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Investigations of the adiabatic condition governing nuclear magnetic

resonance force microscopy (NMR-FM) have been performed. It has been

determined that the adiabatic conditional factor for protons in ammonium

sulfate must have a value of 1.5 or greater to optimize the NMR-FM signal.

A theoretical formalism is presented that describes the data.

The characteristics of CoPt-capped single-crystal-silicon micro-oscillators

with a magnetic field applied perpendicular to the magnetic film have been de-

termined. The resonance frequency of the oscillators show two distinct regimes,

one of softening and one of stiffening of the oscillator. A model is developed
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to describe the previously unseen softening. This work suggests that using

NMR-FM with a magnetic particle on the oscillator is experimentally feasible.

Magnet-on-oscillator NMR-FM has been demonstrated for the first time

with our NMR-FM microscope using resonance slice thicknesses as small as

∼150 nm. The sample investigated was a semi-infinite slab of ammonium

sulfate. The resonance slice of the microscope was scanned from vacuum into

the sample by changing the tuned carrier frequency of the AC magnetic field

H1. The resulting signal-to-noise ratio of ∼ 4 is slightly better than what was

expected from conservative calculations.

Finally, feasibility calculations and an experimental plan are set forth

for the future measurement of relaxation times of single crystals of the super-

conductor magnesium diboride.
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moving the fiber in the ŷ direction is due to light escaping through
the head-wing gap. . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Head-wing gap seen by a severe dip in the peak-to-peak amplitude
of the interference fringes. . . . . . . . . . . . . . . . . . . . . . 55

xvi



2.8 Voltage divider used to apply variable voltage to the tube piezo
quadrants. This setup extends the piezo, while using a positive
voltage source retracts the piezo. . . . . . . . . . . . . . . . . . . 58

2.9 Interference pattern as a function of voltage applied to the four quad-
rants of the tube piezo. The non-linear contraction of the piezo is
realized by the inequivalent voltage changes required to reach suc-
cessive extrema of the pattern. The decrease of the peak-to-peak
amplitude with applied voltage is caused by a decrease in inter-
cepted light reflected from the target as the fiber-target distance is
increased (the beam diverges). . . . . . . . . . . . . . . . . . . . 59

2.10 Contraction of the tube piezo as a function of applied voltage. The
major loop was performed first, followed in succession by the smaller
loops. All five electrodes of the piezo were grounded upon returning
to zero applied voltage. . . . . . . . . . . . . . . . . . . . . . . . 60

2.11 Contraction of the tube piezo as a function of applied voltage. The
major loop was performed first, followed in succession by the smaller
loops. The electrodes were not grounded between loops, causing the
sag in contraction. . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.12 Relaxation time measurement electronics circuitry. . . . . . . . . 62

2.13 Experimental demonstration of the Smooth-On functionality of the
circuit. The extension of the sine wave (red) shows that there would
have been a sudden change in the RF frequency when the CAdI
cycle was initiated if this part of the circuit did not exist. Such a
discontinuity would be a diabatic process that could result in a loss
of locked spins and therefore force signal. . . . . . . . . . . . . . 66

2.14 Decay from above toward resonance as seen on a spectrum analyzer.
The right peak corresponds to a frequency far above resonance, and
the left peak is on resonance. The horizontal grid-lines are separated
by 100 KHz. The width of the peak has been broadened by the
spectrum analyzer. . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.15 FM portion of cyclic adiabatic inversion as seen on a spectrum an-
alyzer. In this example, the FM amplitude Ω =∼ 50 kHz. The
horizontal grid-lines are separated by 100 kHz. The ghost of the
off-resonance initial frequency can still be seen on the right side of
the scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.16 Spin-lattice relaxation time T1 measurement sequence. Each curve
is a digitized signal from the output of the electronics. The traces
have been offset vertically for clarity. . . . . . . . . . . . . . . . . 70

2.17 Spin-spin relaxation time T2 measurement sequence. Each curve is
a digitized signal from the output of the electronics.The traces have
been offset vertically for clarity. . . . . . . . . . . . . . . . . . . 71

xvii



2.18 Spin-lattice relaxation time T1ρ measurement sequence. Each curve
is a digitized signal from the output of the electronics.The traces
have been offset vertically for clarity. . . . . . . . . . . . . . . . . 72

2.19 Mechanical ringing occurs when the RF field is turned on or off. . 74

2.20 Zoom showing the detail in the mechanical ringing. The oscillations
have a frequency of 100 Hz. . . . . . . . . . . . . . . . . . . . . 75

2.21 Peak mechanical ringing amplitude as a function of RF power. The
solid line is a fit of the data . . . . . . . . . . . . . . . . . . . . 75

2.22 The delay time for turn on of the FM shows the dependence of the
oscillator ring-up on the presence of the FM. The amplitudes of the
steady-state values are roughly 22 nm for each curve. . . . . . . . 77

2.23 Steady state amplitude of the oscillator in the presence of FM as a
function of RF power. The solid line is a fit of the data. . . . . . . 78

2.24 Beats due to a difference in FM modulation frequency and the os-
cillator resonance frequency. The blue curves on each are fits to a
sine function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.25 Beat frequency of artifact as a function of the FM modulation fre-
quency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.26 AC beat amplitude of the oscillator in the presence of FM as a
function of FM modulation frequency. . . . . . . . . . . . . . . . 80

2.27 Steady state amplitude of the artifact in the presence of FM as a
function of FM amplitude. The solid line is a linear fit to the data,
which yields A/nm = 0.70 + 0.18Ω/kHz. . . . . . . . . . . . . 81

2.28 Steady state amplitude of the oscillator artifact(blue) as a function of
RF carrier frequency. Also shown (red) is the measured impedance
of the tank circuit for each frequency. . . . . . . . . . . . . . . . 81

2.29 Interference pattern showing the smooth “cold” side and the “hot”
side of the fringe for four successive fringes. The data have not been
corrected for the hysteresis of the tube piezo, so the fringes appear
to have an unequal peak-to-peak separation. . . . . . . . . . . . . 83

2.30 Digitized lock-in signal as an external force is applied to the oscillator
with the interferometer locked to the hot side of the fringe. The
steady-state amplitude for t < 0 is the self-excitation. Only four
curves are shown because otherwise the behavior would make the
graph a mess. The AC voltage sent to the piezo plate is indicate for
each curve. The strange behavior for the 112 mV curve is repeatable,
and is included as an example of the oddity of the hot side response. 84

xviii



2.31 Digitized lock-in signal as an external force is applied to the oscillator
with the interferometer locked to the cold side of the fringe. The
AC voltage sent to the piezo plate is indicate for each curve. The
steady-state driven amplitude scales linearly with the applied force.
Note that the noise amplitudes are smaller than on the hot side. . 85

2.32 Steady-state driven amplitude of the oscillators for the cold side
(blue, vertical diamonds) and the hot side (red, horizontal dia-
monds). The linear behavior of the cold side implies that it may
be reliably used for force measurements, while the odd response of
the hot side implies that it cannot be used at this time. . . . . . . 85

2.33 Noise level for the cold side (blue, vertical diamonds) and the hot
side (red, horizontal diamonds). These data support the conclusion
that the cold side is usable and the hot side is not. . . . . . . . . 86

2.34 Phase relationship while being locked on the hot side before and
after the driving force is applied. From bottom to top, the piezo
plate’s peak-to-peak driving voltages were 0.4 V, 0.5 V, 0.6 V, 0.7 V
and 0.8 V. There is a transition at ∼0.6 V, below which the phase of
the oscillations smoothly incorporates the external force, and above
which the phase is violently changed; the 0.6 V curve shows qualities
of both regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.35 Phase relationship while being locked on the cold side before and
after the driving force is applied. The curves are for different AC
voltages sent to the piezo, but this is not the point of this graph.
The point is to show the somewhat random nature of the phase for
t < 0, which implies the absence of a significant driving force (i.e.,
there is no positive feedback loop). As a result, when the force from
the piezo is applied, its (constant) phase is immediately assumed by
the oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1 Maximum allowed magnetization in the ẑ direction as a function of
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Chapter 1

Introduction to Nuclear Magnetic Resonance

Force Microscopy with Literature Review

“Noo′k-yoo-ler...it’s pronounced noo′’k-yoo-ler.”

- Homer Jay Simpson

This chapter gives a basic overview of essential material, including the

theories of nuclear magnetic resonance (NMR) and NMR-force microscopy

(NMR-FM). A detailed description of the experimental components of our

microscope is given, with the differences between our techniques and those of

other groups noted.

1.1 Nuclear Magnetic Resonance

1.1.1 Quantum Theory of the Two-State System

A simple account of nuclear magnetic resonance can be found in al-

most any introductory quantum mechanics book as an example of a real spin

1/2 system with a time varying potential [1–3]. Here we present pertinent

information for a background overview of NMR.
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1.1.1.1 Overview

The total spin angular momentum of a nucleus is represented by I, the

spin quantum number by I, and the z-component by Iz. The magnitude of I

is given by
√

I(I + 1)~2, where [I(I + 1)]~2 is the eigenvalue of the operator

I2. The eigenvalues of Iz are mI~, where mI ∈ [−I,−I + 1, . . . , I − 1, I]. In

the absence of a magnetic field all of these eigenstates have the same energy.

When an external field is applied, a nucleus with spin I has 2I + 1 equally

spaced energy eigenstates. The energy in a magnetic field1 is given by −~µ ·B,

or by defining ẑ by the direction of the field, E = −µzB, where µz is the

ẑ component of the magnetic dipole moment. For nucleons, the magnetic

moment ~µ and its ẑ component µz are given respectively by gNµNI/~ and

gNµNmI , where gN is the nuclear g-factor, and µN is the nuclear magneton

(defined as e~/(2mp)). The coefficient gNµN/~ defines the gyromagnetic ratio

γ, which leads to the more familiar expressions ~µ = γI and µz = γ~mI . Then

the energy reduces to E = γ~mIB and the energy level spacing is given by

∆E = γ~B. (1.1)

The level spacing induced by the magnetic field defines the angular frequency

necessary for resonance, the Larmor frequency, as ω = γB. When we apply an

external field at the Larmor frequency, absorption allows low energy states to

increase their energy, and spontaneous emission allows higher energy states to

1Here we are using B for the magnetic field to avoid confusion with using H for both the
field and the Hamiltonian. This will change in the next section.
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decrease their energy. In the two-state system of protons, this simply means

that at resonance some of the spins experience a magnetic dipole transition

from the down state to the up state, and vice versa. The following discussion

explains the details of the two-state system with quantum mechanical rigor.

