega)] \rho(\epsilon)\rho(\epsilon + \epsilon_0 + n\hbar\omega)$$

$$D_n(\epsilon, \epsilon + n\hbar\omega) = 2\pi\hbar J_n^2(\Delta_{\alpha\beta}/\hbar\omega) \left|\hat{\mathbf{j}}_{\alpha\beta}\right|^2.$$

Photon assisted transport probability

The same formula as that for the tunneling junction!

Derivation of the Formula

Hamiltonian:
$$H = H_{0} + H_{ac}(\omega) + H_{dc};$$

un-perturbed system
Effect of MW: $|\alpha(t)\rangle \longrightarrow e^{-i\tilde{E}_{\alpha}t/\hbar} \sum_{n=-\infty}^{\infty} e^{-in\omega t} |\alpha, n\rangle$
 $\hat{\mathbf{j}}(t) = e^{i\tilde{H}_{0}t/\hbar} \left[\sum_{n=-\infty}^{\infty} \hat{\mathbf{j}}_{n} e^{-in\omega t}\right] e^{-i\tilde{H}_{0}t/\hbar}$
 $\hat{\mathbf{j}}_{n} = \sum_{m} |\alpha\rangle \langle \alpha, m| \hat{\mathbf{j}} |\beta, m + n\rangle \langle \beta|,$
Kubo Formula: $\sigma_{dc} = \frac{2\pi}{V} \frac{\partial}{\partial \omega_{0}} \sum_{f,i} \sum_{n} (P_{i} - P_{f}) |\langle f| \hat{\mathbf{j}}_{n} |i\rangle|^{2}$
 $\times \delta (\hbar\omega_{0} + n\hbar\omega - \tilde{E}_{f} + \tilde{E}_{i}),$

Oak Ridge National Laboratory U. S. Department of Energy $P_{i(f)} = e^{-\beta E_{i(f)}} / Z$

How Effective of Photon-Assisted Process in a Uniform System?

 $\Delta_{\rm eff} > \hbar \omega$

$$D_n(\epsilon,\epsilon+n\hbar\omega) = 2\pi\hbar J_n^2(\Delta_{\alpha\beta}/\hbar\omega)\left|\hat{\mathbf{j}}_{\alpha\beta}\right|^2$$

$$\Delta_{\alpha\beta} \approx e |(\mathbf{r}_{\alpha} - \mathbf{r}_{\beta}) \cdot \mathbf{E}_{\omega}|$$

$$E_{\omega} \sim 10 \,\mathrm{V/m}$$

$$l \sim 10^{-4} \,\mathrm{m}$$
 mean free path

$$\Delta_{eff} \sim 1 \, meV$$

$$\hbar\omega \sim 0.4 \,\mathrm{meV}$$

Search in Other Systems

The phenomena could be observed in other uniform systems, provided:

- An effective way to couple the radiation field and the electron motion
- Non-trivial density of states
- Strong enough radiation: $\Delta_{eff} > \hbar \omega$

Implication of Negative Conductance: Toy Model

- negative conductance implicates the instability of the system. The system will re-organize to a new phase.
- The resulting new phase sensitively depends on the detailed setup of the system.

Uniform System: Far-From-Equilibrium and Self-Organization

Heat Transfer

Convection current & Benard Cells

Near-Equilibrium

Far-From-Equilibrium

Why Self-Organization?

Self-organization originates from the competition between subsystems for the finite resource.

Positive Conductivity

Negative Conductivity

In negative conductivity regime, subsystems have to compete the energy flow provided by the microwave radiation.

A Phenomenological Theory

A.V. Andreev, I.L. Aleiner, and A.J. Millis, condmat/0302063

P.W. Anderson and W.F. Brinkman, cond-mat/0302129

Nonlinear *I-V* curve

$$oldsymbol{E}=oldsymbol{j}
ho_{d}\left(oldsymbol{j}^{2}
ight)$$

Oak RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY • A homogeneous time independent with a current magnitude less than j_0 is unstable in the negative conductivity regime.

• Only possible time-independent state is one in which the current jhas magnitude j_0 everywhere except at isolated singular points (vortex) or lines (domain wall) – convection current.

Conclusions

• Microwave radiation will induce negative conductivity, which results from the non-trivial density of states of the system and photon-assisted transport.

• Negative conductivity implicates the instability of the system. The system will be driven to a far-from-equilibrium phase: self-organization; pattern formation; convection current...

Remaining Issues:

- The microscopic path from the dynamic instability to the farfrom-equilibrium new phase?
- Quantum effect in such far-from-equilibrium dissipative systems?