1.1.1.2 Spin Precession in a Uniform Magnetic Field

The base kets we will use for the spin 1/2 system are | ±〉. These are

the eigenstates of the Sz operator, and their eigenvalues are ±~/2. The three

coordinate operators are given in terms of the base set as

Sz =
~
2

(| +〉〈+ | − | −〉〈− |) (1.2)

Sx =
~
2

(| +〉〈− | + | −〉〈+ |) (1.3)

Sy =
~
2

(−i | +〉〈− | + i | −〉〈+ |) . (1.4)

The eigenstates for the Sx and Sy operators are

| Sx±〉 =
1√
2

(| +〉 ± | −〉) (1.5)

| Sy±〉 =
1√
2

(| +〉 ± i | −〉) . (1.6)

For the specific case of a proton in a uniform time-independent magnetic

field, B, pointed in the ẑ direction, the Hamiltonian is given by

H = −
(

gNeB

mp

)
Sz, (1.7)

where e is the elementary charge, mp is the mass of the proton, and c is

the speed of light. Thus, the eigenstates of Sz are energy eigenstates (i.e.,
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[H, Sz] = 0), and the eigenvalues are defined by

H | ±〉 = ∓ ~
2

(
gNeB

mp

)
| ±〉. (1.8)

The signs of the energies in Eq. 1.8 indicate that | +〉 is the ground

state, and | −〉 is the excited state. The energy difference between these two

states is the amount of energy necessary to make a transition from one to the

other. It is customary to use this level spacing to define the frequency

ω ≡ ∆E/~ =
gNeB

mp

. (1.9)

Using this definition, we can rewrite the Hamiltonian of Eq. 1.7 as H = ωSz.

Let the state of our system at time t = 0 be given by

| α(t = 0)〉 = c+ | +〉 + c− | −〉, (1.10)

where probability conservation dictates that | c+ |2 + | c− |2 = 1. The state

of the system at a later time, | α(t)〉, is determined by applying the unitary

time evolution operator, U(t, 0) = exp(−iHt/~) to our initial state. Thus, the

state at time t is given by

| α(t)〉 = c+ e−iωt/2 | +〉 + c− eiωt/2 | −〉. (1.11)

If we choose the initial state of the system to be spin up, then c+ = 1,

and c− = 0. Applying the time evolution operator does nothing in this case,

and the state of the system is eternally unchanged. This is clearly true because,

as previously noted, Sz and H commute.
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If we choose the initial state to be | Sx+〉, however, things change. In

this case, c+ = 1/
√

2, and c− = 1/
√

2, and the state at time t is

| α(t)〉 =
1√
2

e−iωt/2 | +〉 +
1√
2

eiωt/2) | −〉. (1.12)

The state given in Eq. 1.12 is not stationary, so we’d like to figure out where

it is going to end up. The way to do this is to determine the probability that

the state will end up in any of | Sx±〉 in the future.

Recall that the probability of the state | α(t)〉 being found in the state

| β〉 is given by | 〈β | α(t)〉 |2. We therefore find the probabilities of interest

to be

| 〈Sx+ | α(t)〉 |2 = cos2 ωt/2 (1.13)

| 〈Sx− | α(t)〉 |2 = sin2 ωt/2. (1.14)

The expectation values of the operators Sx, Sy and Sz are simply equal

to the sum of the probabilities weighted by their eigenvalues. Thus, taking

the results of Eqs. 1.13 and 1.14, and using similar arguments for Sy and Sz,

leads us to the expectation values

〈Sx〉 =
~
2

cos ωt (1.15)

〈Sy〉 =
~
2

sin ωt (1.16)

〈Sz〉 = 0, (1.17)

These expectation values tell us that the spin is precessing counter clockwise

(viewed from +ẑ) in the x̂−ŷ plane due solely to the homogenous magnetic

field.
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1.1.1.3 Spin Magnetic Resonance

The time-dependent two-state problem is exactly solvable. The Hamil-

tonian of such a system can be written as

H = Ho + V (t), (1.18)

where Ho is given in Eq. 1.7 and only the interaction potential V is time-

dependent. Without this potential, the solutions to the Schrödinger equation

are stationary states given as usual by H | n〉 = En | n〉. The time-varying

potential can cause transitions from one energy level to another, given that

certain parameters of the potential are just right for two particular states.

In the explicit case of proton NMR, the time-independent part of the

Hamiltonian is due to the large external magnetic field, Bo, the time-varying

potential is a small radio-frequency magnetic field, B1, and the two particular

states of interest are spin up, | +〉, and spin down, | −〉, of a proton’s magnetic

moment. The B1 field is chosen to have the same time dependence as the

natural precession of the spins (Eqs. 1.16 and 1.17). This field is therefore a

counterclockwise circulating field (left circularly polarized) that is applied in

the x̂− ŷ plane. The Hamiltonian is thus written as

H = −
(

gNe

mp

~
2
Bo

)
(| +〉〈+ | − | −〉〈− |)

−
(

gNe

mp

~
2
B1

)
cos ωRF t (| +〉〈− | + | −〉〈+ |)

−
(

gNe

mp

~
2
B1

)
sin ωRF t (− i | +〉〈− | + i | −〉〈+ |) , (1.19)
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where e is the elementary charge, mp is the mass of the proton, and ωRF is

the angular frequency of the time varying potential.

W take the state of this system at any time to be again given by

Eq. 1.11. The coefficients c+(t) and c−(t) are determined by applying the

time evolution operator to a set of initial conditions. For our case, we take the

initial conditions to be c+(0) = 1 and c−(0) = 0, which is to say the spin is

aligned with the external field. The probabilities of the spin being up or down

at future time t are given by Rabi’s formula

| c−(t) |2 =
V 2/~2

V 2/~2 + (ωRF − ωo)2/4
sin2

(√
V 2

~2
+

(ωRF − ωo)2

4
t

)
(1.20)

| c+(t) |2 = 1− | c−(t) |2, (1.21)

where V = gNe
mp

~
2
B1.

Equations 1.20 and 1.21 show two important features. First, the prob-

ability of finding the system in the higher energy level (spin down state) is

oscillatory with a frequency that depends on the “detuning” ωRF − ωo. Sec-

ond, when the detuning is zero, the amplitude of | c−(t) |2 becomes large. This

is the resonance condition. Figure 1.1 depicts the time evolution of the spin

states, showing the cases of absorption (when the state flips to spin down) and

emission (when the state returns to spin up). Additionally, Figure 1.2 shows

the maximum amplitude of | c−(t) |2 as a function of RF frequency. The res-

onance curve has its peak at ωRF = ωo, and its full width at half maximum is

2gNeB1/mp.
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1.1.2 Semi-Classical Theory

While the above quantum mechanical description of NMR is entirely

correct, a more transparent account of the phenomenon is presented here.

Several excellent sources can complement the following discussion [4–8].

Spins placed in magnetic fields experience a torque, causing them to

precess at the Larmor frequency. The Larmor frequency is equal to the product

of the gyromagnetic ratio of the spin and the field strength

ωo = γHo. (1.22)

The gyromagnetic ratio (more correctly, γ/2π) of protons is 42.577 MHz/T,

yielding a resonance frequency in an 8.1 T NMR magnet of 344.82 MHz. The

field-induced torque N is the cross product of the magnetic moment of the

spin and the field

N = ~µ×Ho. (1.23)

As torque is the time rate of change of angular momentum, so we also have

dJ

dt
= ~µ × Ho. (1.24)

The equations of motion of the net magnetic moment of a sample are given by

dM

dt
= γM×Ho, (1.25)

where we have used M = γJ.

As above, a time varying potential in the form of a circular RF magnetic

field, H1, is applied perpendicular to Ho in order to induce magnetic resonance.
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As it is difficult to generate a circular magnetic field using a simple coil, our

H1 field is actually a linear field applied in the x̂ direction given by HRF =

2H1 cos ωRF t. The linear field can be written as the sum of two oppositely

rotating circular fields

HRF = H− + H+

with

H− = H1 (cos (ωRF t)x̂ + sin (ωRF t)ŷ) (1.26)

H+ = H1 (cos (ωRF t)x̂ − sin (ωRF t)ŷ) . (1.27)

Because of their natural tendency for precession, the spins will only absorb

the left circularly polarized radiation of Eq. 1.26 in a resonant fashion. Thus,

the RF field of interest for us is

H− = H1 cos (ωRF t)x̂ + H1 sin (ωRF t)ŷ. (1.28)

The description of NMR becomes much easier if at this point we per-

form a coordinate transformation from the lab frame (x̂, ŷ, ẑ) to the frame

rotating with H1 (x̂′, ŷ′, ẑ). In the rotating frame, Eqs. 1.25 become

dM

dt
= γM×

(
[Ho − ωRF

γ
]ẑ + H1x̂

′
)

. (1.29)

The term in parentheses defines the effective field, Heff , which is the field seen

by the spins.

The effective field shows two interesting features. First, its x̂′ compo-

nent is constant in the rotating frame. Second, its ẑ component is frequency
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Figure 1.3: Heff as seen in the rotating frame. The time-dependence of the ẑ
component shown is used for cyclic adiabatic inversion of nuclear spins, wherein
frequency modulation with modulation amplitude Ω is utilized.
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dependent. When the frequency of the RF exactly matches the Larmor fre-

quency of the nuclei, we see that Heff = H1x̂
′. This is the condition for reso-

nance. Figure 1.3 illustrates the effective field in the rotating frame during the

process of cyclic adiabatic inversion (see below). The parameter Ω/γ is the

deviation of the ẑ component of Heff from resonance, and can be controlled

by changing the frequency ωRF .

1.1.3 NMR Spin Manipulation Techniques

In conventional NMR, the spins are generally manipulated with RF

pulses of various duration that are on resonance (meaning ωRF = ωo). If the

RF field H1 is turned on abruptly, the spins are suddenly exposed to a new

effective field that is orthogonal to the previous field. One may think about

this situation from the perspective of the field, in which case the spins are

now oriented in the plane perpendicular to it. In this case, the spins are not

in an eigenstate of the new Hamiltonian, and their expectation values will

oscillate with frequency ω1 = γH1. From the spin’s point of view, the effective

field has changed suddenly and is now imposing a torque that will make them

rotate in the ŷ′−ẑ plane. Because of this torque, the RF pulse can cause the

magnetization to rotate by an angle θ from its equilibrium position if it is left

on for the explicit amount of time t = θ/ω1. The most common RF pulses

used in NMR are illustrated in Fig. 1.4. These pulses are aptly referred to as

π/2 and π pulses as they rotate the magnetization by θ = π/2 and θ = π. In

calculating the duration of these pulses, one should be certain to use the RF
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Figure 1.4: Schematic of the effect that Π/2 and Π pulses have on the magnetization
of a sample.

magnetic field strength H1, not the homogenous field strength Ho.

One other relevant conventional NMR technique is adiabatic rapid pas-

sage. In such a scheme, the frequency of the RF is swept from far above

resonance to far below resonance. As Eq. 1.29 implies, doing this inverts the

ẑ component of the effective field. If the rate of change of the field is slow

compared to the angular frequency of the spins about the effective field, then

the spins will “follow” the effective field, which results in an inversion of the

population of spins (i.e., all spin up nuclei become spin down, and vice versa).

Some conventional NMR experiments use this inversion technique in order to

steer the magnetization of a sample into the high energy state, then monitor

the magnetization as it returns to the ground state; timescales of equilibra-

tion are important characteristics of spin systems, and are known generally as

relaxation times.
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1.1.4 Spin-Lattice and Spin-Spin Relaxation Times

One major use of NMR is to measure relaxation times of nuclei in a

polarized sample. Relaxation times shed light on interactions of individual

spins with their environment, be it the lattice or neighboring spins. The two

fundamental relaxation times are T1 and T2, known respectively as the spin-

lattice and spin-spin relaxation times.

The spin-lattice relaxation time T1 tells us the timescale on which spins

come to equilibrium with the lattice. The population difference between spin

up and spin down is proportional to the Boltzmann factor

N|+〉
N|−〉

= e−∆E/kBT . (1.30)

If the magnetization of the sample is destroyed (via a saturation comb of

π/2 pulses), then there is no population difference between the spin states.

By introducing a concept known as the “lattice temperature”, we can see that

such a state of the system corresponds to having an infinite lattice temperature,

since exp(−∆E/kB∞) = 0. The real temperature of the lattice is not infinite,

so the system will eventually “relax” back to a state where the Boltzmann

factor accurately describes the population difference with a finite temperature

difference; the timescale of this process is proportional to exp(−t/T1). If the

magnetization of the sample is measured during the relaxation process, then

the data can be fit to determine the spin-lattice relaxation time.

The coupling between spins transversely allows energy to be transferred

between spins on the time scale T2. This spin-spin relaxation time is generally

14



described as being due to differences in the absolute field that a spin sees

because of the fluctuating local dipole fields from its neighbors. Because of this

distribution in local fluctuating fields, some spins precess faster than others in

the transverse plane, and the relative phases of the precessions quickly become

washed away. The timescale on which the relative phase information is lost is

the spin-spin relaxation time.

1.2 NMR Force Microscopy Theory

The theory of NMR-force microscopy was first presented by John Sidles

in 1991 [9]. The basic idea is that if the moment of a sample, M, is modulated

in time near a magnetic particle whose field gradient is ∇B, then there will

be an oscillatory force coupling the two given by

F(t) = M(t) · ∇B. (1.31)

In practice, as illustrated in Fig. 1.5, the magnetic particle is mounted on

a very low spring constant, k, mechanical oscillator, whose deflection due to

the force F(t) is detected with a fiber optic interferometer. If the sample’s

magnetization varies in time with a frequency equal to that of the resonance

frequency of the oscillator, then the amplitude of the deflection, A, is increased

by the quality factor, Q, of the oscillator so that

A = Q
F

k
. (1.32)

The minimum detectable force (i.e., the force sensitivity) of an NMR-FM

experiment is limited by the thermal noise of the mechanical oscillator, and
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Figure 1.5: Magnet-on-oscillator experimental set up for NMR-FM.

can be written as

Fmin =

√
4kosc kBT ∆ν

ωoscQ
, (1.33)

where kosc, ωosc, andQ are the spring constant, resonance frequency, and qual-

ity factors of the mechanical oscillator, and ∆ν is the “equivalent noise band-

width” of the measurement.

1.2.1 Cyclic Adiabatic Inversion

The primary technique used for spin manipulation in NMR-FM is cyclic

adiabatic inversion. This technique is superficially identical to the conventional

adiabatic rapid passage technique. However, instead of one sweeping pass,

cyclic adiabatic inversion repeats many small adiabatic rapid passages so as

16



to make Mz not only Mz(t), but also highly periodic.

In practice, cyclic adiabatic inversion is performed after a decay from

far off resonance toward resonance. The reason for this is to slowly tilt the

angle of the effective field (very high or low frequencies make Heff roughly

parallel to Ho). The initial frequency is usually taken to be 300-500 kHz

above resonance. Because the Larmor frequency of the spins is 350 MHz, it

may seem that such a small deviation from resonance would be insignificant.

This is not the case, however, as the important parameter is the angle the

effective field makes with the polarizing field, namely θ = tan−1
(

Heff ·ẑ
Heff ·x̂

)
.

Figure 1.6 illustrates a real cyclic adiabatic inversion time series by showing

its effect on Heff ẑ.

Recall that the effective field is given by

Heff =

(
[Ho − ωRF

γ
]ẑ + H1x̂

′
)

. (1.34)

If we introduce a frequency modulated wave, then ωRF = ωRF (t). We choose

the carrier frequency of the FM to be ωo, the frequency of the modulation to

be ωFM , and define the amplitude of the FM as Ω. The frequency of the RF

is thus given by

ωRF (t) = ωo + Ω cos(ωFM t). (1.35)

The effective field will then have a modulating ẑ component given by

Heff ẑ = Ho − 1

γ
(ωo + Ω cos(ωFM t)). (1.36)
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Figure 1.6: Effective field in the ẑ direction during cyclic adiabatic inversion. The
decay to resonance is important for initially bringing the magnetization parallel to
x̂′. The subsequent oscillations of the effective field about resonance are driven by
frequency modulating the RF field; their result is the time-varying magnetization
of the sample, which causes the force on the oscillator. The frequencies associated
with the CAdI cycle are indicated on the right.
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The result of the time varying Heff ẑ is a time varying magnetization.

Recalling Eq. 1.31, we see this then results in a time varying force. If we

choose the modulation frequency to equal the resonance frequency of the me-

chanical oscillator onto which the sample or field-gradient-producing magnet

is mounted, then the mechanical oscillator will be resonantly excited by the

time varying force2.

1.3 The Basic MRFM Experiment and Its Components

The basic MRFM3. experiment has five main components, each with

its own fundamental importance to the experiment (Fig. 1.5): an RF coil, a

field gradient-supplying magnet, a mechanical oscillator, a fiber optic inter-

ferometer, and a sample to investigate. In addition to these elements, our

experiments have a homogenous external magnetic field that serves to polar-

ize the sample spins and make certain that the gradient-supplying magnet is

saturated4.

The experiment itself goes something like this: spins in a sample, ini-

2The Army group has exploited the sensitivity of the interferometer to perform MRFM
experiments off resonance [10]. In principle, there is no problem with this, but having the
factor of Q (from the oscillator resonance) in your signal is always helpful.

3I use MRFM here because the following discussion references work done by other groups
on not only NMR, but also electron spin resonance (ESR) and ferromagnetic resonance
(FMR).

4The homogeneous external field does not necessarily need to be produced by an NMR
magnet; a strong permanent magnet will also polarize the spins of the sample, though in
this case there will be a field gradient present that will result in different fields within
the sample-this may be advantageous for obtaining smaller resonance slices, but would be
detrimental if not realized before performing such an experiment.
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tially polarized in the ẑ direction, are coerced by an AC RF magnetic field

to invert their spins such that the ẑ component of sample’s magnetization is

inverted at a frequency equal to the resonance frequency of the mechanical

oscillator. Because the sample is also exposed to the magnetic field gradient

of a particle attached to the oscillator, there is an oscillating force imposed

on the oscillator. Because the magnetization of the sample, and therefore the

force, is varied at the resonance frequency of the mechanical oscillator, the

oscillator is resonantly excited. The amplitude of the response is proportional

to the force and the oscillator’s quality factor, while it is inversely propor-

tional to the spring constant. This motion is detected by the interferometer,

constituting the force detection of magnetic resonance.

1.3.1 The RF Coil

The RF coil is used to manipulate the magnetization of the sample

through various modulation schemes. Recalling the equation for the effective

magnetic field in the rotating frame (Fig. 1.3, we see that the RF can make the

ẑ component of this field time dependent through frequency modulation. We

can also make this component time dependent through amplitude modulation,

though this is not regularly used because experiments have shown that AM

results in a greater signal artifact than FM [11]. In any event, in order for the

RF field to affect the spins of the sample, its magnitude must be greater than

that of the local nuclear magnetic fields (2-5 Gauss).
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1.3.1.1 Relaxation Time Measurements

The RF coil is at the heart of making relaxation time measurements.

Through various pulse sequences, the magnetization of the sample can be set

to some initial condition, and then after waiting some variable amount of time

the ẑ component of the magnetization can be measured by performing cyclic

adiabatic inversion (or whichever inversion scheme is appropriate). In this

manner we can make measurements of the spin-lattice (T1), rotating frame

spin-lattice (T1ρ), and spin-spin relaxation (T2) times.

One area of current investigation is the determination of the relaxation

time during cyclic adiabatic inversion, TCAdI . This relaxation time is bounded

by T1 and T1ρ. TCAdI should approach T1 for large frequency modulation

amplitudes Ω/γ and small RF fields H1, while it should approach T1ρ for large

H1 and small Ω/γ.

1.3.1.2 Spin Manipulation Regimes

There are three relaxation time dependent regimes of RF spin manip-

ulation, namely, cyclic adiabatic inversion, interrupted cyclic adiabatic inver-

sion, and cyclic saturation. The relaxation of spins during manipulation is a

great detriment to signal strength, and is one of the main focuses of ongoing

research [12–15]. Each of these regimes is used to maximize the strength of the

signal, that is, to actively manipulate the greatest number of spins possible.

For samples with relaxation rates much slower than the resonant fre-

quency of the mechanical oscillator, cyclic adiabatic inversion is used. In this
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Figure 1.7: Interrupted cyclic adiabatic inversion. This technique is used to manip-
ulate spins whose relaxation rate is on the order of the oscillator resonance frequency.

case, the effective magnetic field looks essentially static to the spins precessing

about it. When the spins are locked to the field in this manner, they read-

ily follow it as we modulate its ẑ component, resulting in the time dependent

magnetization that will excite the mechanical oscillator. In these samples with

large relaxation times, the spins will lock to the effective field for thousands

of cycles before beginning to relax.

When the relaxation rate is on the order of the resonant frequency of

the mechanical oscillator, interrupted cyclic adiabatic inversion is used. In

this case, the spins will lock to the effective field for a short time allowing

cyclic adiabatic inversion, but they relax after only a few cycles. To combat

this problem, the RF is periodically turned off to allow the sample to fully

saturate along the external field, as illustrated in Fig. 1.7. It is important

that the RF be on for only a few oscillator periods to minimize the recovery

time of the magnetization. More importantly, the RF should be off for a whole
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Figure 1.8: Cyclic saturation. This technique is used when the relaxation rate of
the spins is much greater than the resonance frequency of the oscillator.

number of oscillator periods so that once it is turned on again, the new force is

constructively synchronized with the previous forces in order to readily excite

the oscillator. This technique is not quite as efficient as pure cyclic adiabatic

inversion because the oscillator will not ring up as easily without a continuous

driving force, but is the only option for relaxation rates of this intermediate

sort.

If the relaxation rate of the sample is much greater than the resonant

frequency of the mechanical oscillator, cyclic saturation is used. In this case,

most of the spins will relax from the effective field within one oscillator period.

The idea here is simply that of a classical kicked rotor, where the oscillator is

the rotor and the kick is a quick change in the magnetization, as depicted in

Fig. 1.8. One method of cyclic saturation is to use amplitude modulation by

turning on and off with H1 on resonance. This is as simple as applying a train

of π pulses (π = ωot) to the sample in order to invert M . The pulses must

23



8.6

8.5

8.4

8.3

8.2

T
o
ta

l 
F

ie
ld

 (
T

)

2.01.51.00.50.0

Distance from Iron Magnet (mm)

HT HT – Ω/γHT + Ω/γ

∆Ζ = 2Ω/γ
∇ Bz}

Figure 1.9: Field gradient defines resonance slice. The size of the resonance slice
is exaggerated for pedagogical purposes. A realistic resonance slice will be on the
order of 1 µm or smaller.

come at a repetition rate equal to the resonance frequency of the oscillator

so that these quick changes in the magnetization will coherently ring up the

oscillator.

1.3.2 Magnetic Field Gradient

The next component of the basic MRFM experiment is a magnetic field

gradient. In the early days, the field gradient was supplied by a large perma-

nent magnet [11, 16–18]. The magnitude of the field gradient is important

because without it, there would be no force coupled to the mechanical oscil-

lator (F = M · ∇B). As shown in Fig. 1.9 the field gradient helps to define
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the thickness of the resonance slice as

∆z = 2Ω/γ∇zB. (1.37)

Large field gradients are thus beneficial for high-resolution microscopy. To

this end, many researchers, our group included, have adopted the magnet-on-

cantilever geometry, as tiny magnets yield large field gradients. The search for

a single spin is much more difficult (at this time) when using small magnets

in close proximity to a sample because magnetic noise fluctuations tend to

increase the relaxation rate of the spins [13]. Less ambitious experiments may

not have such difficulty.

One important point to note is that the field gradient does not affect

the strength of the signal if the resonance slice is completely submerged within

a sample. This is not obvious because the force equation seems to suggest that

the force increases with the gradient. However, the M in the force equation

is magnetization, not magnetization per unit volume. If the resonant slice

thickness ∆z is less than the thickness of the sample (as it should be for a

meaningful imaging experiment), the volume of spins in the resonant slice is

inversely proportional to the field gradient. The force equation could then be

written more explicitly as

F = nA∆z
γ2~2I(I + 1)

3kBT
Ho∇zB, (1.38)

where A∆z is the volume of the sample contained in the resonance slice. Using

Eq. 1.37, the field gradient drops out of the equation and the force reduces to

F = n
γ2~2I(I + 1)

3kBT
Ho

2Ω A

γ
. (1.39)
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Thus, we see the force on the oscillator is independent of the field gradient in

this case.

1.3.3 Mechanical Oscillators

The mechanical oscillator is another very important element of the basic

MRFM experiment. The oscillator provides us with a way to detect extremely

small forces created by an extremely small time-varying magnetization. The

thermal noise of the mechanical oscillator is the limiting factor of the sensitivity

of current experiments, though magnetic noise and proximity effects (such

as the Casimir force) have the potential to limit future experiments [13, 19].

The thermal noise force on a mechanical oscillator is given by F =
√

Sf∆ν,

where the spectral density Sf is 4kosckBT/(ωoscQ). For a given bandwidth, the

most sensitive oscillator will have k → 0, and resonant frequency and quality

factors tending toward infinity, and will operate at 0 K. As such, much effort

has been put into constructing oscillators with small spring constants, high

frequencies, and large quality factors [18, 20–23]. Scanning electron microscope

images of several oscillator designs are presented in Fig. 1.10. One of the main

focuses of our group, but not of this particular work, is to produce torsional

oscillators. The torsional design will be used to obtain quality factors orders of

magnitude greater than simple cantilevers. While high sensitivity experiments

are performed at low temperature, room temperature MRFM experiments are

performed regularly [16, 18, 24–26]. Experimental issues with each of these

sensitivity parameters are addressed below.
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Figure 1.10: SEMs of oscillators used in our lab. The top image is a triple-torsional
oscillator made by Michelle Chabot while she was in this lab. The middle images
are oscillators also made by Michelle Chabot, though these were made during her
post-doc with John Moreland at NIST; we received them through a collaboration.
The bottom SEM shows double-torsional oscillators made by Yong Lee with different
moment of inertia ratios between the head and wing.
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Realizing each “optimal” oscillator characteristic has its downfalls. The

best way to achieve low spring constants is to make extremely thin oscillators

as k ∝ t3 [27]. The most sensitive oscillators demonstrated are 60 nm thick

[21] and have k ∼ 10−6 N/m. Our oscillators are typically in the range of 200 -

300 nm thick and have k = 10−2 N/m. The equipartition theorem, however,

tells us that a small spring constant implies a large RMS amplitude at a given

temperature 〈x2〉 > = kBT/kosc. This is not a problem for experiments where

the resonant slice is much greater than the RMS amplitude. However, for high-

resolution experiments where the resonant slice is on the order of or smaller

than this amplitude, the problem is detrimental. One solution to this problem

is the use of active feedback, which artificially reduces the RMS amplitude to

reasonable levels [28, 29].

Although high resonant frequency oscillators would increase force sensi-

tivity, they are not desired due to the adiabatic condition garnering spin lock-

ing. The adiabatic condition depends on the type of modulation scheme im-

plemented, but basically says that spins will readily lock to the effective field if

the Larmor frequency about the effective field is much greater than the angular

frequency of the effective field. For sinusoidal FM with frequency modulation

amplitude Ω/γ, the adiabatic conditional statement5 is (γH1)
2/(ωΩ) À 1.

The only oscillator characteristic that enters this statement is the resonant

frequency, and we clearly want it to be low.

5Some groups like to define the conditional statement so that values much less than one
imply good spin locking. I think this is ridiculous. With the conditional statement defined
in this work, the bigger the number, the better the spins are locked. . . psychoanalyze that!
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Oscillators with large quality factors can adversely affect the experi-

ment due to long ring-up times. The time it takes an oscillator to reach its

steady state amplitude is several characteristic times τ , where τ = Q/ω. Ex-

tremely high Q oscillators will take many cycles of adiabatic inversion to reach

their maximum amplitude (where the signal would be the largest). Depend-

ing on the spin relaxation time during inversion, it is conceivable that most

of the spins may be lost by the time the oscillator rings up to its full ampli-

tude [15, 27]. Long ring up times are unacceptable for imaging purposes (the

brightness of a pixel in an image corresponds to the measured force at that

point in space. . .one image is made of lots of pixels). Conveniently, the solu-

tion to this problem is the same as that of the small spring constant problem,

namely, active feedback. Active feedback has been used to artificially damp

the quality factor of mechanical oscillators by up to three orders of magnitude

[28, 29]. This technique decreases the response time of oscillators to a level

that imaging experiments are now regularly performed [30, 31].

1.3.4 Fiber Optic Interferometer

The fiber optic interferometer is essential to the force detection of

MRFM. Light from a laser diode is coupled to a fiber optic cable, sent through

a directional coupler, and then out of the fiber toward the oscillator. Light

reflects from the oscillator back into the fiber, where it then forms an inter-

ference pattern with the light that internally reflected from the cleave back

down the fiber (see Figs. 1.11 and 1.12). The maximum amount of light re-
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Figure 1.11: Schematic of the fiber optic interferometer with a block diagram of
the feedback control.
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Figure 1.12: The interference pattern formed by the displacement between the
oscillator and the end of the fiber optic cable. This pattern was observed by using a
quartered tube piezo to make small changes in the displacement (blue is extending,
red is retracting). The displacement between maxima (or minima) is λ/2, while that
from maximum to minimum is λ/4.
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flected back down the fiber due to the impedance mismatch going from the

fiber to air is only four percent of the incident power [27]. Other groups have

improved upon this by coating the fiber with a thin layer of silicon [32]. A

photodiode and associated circuitry converts the interfering light power to a

proportional voltage; a photodiode responsivity of 0.6 A/W and an amplifier

gain of 2 × 106 V/A yield an overall sensitivity of about 600 mV/µW. The

signal from the photodiode pre-amp circuit is sent to a fringe stability feedback

circuit and to a lock-in amplifier. This signal is an AC voltage superimposed

on top of a DC voltage. The AC component is due explicitly to the vibration

amplitude of the oscillator (and is thus extraordinarily small), and the DC

offset is the voltage amplitude of the interference pattern. The fringe stability

circuit monitors the low frequency amplitude drifts of the interference pattern

and outputs a voltage to a stacked piezo transducer to adjust the position of

the fiber relative to the oscillator in order to maintain the set-point DC level6.

This feedback allows us to lock on the largest slope (right in the center) of

an interference fringe, where the sensitivity of the interferometer is greatest

and relatively independent of position. Changes in the DC level are due to

thermal drift and a lack of vibration isolation. The ability to lock on a fringe

is increased to an ideal level when the probe is vibrationally isolated by float-

ing on a half-inflated rubber inner tube7. During the experiment, however, the

6This “DC level” is the voltage corresponding to the amplitude of the actual interference
pattern due to the separation of the fiber and the oscillator, not an offset of the interference
pattern.

7This vibration isolation technique, while seemingly crude, is used regularly for scanning
tunnelling microscopy, which needs far better isolation that NMR-FM currently does.
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probe is not quite as well isolated, but the NMR magnet itself has much better

vibration isolation than any lab bench. The vibrations seen in the magnet are

probably transmitted though the stainless steel vacuum hoses.

The fiber optic interferometer is capable of detecting motion less than

0.01 Å. This is much better than what we currently need [27]. Other groups

have improved this detection limit by thermally tuning their laser [33]. The

basic idea here is that the wavelength of light output by the laser depends on

the temperature of the laser. By adjusting the wavelength in this manner, they

are able to maintain a constant DC level. This technique essentially eliminates

the need for the fringe stability piezo.

1.3.5 Lock-in Amplifier

The lock-in amplifier monitors the AC part of the light pattern due

to the small changes in the displacement of the fiber and oscillator due to

the vibration amplitude of the oscillator. It basically determines the Fourier

component of the signal within a given frequency bandwidth. The outputs of

the lock-in are typically the elastic and the absorbative amplitudes, X and

Y . We can use these to determine the amplitude R and phase Θ of the

signal at a single instant in time. An oscillator resonance during a frequency

scan is identified by the point at which the elastic amplitude is zero and the

absorbative amplitude is maximum. Because the lock-in is a phase sensitive

device, we can determine the relative phase of different oscillator modes; just

before reaching resonance, if the elastic and absorption amplitudes increase
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Figure 1.13: X (red) and Y (blue) outputs of the lock-in on opposite sides of
the head rise together slightly below resonance, indicating an in-phase relationship
between X and Y. Because this phase relationship is the same on both sides of the
head, we can conclude that this is a cantilever mode of the oscillator. Additional
detection on the wings is necessary to specify the particular cantilever mode.

together they are in phase, but if one increases while the other decreases,

they are out of phase. By pointing at different positions of the oscillator (left

and right sides of the head and wing) and noting the phase relations at these

points, we can uniquely determine the mode of a resonance. Figures 1.13 and

1.14 show phase sensitive detection of the lower and upper torsional modes

of a triple torsional oscillator. Lower cantilever and torsional modes will have

both sides of the head and wing in-phase, but torsional modes will show the

left and right of either the head or wing to be out of phase. Similar reasoning

can be applied to the other modes [18].

1.3.6 The Sample

The final component essential to an MRFM experiment is the sample it-

self. This is the most complex component of the entire experiment. The choice
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Figure 1.14: X (red) and Y (blue) outputs of the lock-in on opposite sides of the
head behave oppositely slightly below resonance, indicating X and Y are out-of-
phase. Because this phase relationship is opposite on opposite sides of the head, we
can conclude that this is a torsional mode of the oscillator. Additional detection on
the wings is necessary to specify the particular torsional mode.

of sample will affect the signal amplitude, the adiabatic conditional statement,

and the RF regime used to manipulate the spins. The maximum force for a

given field gradient depends on the nuclei under investigation through the

magnetization. Curie’s law of paramagnetism gives the magnetization of a

sample as M = N γ2~2(I(I+1))
3kBT

Ho. The gyromagnetic ratio is the most impor-

tant species-dependent parameter that affects signal strength. Electrons have

the largest gyromagnetic ratio, γ = 27.994 GHz/T, 657.5 times that of a pro-

ton. This huge signal advantage is the reason MRFM experiments were first

performed with electron spin resonance. To date, NMR-FM experiments have

been successfully performed with 1H, 19F, 69Ga, 71Ga, and 75As [10, 20, 34].

In considering new spins to investigate, one ought to compare the SNR for

protons (or other known species) to relative signal strengths and the natural

abundance of the isotopes (refer to the NMR tables in the CRC or Varian wall
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chart). A large gyromagnetic ratio also helps with signal strength because

the adiabatic conditional factor is proportional to its square. This to say that

for all other things equal, more spins will be manipulated and contribute to a

greater force on the oscillator for large γ nuclei. Be careful not to read this

as saying “large γ spins don’t relax”, as this is not true. In fact, relaxation

rates are also proportional to γ2. This can be a problem for samples with large

gyromagnetic ratios if excessive relaxation mechanisms are present. And be

careful not to assume that these two effects cancel each other8.

8Other problems with large gyromagnetic ratios are strictly equipment based. We cannot
perform MRFM experiments on electrons in our 8.2 T magnet at this time because we do
not have microwave frequency capabilities.

35



Chapter 2

Experimental Details

“You’re stupid, you’ve always been stupid,

you’ll always be stupid...See ya’ tomorrow, Tiger!”

- Al Frasca, my undergraduate advisor

Various elements of our main experimental techniques are described

in this chapter. Included are sections about oscillator characterization, blind

alignment of the fiber to the oscillator, 2-D and 3-D scanning capabilities,

relaxation time measurement electronics, signal artifact, and laser-induced

resonant self-excitation of the oscillator. We also emphasize that although

you’ve always been stupid, and you’ll always be stupid, you ought to show up

tomorrow and see how far your stupidity can get you. . .

2.1 Determining Oscillator Characteristics

The fundamental characteristics of any mechanical oscillator are its

resonance frequency, quality factor, and spring constant. In this section we

describe the methods we use to experimentally determine each of these quan-

tities.
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2.1.1 Determining Resonance Frequencies

There are several ways to determine the resonance frequency of the

oscillator. The most convenient method is to observe the vibration amplitude

of the oscillator while driving it with a sinusoidal force whose frequency is

incremented in small discrete steps. Another way is to digitize the noise from

the oscillator and Fourier Transform this signal. LabVIEW programs have

been written to perform both of these methods. The FFT is a faster method,

but due to current sampling rate limitations, both methods work roughly the

same.

2.1.1.1 Frequency Scans

In a conventional frequency scan, a sinusoidal voltage is applied for a

time interval ∆T from a Stanford Research Systems DS345 function generator

to both a piezo plate (on which the oscillators have been mounted) and the

reference channel of the lock-in. The voltage on the PZT 840 piezo plate

(American Piezo Ceramics, Inc.) causes the ceramic to expand an amount ∆h

according to the formula

∆h = d33V, (2.1)

where d33 is a piezo-dependent constant equal to 290× 10−12 m/V. Since the

oscillators have been silver epoxied to the piezo, the oscillatory expansion

imposes a driving force on the oscillator at the frequency of the voltage. The

voltage input to the reference channel tells the lock-in to which frequency it
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should listen. The vibration signal from the interferometer is sent to the lock-

in, where it is averaged with a time-constant τc. The shaking interval ∆T is

set to be 3-5 times τc to ensure the output of the lock-in is stable for a stable

input. The equivalent noise bandwidth of the lock-in is ∆ν = 1/4τc when the

normal 6 dB/octave filter is used1. This means that the lock-in is effectively

listening to frequencies in the range (fo − ∆ν, fo + ∆ν). Additionally, τc

tells us the time over which the signal is being averaged by the lock-in. After

shaking the oscillator for ∆T , the program stores the output of the X and Y

channels of the lock-in, increments the frequency of the DS345, and repeats.

The output of the program is a delimited text file that is analyzed using Igor

Pro. The resonance frequency and an (under) estimate of the quality factor

are obtained using Igor’s Lorentzian curve fitting algorithm.

2.1.1.2 Fourier Transforms

Fourier transform programs written in LabVIEW also allow the reso-

nance frequency of the oscillator to be determined. In this scheme, we detect

the noise vibrations of the oscillator, not its driven motion. Thus, when using

this method, the electrodes of the piezo plate are grounded. In these pro-

grams the lock-in samples and stores the X and Y outputs to its buffer at its

maximum sampling interval ∆t = 1/(512 Hz). This time series is then fourier

transformed in LabVIEW using a complex fast fourier transform (FFT) algo-

rithm. If N samples are stored by the lock-in, then the fourier transform will

1Refer to the manual to determine the bandwidth for other filters.
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have a frequency resolution given by

∆f =
1

N∆t
. (2.2)

When using the FFT programs, it is required that the bandwidth of

the lock-in (∆ν) be at least twice as large as the spectrum that results from

the FFT. This is due to the gaussian shape of the lock-in; the roll-off of the

filter causes erroneous results because the amplitudes of outlying frequencies

are attenuated. With this in mind, the bandwidth of the lock-in must obey

∆ν ≥ 2

∆t
. (2.3)

The input to the complex FFT is the complex number X + iY, where

X and Y are the X and Y outputs of the lock-in. One advantage to using the

lock-in is that the complex FFT then gives a double-sided spectrum; negative

frequencies correspond to frequencies below the center frequency and are not

simply degenerate positive frequencies (as in the case of a real FFT).

The limitation of the sampling rate of the lock-in means that only

512 Hz can be observed at once. One FFT program was written to scan the

center frequency in 512 Hz steps, but with low resolution (N = 512), and

another was written with N = 2n, where n is programmable, for taking

high resolution spectra. After determining the position of the resonance with

the scanning FFT program, the high resolution FFT program is then used to

monitor the resonance. This has proven to be a valuable time and money2

2The high field magnet used in those studies uses 35 L of liquid helium in about six
hours.
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saving technique: in a continuation of the field effects on magnetically capped

oscillators study of Chapter 4, four times as much data was taken in less than

half the time.

2.1.2 Determining Quality Factors

The quality factors of our oscillators can be measured using frequency

scans or the ring-down of an excited oscillator. In the former, the shape of the

resonance is fit to a Lorentzian using the Lorentzian curve fitting algorithm

in Igor Pro. In the latter, the oscillator’s amplitude is monitored as a force

driving it is turned off; the time constant of the exponential decay is directly

proportional to Q.

2.1.2.1 Frequency Scans

Frequency scans are obtained in the way described above in Section

2.1.1.1. Fitting the resonance to a Lorentzian gives a decent estimate of Q if

appropriate measures are taken. In general, it is most efficient to make sure

that the frequency increments are equal to the bandwidth of the measure-

ment. Note that for high Q resonances, where the full width at half maximum

(FWHM) may be less than one hertz, large time constants are necessary. If

the time constant is chosen to be too short, there will be artificial broaden-

ing of the resonance due to the convolution of the impulse response function

of the instrument with the actual signal. This is to say that since the noise

bandwidth of the lock-in is a gaussian with width ∆ν, a frequency scan with
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Figure 2.1: Frequency scans of an oscillator resonance showing the effect of using
different time constants. Quality factors of the resonance are indicated on each
curve. From broadest to sharpest, the Q values correspond to time constants of
30 ms, 100 ms, 300 ms, and 1000 ms. The amplitude of the τc = 1000 ms curve
is shorter than the rest because the bandwidth was smaller than the step size and
the peak was thus skipped over; a shorter step size would have revealed the peak
amplitude equal to the others.

infinitely small steps would broaden a delta-function resonance so that the sig-

nal observed would be a gaussian of width ∆ν. In order to determine the true

shape of the resonance, and therefore its intrinsic Q, a deconvolution of the sig-

nal with the lock-in’s impulse response function would have to be performed.

Note that the “intrinsic” value is a function of temperature and pressure; all

of our quality factors are pressure limited because our best pressures are only

∼ 0.1 mTorr. Figure 2.1 shows the effect of using too small of a time constant.
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2.1.2.2 Ring-Down

The quality factor can also be determined from the decay of the os-

cillator’s amplitude if a driving force is removed. To this end, a sinusoidal

voltage is sent to the piezo plate at the resonance frequency of the oscillator

and is then suddenly turned off. This event triggers a Nicolet Digital Oscil-

loscope (with a significant pre-trigger) to digitize the R output of the lock-in.

The de-excitation of the oscillator is fit to an exponential to find the 1/e time

constant τ of the decay. Q is then calculated according to

Q = πτfosc. (2.4)

A significant study of quality factors of oscillators appropriate for NMR-FM

was published by Rugar’s group in March, 2000 [35]. Most other MRFM

groups determine the quality factors of their oscillators using this ring-down

technique.

The ring-down method is more appealing from an experimental point of

view because it is quick and reliable. However, in an erroneous effect opposite

of that of the scanning method, the Q of the oscillator can be artificially

enhanced by the lock-in if its time constant is too large. In order to reasonably

estimate the Q from the ring-down, the time constant should be quite short.

To make sure the time constant is short enough, the ring down is observed for

several time constants. As shown in Fig. 2.2, the calculated Q will plateau

when it becomes independent of the time constant; this is the intrinsic Q of

the oscillator.
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Figure 2.2: When using the ring-down method, the calculated mechanical quality
factor plateaus at the oscillator’s intrinsic Q for a given temperature and pressure.
The line is a guide to the eye.

2.1.3 Determining Spring Constants

Perhaps the most elusive oscillator characteristic to date has been the

spring constant, kosc. Direct measurement of the spring constant is not possible

at this time3. Instead, we go through a grand scheme utilizing the Equiparti-

tion Theorem

1

2
kosc〈x2〉 =

1

2
kBT, (2.5)

where we measure 〈x2〉, the mean square noise vibration amplitude of the

oscillator, at a known temperature then calculate kosc.

Determining 〈x2〉 is not straightforward. It is not simply the maximum

3One may be able to apply a force and detect the deflection of the oscillator using an
AFM, but this is probably infinitely more trouble than its worth [36].
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noise vibration amplitude squared4 Its definition is

〈x2〉 =

∫ ∞

0

| G(f) |2 SF df. (2.6)

The integrand is sometimes called the noise power spectrum. | G(f) |2 is the

absolute square of the mechanical transfer function, and is (usually) written

as

| G(f) |2 =
f 4

osc/k
2
osc

(f 2
osc − f 2)2 + (foscf/Q)2

. (2.7)

SF is the noise spectral density, which is given by

Sf =
4kosckBT

2πfQ
. (2.8)

The lock-in itself measures the RMS noise vibrations
√
| G(f) |2 SF

with a bandwidth ∆ν. Choosing the bandwidth to be very small allows us

to reconstruct the shape of
√
| G(f) |2 SF by determining the RMS value for

discrete frequencies in the spectrum. This cannot simply be done using a

standard frequency scan with a long time constant because the amplitude R

that is sampled will sometimes be zero (it is noise after all). In order to

determine the RMS noise amplitude for a given frequency, a time series must

be taken by digitizing the outputs of the lock-in; the RMS value of this time

series will be a point plotted on the RMS noise amplitude spectrum. The

4We have had several discussions with Sean Garner from Marohn’s Cornell group about
this. Their method is to determine the RMS value of the R output of the lock-in with a
bandwidth that envelopes the resonance (∆ν ∼ 3 × FWHM). We have not been able to
show that their method is equivalent to ours, though they and John Sidles believe they yield
the same spring constants. The discrepancies may be due to bandwidth conventions.
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resulting line shape will resemble a driven oscillator scan, and can be fit to a

Lorentzian to determine Q.

The power spectrum (the integrand of Eq. 2.6) is obtained by squaring

the RMS noise amplitude spectrum, then dividing the result by the bandwidth

used in determining each RMS amplitude. The resulting curve is much nar-

rower than the RMS amplitude. As a result, there may not be very many data

points near the peak of the power spectrum for large Q oscillators. The shape

of the power spectrum is, however, still a Lorentzian, and can thus be readily

fit using Igor. The resulting curve fit is integrated over frequency to give us

our value for 〈x2〉.

An example is in order. The significant benchmarks for using the above

process are illustrated in Fig. 2.3. The oscillator investigated was a simple

30 µm × 30 µm paddle with a 180 µm × 3 µm neck that was ∼ 300 nm

thick. To determine the value of each point on
√
| G(f) |2 SF , the R out-

put of the lock-in (τc = 3 s) was digitized using the Nicolet for 10 s with

a sampling interval of 20 ms at room temperature. This waveform was con-

verted to a vibration amplitude by multiplying it first by the scale factor of

the lock-in (giving it units of real Volts), then by the Volts-meters conversion

factor λ/2ΠVpp, where λ was the wavelength of the laser (660 nm), and Vpp

was the peak-to-peak fringe size (4.0 V). The RMS value of the resulting time

series (i.e., the actual point plotted in the top figure of Fig. 2.3) was calcu-

lated using the wavestats function in Igor. The lock-in reference frequency

was incremented by 0.1 Hz between time series. After
√
| G(f) |2 SF was con-
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Figure 2.3: Example of | G(f) |2 SF and its integral used in determining the spring
constant of an oscillator.
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structed, it was squared, then divided by ∆ν = 1/(4 × 3 s), and then fit to

a Lorentzian (center graph of Fig. 2.3). The curve fit was then numerically

integrated to determine 〈x2〉. The last graph in Fig. 2.3 shows the power spec-

trum and its integral. Note that that using the curve fit as the integrand will

yield a larger value for 〈x2〉 than a trapezoidal integration of the actual data

points. Integrating the curve fit will thus yield a larger spring constant, which

is best for conservative estimates of Fmin. Plugging 〈x2〉 for this oscillator into

Eq. 2.5 determines kosc = 2.0×10−4 N/m. This is in good agreement with the

estimate kosc = 4.2× 10−4 N/m from its geometry [37].

2.1.4 Fringe Locking Circuit

An important element used in determining the oscillator characteristics

is the fringe locking circuit. This feedback circuit allows us to maintain a con-

stant DC level on the interference pattern while we characterize the oscillator.

As indicated in the introduction, we want to fix our DC level at the middle

of the interference pattern where the absolute value of the slope is maximum.

The slope at this point is given by
∣∣∣∣
dV

dz

∣∣∣∣
max

=
2

π
× λ

4
, (2.9)

where λ is the wavelength of the laser. It is important that this slope not

change during the experiment because this is the conversion factor we use

to translate the voltage from the lock-in to a deflection amplitude. Experi-

mentally, one determines the conversion factor by measuring the peak-to-peak

deviation of the fringes (Vpp) as the fiber is moved using the P− output of the
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locking circuit5, and plugging into the formula

β =
λ

2πVpp

. (2.10)

Taking into account the sensitivity of the lock-in S, the final translation from

the lock-in signal VLIA to amplitude A is given by

A

[nm]
=

β

[nm/V ]

VLIA × S

[V ]
. (2.11)

The feedback circuit currently used is depicted in Fig. 2.4. The design

is functionally the same as past circuits used for NMR-FM. The differences

are the addition of isolating buffers between stages, and more importantly the

switch that optionally accesses the last inverting amplifier and thus allows for

locking on either slope of the fringe.

2.2 Blind-Aligning of Fiber to Oscillator

It is often the case that when the can is placed on the probe, the

alignment of the laser to the oscillator is lost. This is due to impulses that

slightly displace one of the many moving parts of the probe. Loss of alignment

can simply mean that there was some lateral motion in the x̂− ŷ plane, or it

can mean catastrophic decapitation of the oscillator by the fiber as it slides

forward in the ẑ direction. It is important to be able to blindly recover the

alignment so that the vacuum doesn’t have to be broken each time the fringes

5It is sometimes desirable to use an external DC voltage supply instead of the P− output
in order to move through several fringes; it may be advantageous to develop a high-voltage
fringe locking circuit.
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Figure 2.4: Fringe lock circuit used to maintain a constant position and slope on
the interference pattern during experiments.
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Figure 2.5: Coordinate system for the probe.

are lost. This section sets forth a fairly reliable realignment procedure, and

details the positioning capabilities of the current probe.

First, we define our coordinate system with +ẑ along the fiber toward

the oscillator, +x̂ right-to-left on the oscillator (looking toward +ẑ), and +ŷ

from the base to the head of the oscillator, as depicted in Fig. 2.5. As the probe

is currently configured, rotating the x̂ positioning knob clockwise advances the

oscillator stage in the +x̂, applying a positive voltage to the piezo bimorph

raises the fiber in the +ŷ, and rotating the ẑ knob counter clockwise advances

the fiber stage in the +ẑ direction.

The externally-controllable stages that position the oscillator, fiber,

and sample have been characterized using the interferometer to measure their

motion. One full counterclockwise turn of their respective positioning knobs
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moves the oscillators in the +x̂ direction by 160 µm, the fiber in the −ẑ direc-

tion by 90 µm, and advances the sample in the +ẑ direction by 81 µm. Ad-

ditionally, the piezo bimorph shifts in the ±ŷ direction by roughly ±2 µm/V.

The backlash in the oscillator stage is roughly 3/14 of a turn in both directions.

Backlash in the other stages was too difficult to measure because the vibra-

tions caused by reversing the direction of the knob disturbed the interference

pattern.

Before putting the can on, it is important to know and record the DC

level of the fiber when it is pointing at nothing (light reflected is only from

impedance mismatch of glass and air), and the maximum DC level of the

interference pattern when it is perfectly aligned to the oscillator. These two

levels will serve as benchmarks for what is happening during the alignment.

For instance, if the DC level falls below the former (with no fringes), the fiber

is most likely damaged from some sort of impact. Likewise, if the maximum

DC level rises above what you’ve defined as perfect, then the fiber is too close

to, or perhaps even touching the oscillator.

The DC level and fringe size are our eyes for the blind align. Before

putting the can on and after the perfect alignment has been obtained, the fiber

should be retracted a few turns (record the actual number), and displaced in

the x̂ direction so it points between oscillators. This is a precautionary step

that will save oscillators from being speared by the fiber from shocks to the

probe. Once a good vacuum has been established, replace the fiber to its

starting position taking into account the backlash of the gear systems (see
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below).

It has been found easiest to align by moving in the x̂ direction manu-

ally, while continuously scanning in the ŷ direction. The scanning is performed

with a 0.25 Hz, 10 V0p sine wave from a signal generator. This amplitude

scans roughly half of the oscillator height (∼ 50 µm). This scanning motion

allows quick determination of whether or not the fiber is pointed something:

if the voltage level is oscillating more than when the fiber is pointed at noth-

ing (± 3%), then you are pointed at something (hopefully the oscillator, but

perhaps the substrate). Beginning from the safe position (fiber retracted,

oscillators displaced), turning the x̂ knob in quarter turns will advance the

oscillator stage in small enough steps that the DC level should increase when

the oscillator passes in front of the fiber6. If no increase in the DC level is

observed within a reasonable region, advance the fiber one half turn, and re-

verse the direction of the oscillator stage. This is repeated until the DC level

notably increases. If you can repeatedly scan past the same few positions and

observe the DC level first increase and then decrease a few turns later, then

you are most likely pointed at the oscillator. If you believe you are pointed

at the oscillator, advance the fiber to (nearly) recover the DC level and fringe

size that you initially recorded for your perfect position. This whole process

only took one paragraph to write, but could take an hour or so to perform in

practice, so, as always, be patient.

6If the oscillator-fiber distance is fairly large, then you will not see appreciable fringes
from this safe position.
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Where are you pointed? Once you have found the oscillator, it is im-

portant to determine where the fiber is actually pointing. This will give us

the capability of knowing which modes of the oscillator we should expect.

Additionally, knowing where the fiber points will help the data analysis as

important corrections are necessary to determine the actual force imposed on

the oscillator because the amplitude of oscillation is position dependent7.

During the hunt for fringes, the left and right sides of the oscillator are

determined. In order to determine the ŷ position, we need to use the bimorph

and observe the DC level as it scans. Since the angle of deflection relative

to the oscillator is small, decent sized fringes (> 1 Vpp) are attainable at all

times during scanning when there is good alignment to the oscillator. Once

fringes are recovered, if it is found that the DC level drops drastically during

the ŷ scan cycle, then the fiber is near the top or bottom of the oscillator-when

this case is observed, distinguish between top and bottom of the oscillator by

manually applying a DC voltage of known polarity. If, however, the fiber is

pointed right in the middle of the oscillator, a change in the DC level may not

be observed because the scanned range is too small. In this case, you will have

to scan manually with a ± 50 V voltage supply in order to cover the whole

oscillator. When switching to this higher voltage, you should move slightly

off the oscillator in the x̂ direction and record the negative voltage level that

then increases the DC level—this is the silicon ledge that has been undercut

7For example, in the lower cantilever mode, if you are pointed at L/2, the amplitude is,
to first order, half what is expected if you are pointed at the end of the cantilever.
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Figure 2.6: A dip in the peak-to-peak amplitude of the interference pattern while
moving the fiber in the ŷ direction is due to light escaping through the head-wing
gap.

during the etch. Voltages more negative than this should be avoided to save

the integrity of the fiber.

Distinguishing the head of the oscillator from its wing is an interesting

process. It is quite clear whether you are initially pointed at the top of the

head or the bottom of the wing because of the dramatic difference in the DC

level when you are pointed somewhere on the oscillator compared to nothing.

However, when you want to transition from the wing to the head, you will

always have fringes because the laser beam diverges enough that some light

is always striking the oscillator, as depicted in Fig. 2.6. It is thus important

to closely monitor the fringe size at each position along the oscillator (i.e., at

each voltage applied to the bimorph). As illustrated in Fig.2.7, when starting

from the wing, if a positive voltage is applied, the fringe size remains constant,

then dips, then recovers to its initial value. The dip is the location of the head-

wing gap, and can extend over only a few volts, depending on how far the fiber

resides from the oscillator.
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Figure 2.7: Head-wing gap seen by a severe dip in the peak-to-peak amplitude of
the interference fringes.

2.3 Tube Piezo for 2-D and 3-D Scanning

A quartered-tube piezo has been installed in the microscope for two

and three dimensional scanning experiments. The EBL #2 tube (Staveley

Sensors) has a length of 1.25′′, an OD of 0.125′′, and a wall thickness of 0.014′′.

The electrodes were chosen to be gold instead of the standard nickel to elimi-

nate any unwanted magnetic effects when the probe is inserted into the NMR

magnet. The urethane coating on both ends of each lead was removed by first

burning it with a lighter, then removing the residue with a scouring pad to

reveal the copper wire. After trimming the leads so that only 1 cm of copper

was exposed, two short (∼3 mm) pieces of shrink wrap separated by ∼1 cm

were used to hold the leads firmly against their respective electrodes leaving
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the bare wire exposed. The leads were then silver epoxied in place to estab-

lish electrical contact with the electrodes using a free sample of mix-free silver

epoxy from Lakeshore Cryogenics. The shrink wrap was left on in order to

protect the epoxy joints from unnecessary stressing due to moving the leads.

The leads connect to thin diameter RG174 coax that connects to the vacuum

compatible BNC electrical feedthrough8 at the top of the probe.

2.3.1 Piezo Stage Design

The stage for the tube piezo has been assembled so that motion is pos-

sible along all three of the probe’s axes. This has proven invaluable for aligning

samples to the oscillators. A coarse, externally controllable, ẑ-positioning stage

(see [38]) is mounted directly on the base plate of the probe. A smaller stage

(see [39]) is screwed onto the ẑ-stage and gives x̂-positioning capabilities. The

ŷ-stage is permanently fixed in the moving part of the x̂-stage. The axis of

the tube piezo is aligned with the ẑ direction if it is mounted perpendicular to

the ŷ-stage.

The tube has been epoxied to a triangular macor spacer in order to

keep it isolated from the rest of the probe. The spacer has a slice in it (almost

giving it a V-shape) through which the lead to the inner electrode (ground)

of the piezo tube passes; this allows the piezo to sit perpendicular to its base,

and also frees-up the other end of the tube for a sample holder. This assembly

8See the Appendix for a reliable method for making vacuum compatible BNC electrical
feedthroughs.
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was then epoxied to a brass base with Torr Seal. The brass base is separated

from the ŷ-stage by a 1/16′′ diameter steel ball bearing. Three screws on the

circumference of a 0.25” circle that are 60◦ degrees apart pass through the

ŷ-stage and screw into the brass plate in order to firmly pull the base, ball

bearing (centered in the screws’ circle), and ŷ-stage together. The tube can

be tilted within a solid angle of about 20◦ by the relative tightening of these

three screws because the base pivots on the ball bearing.

The sample is held at the free end of the tube. An aluminum cylin-

der was machined to fit tightly, yet freely, into the tube. A flattened strip

(1 mm × 2 mm) of aluminum foil serves as a shim to hold the insert in place,

and to ensure an electrical connection to the grounded inner electrode. The

foil was also used as a precautionary measure to protect the tube from cracking

if the insert fit too tightly. The insert contains a 0.5 mm through hole with a

deformed mouth on the face that is inside of the tube. The deformation an-

chors and grounds a graphite rod (0.5 mm pencil lead) that serves as a sample

holder.

2.3.2 Scanning Tube Electronics

This is the first generation of scanning for our NMR-FM general pur-

pose probe. As such, the electronics are manually controlled voltage dividers.

Each quarter of the tube piezo has its own high voltage op-amp. A schematic

of these simple identical circuits is presented in Fig. 2.8. In the future, one

might imagine the tube piezo being controlled with sophisticated software like
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Figure 2.8: Voltage divider used to apply variable voltage to the tube piezo quad-
rants. This setup extends the piezo, while using a positive voltage source retracts
the piezo.

those found in AFM and STM systems.

2.3.3 ẑ Piezo Characterization

At this point, the tube piezo is only used for 1-D scanning in the ẑ direc-

tion. The tube piezo polarity is such that the quartered electrodes should be

positively biased relative to the inner electrode9. Applying a negative voltage

makes the piezo contract. In order to accurately characterize its contraction,

the interference pattern was monitored as a voltage was applied to all four

quadrants of the piezo. The laser was pointed at the tip of the graphite sam-

ple holder sticking out of the end of the piezo. The voltage was applied by

rotating the 10-turn potentiometer of a voltage divider. The shift of the inter-

ference pattern and the applied voltage were recorded with the Nicolet digital

oscilloscope as a function of time. The pattern was then plotted as a function

of the applied voltage, as shown in Fig. 2.9. Because the contraction of the

9Applying the opposite polarity is not bad if the voltage is kept below the tube’s depo-
larization voltage.
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Figure 2.10: Contraction of the tube piezo as a function of applied voltage. The
major loop was performed first, followed in succession by the smaller loops. All five
electrodes of the piezo were grounded upon returning to zero applied voltage.

piezo is nonlinear, it is easiest to convert from the digitized interference pat-

tern to a measure of contraction by knowing that the points that correspond

to the peaks in the pattern are separated by λ/4. The contraction of the tube

piezo can then be plotted as a function of applied voltage as in Fig. 2.10.

It is important to note that the piezo electrodes must be grounded

upon returning to zero applied voltage. This allows any accumulated charge

to be liberated. If the electrodes are not grounded, the excess charge does not

allow the piezo to reproducibly expand. This unwanted effect is illustrated in

Fig. 2.11.
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Figure 2.11: Contraction of the tube piezo as a function of applied voltage. The
major loop was performed first, followed in succession by the smaller loops. The
electrodes were not grounded between loops, causing the sag in contraction.

2.4 Relaxation Time Measurement Electronics

Very versatile electronics were built to measure relaxation times with

cyclic adiabatic inversion (CAdI). With these electronics, we now have the

ability to measure the spin-lattice relaxation time T1, the spin-spin relaxation

time T2, the rotating-frame spin-lattice relaxation time T1ρ, and the relaxation

time during cyclic adiabatic inversion TCAdI. These electronics have been

integrated with the digital pulse programmer of the NMR spectrometer to

allow the application of 10 ns rise-time pulses that are accurate in duration

to 100 ns. This section is devoted to describing the functionality of these

electronics. The circuit itself is presented in Fig. 2.12.

61



Figure 2.12: Relaxation time measurement electronics circuitry.

62



2.4.1 Circuit Analysis

There are three major portions of the electronics whose relative trigger-

ing times give the electronics their broad measurement capabilities. These sec-

tions shall be referred to by their functionality, namely “Decay-to-Resonance”,

“Smooth-On”, and the “Switch Driver”. The output of Decay-to-Resonance

and Smooth-On are added and sent to the DCFM input of an HP6546B RF sig-

nal generator. The DCFM function shifts the carrier frequency by an amount

proportional to the input voltage. The Switch Drivers open and close an RF

switch for pulsing and cyclic adiabatic inversion.

The Decay-to-Resonance portion of the circuit is triggered twice dur-

ing an experiment, once by Trigger Zero, then at a later time by Trigger 1.

Decay-to-Resonance is ultimately responsible for setting the output of the RF

generator to the resonance frequency of the spins (γ(Ho + Hperm)) when pulse

sequences are used (Trigger Zero), and sets the DC offset to zero during the

CAdI sequence (Trigger One).

Trigger Zero comes from the “B output” of Channel B of the pulse

programmer10. It initiates a long (currently hard-wired to 60 ms) high pulse

output from a 555 timer11 that is sent to the gate of a DG419 solid state

SPDT switch. The high gate voltage connects the output (Pin 8) from Pin

1 (normally closed) to Pin 2 (normally open), which grounds the output in

10Channel B can only output 10n pulses, so is used as a delay/initial trigger channel
instead of being used to send out arbitrary pulses.

11Currently has a debouncer and 74121 before the 555, which allows the electronics the
capability to be triggered manually with a mechanical switch.
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about 30 ns. The output of the DG419 switch is connected to the input of a

OP134 buffer through Pin 1 of a second DG419. The buffered signal is added

to the Smooth-On output (which is ground at this time), then sent to the

signal generator. The quick change in voltage from the DC offset to ground

causes the HP to quickly change its output from far off resonance to exactly

on resonance. The gate stays high for the duration of any necessary pulses if,

for instance, one is using a saturation comb. When the gate voltage goes low

again, the HP again outputs RF far off resonance.

Trigger One triggers the decay to resonance that is essential to cyclic

adiabatic inversion. Trigger One comes from the “Trig Out” output of the

pulse programmer’s Channel A some time after the DC offset rebounds from

ground. For the decay to resonance, Trigger One initiates a variable length

pulse output from a 555 that is simultaneously sent to the gate of the second

DG419 switch and into the Switch Drivers. With the gate on the DG419 high,

Pin 2 is connected through a selectable resistance to ground. This then allows

the capacitor to discharge with a time constant variable between 1 µs and 10 s.

The voltage decay is buffered and then added to the output of the Smooth-On

portion of the circuit before being sent to the DCFM input of the HP signal

generator. This (relatively) slow decay is responsible for tilting the effective

field from the ẑ direction into the x̂′ direction.

The Smooth-On portion of the circuit is responsible for the initiation of

the cyclic adiabatic inversion sequence that allows us to measure the magneti-

zation. A sine wave whose frequency equals that of the mechanical oscillator
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is buffered with a OP177. The output of this buffer connects to Pin 2 (NO) of

another DG419 switch. The switch prevents the sine wave from being mixed

with the outputs of Decay-to-Resonance, and has Pin 1 normally shorting the

input of the buffer to ground. Trigger Two initiates a high pulse (currently

hard-wired to ∼3.5 s) from a 555 timer that connects the switch output to the

sine wave at Pin 1. Trigger Two is currently the “B Start” output of channel

A. The high voltage on the gate directs the AC into an awaiting RC circuit

with a selectable time constant ranging from 1 µs to 30 µs 12. The effect of the

RC circuit is to slowly increase the amplitude of the AC as it is added to the

output of Decay-to-Resonance. As shown in Fig. 2.13, this results in a smooth,

yet quick, turn-on of CAdI and eliminates a sudden change of the frequency

output to the sample. We want the turn-on to be smooth to eliminate any

sudden changes in the effective field that could result in a detrimental loss of

locked spins.

At this point, the outputs of Decay-to-Resonance and Smooth-On are

added together at the input of a unity gain OP134 inverting amplifier, inverted

again through another OP134, then sent directly to the DCFM input of the

HP signal generator. Figures 2.14 and 2.15 show the actual output of the

signal generator due to the signals generated by these electronics being sent

to the DCFM input of the generator.

The Switch Driver part of the circuit controls the RF switches that al-

12A 10 MΩ resistor was inserted permanently in parallel with the capacitor to alleviate a
mysterious downward trend of the output that we attribute to charging of the capacitor.
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Figure 2.13: Experimental demonstration of the Smooth-On functionality of the
circuit. The extension of the sine wave (red) shows that there would have been a
sudden change in the RF frequency when the CAdI cycle was initiated if this part
of the circuit did not exist. Such a discontinuity would be a diabatic process that
could result in a loss of locked spins and therefore force signal.

low RF energy to be transmitted to the coil. The first element of this portion

is an OR gate whose inputs are TTL signals from the pulse programmer itself

and the 555 output initiated by Trigger One. The TTL from the pulse pro-

grammer’s “A Output” opens the switch for pulse sequences. The signal from

Trigger One opens switch for the CAdI sequence. The switch driver was du-

plicated from Jonathan Cobb’s dissertation; a description of its functionality

can be found therein [40].

2.4.2 Making Relaxation Time Measurements

Making relaxation time measurements is straightforward with these

electronics. This section outlines the steps need to make measurements of the
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Figure 2.14: Decay from above toward resonance as seen on a spectrum analyzer.
The right peak corresponds to a frequency far above resonance, and the left peak
is on resonance. The horizontal grid-lines are separated by 100 KHz. The width of
the peak has been broadened by the spectrum analyzer.
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Figure 2.15: FM portion of cyclic adiabatic inversion as seen on a spectrum ana-
lyzer. In this example, the FM amplitude Ω =∼ 50 kHz. The horizontal grid-lines
are separated by 100 kHz. The ghost of the off-resonance initial frequency can still
be seen on the right side of the scope.
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T1, T2, T1ρ, and TCAdI . With appropriate preparation, the measurement of the

relaxation times can be semi-automated13 using the digital pulse programmer.

Spin-lattice relaxation time measurements utilize all aspects of our elec-

tronics. First, the magnetization of the sample must be destroyed by a satura-

tion comb. Our typical comb uses six π/2 pulses separated in time by 5π. The

lengths and interval between the comb’s pulses are controlled with the digital

pulse programmer. After the saturation comb, the magnetization is allowed to

grow toward equilibrium for a time τ , after which we sample the magnetiza-

tion with a cyclic adiabatic inversion (CAdI) sequence. This is done for several

values of τ , and the resulting magnetization as a function of τ is fit to an ex-

ponential e−τ/T1 to determine T1. Figure 2.16 shows the frequency-controlling

output of the electronics during a T1 measurement sequence.

Spin-spin relaxation time measurements are more intricate than those

of T1, and are by far the most tedious measurements to make. Additionally,

one extra channel of the pulse programmer needs to be used in order to send

both π and π/2 pulses. The first pulse sent to the coil is a π/2 pulse that sends

the spins into the transverse plane. The spins immediately begin to dephase

in the transverse plane relative to each other due to the different local fields

and dipole-dipole interactions they encounter in the sample. After a time τ

of dephasing, a π pulse is applied. This pulse reorients the spins so that they

now have a relative rephasing. At a later time τ the spins should maximally

13Full automation will probably not be feasible for a long time because of the necessity
for scanning the relative position of the oscillator and sample.
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Figure 2.16: Spin-lattice relaxation time T1 measurement sequence. Each curve is
a digitized signal from the output of the electronics. The traces have been offset
vertically for clarity.

rephase and should be pointing back along the ŷ′ direction. In conventional

NMR we would simply listen for the rephasing as a spin echo. But in NMR-

FM, we don’t have that luxury, and in order to actually see an entire spin

echo, we need to sample the magnetization in a range of time from τ - δt to

τ + δt with separate CAdI sequences14. This process is repeated for several

τ , and the peaks of the spin echoes are fit to an exponential function e−2τ/T2

to determine T2. Figure 2.17 shows the output of the electronics during a T2

measurement sequence.

The spin-lattice relaxation time in the rotating frame is experimentally

as straightforward to measure as T1 with the electronics. This measurement

14δt is an empirical number that needs to be determined for each τ .
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Figure 2.17: Spin-spin relaxation time T2 measurement sequence. Each curve is
a digitized signal from the output of the electronics.The traces have been offset
vertically for clarity.

needs no pulse sequences or preparation of the magnetization of the sample.

We simply decay the magnetization adiabatically into the x̂′ direction where it

lies along H1. Because the equilibrium value of the magnetization due to H1 is

some four orders of magnitude smaller than that along Ho, the magnetization

will decay once tilted along x̂′. By varying the time between Trigger One and

Trigger Two, τ , we allow the magnetization to decay before it is sampled with

the CAdI sequence. The resulting magnetization versus τ curve is fit to the

exponential e−τ/T1ρ to determine T1ρ. Figure 2.18 shows the output of the

electronics during a T2 measurement sequence.

In order to measure the relaxation time during cyclic adiabatic inver-

sion, one would follow the steps for a T1ρ measurement, but would make certain

that the duration of the CAdI cycle was long enough that the force on the os-

cillator had decayed substantially. The decay of the force can then be fit to
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Figure 2.18: Spin-lattice relaxation time T1ρ measurement sequence. Each curve
is a digitized signal from the output of the electronics.The traces have been offset
vertically for clarity.

an exponential with a characteristic time TCAdI . The variations on this study

are found in the frequency modulation amplitude Ω and the RF field strength

H1. As described in the § 3.2, by changing the relative sizes of these two pa-

rameters, the spins can see either an effective field that is closer to Ho or H1

in magnitude. In these cases, TCAdI will approach T1 and T1ρ, respectively.

2.5 RF Signal Artifact

The presence of RF near the oscillator results in a spurious vibration

amplitude. Thus, when cyclic adiabatic inversion is performed, the oscillator

appears to ring-up. The following is a detailed study of the parameters of

the RF that affect the presence of the RF signal artifact. The parameters

investigated included power of the RF with and without FM, frequency of
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FM, FM amplitude, and carrier frequency of the RF.

All of the data presented here was taken with the probe isolated from

environmental noise by a half-inflated rubber inner tube upon which heavy

lead bricks (and the probe) were placed; this spring-mass system formed a

low-pass filter with a resonance frequency of roughly 1 Hz. This vibration

isolation is far superior to that when the probe is in the NMR magnet. This

study is, therefore, ideal for determining the direct effects of the RF magnetic

field H1 on the oscillator.

2.5.1 Experimental Method

The oscillator under investigation was determined in the manner de-

scribed in Section 2.1.1.1 to have a resonance frequency of 4007.0 Hz, and a

quality factor of 2500. The tank circuit of the probe was tuned to 344.817 MHz

using the Smith Chart function of a network analyzer. The interference pattern

of the interferometer had a peak-to-peak amplitude of 2.0 V. The fringe-locking

circuit was used to lock to the smooth, positive slope of the fringe. The cyclic

adiabatic inversion RF sequence used, with home-made decay and modulation

electronics guiding the FM through the DCFM input of a HP 6546B signal

generator. The lock-in amplifier was used with a time constant of 30 ms, and

sensitivity of 500 mV; its internal reference frequency was used instead of the

DS345 signal generator. The X and Y outputs of the lock-in were digitized

with the Nicolet digital oscilloscope.
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Figure 2.19: Mechanical ringing occurs when the RF field is turned on or off.

2.5.2 Initial Ringing

When the RF is introduced and removed, with or without frequency

modulation, the artifact shows two impulses followed by their decay. Exam-

ples of these spikes for various power levels and no frequency modulation are

presented in Figs. 2.19 and 2.20. The ring-down is periodic with a frequency

of 100 Hz, supporting the mechanical ringing hypothesis. The peak ampli-

tude of this ringing is shown in Fig. 2.21 to depend heavily on the RF power.

These spikes are presumably caused by Lenz’s law and the ensuing mechanical

ringing of the coil itself.
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Figure 2.20: Zoom showing the detail in the mechanical ringing. The oscillations
have a frequency of 100 Hz.
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Figure 2.21: Peak mechanical ringing amplitude as a function of RF power. The
solid line is a fit of the data
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2.5.3 Frequency Modulation Effects

When frequency modulation at the oscillator’s resonance frequency is

turned on, the oscillator is excited to a steady state amplitude. For these data,

unless noted, the RF power from the HP signal generator was held constant

at −6 dBm, (corresponding to +35.1 dBm sent to the tuned tank circuit15),

and the modulation amplitude was 100 kHz. Figure 2.22 shows the effect of

the FM for various delay times between initial RF turn-on and initiation of

the FM. The steady state amplitude of the excited oscillator is shown to be a

function of RF power in Fig. 2.23.

If the frequency of the FM (fFM) is slightly different from the oscilla-

tor’s resonance frequency (fosc), an oscillating amplitude is observed. Exam-

ples of low and moderate frequency beats are shown in Fig. 2.24 The frequency

of these beats is equal to the absolute frequency difference

fbeat = | fFM − fosc | .

Using a least squares fitting algorithm in Igor, the beat amplitude was fit to

a sine wave for several modulation frequencies. The dependence of the beat

frequency as a function of the modulation frequency is shown in Fig. 2.25, and

the dependence of the beat amplitude is shown in Fig. 2.26.

The next parameter we investigated was the FM amplitude Ω. Here,

the modulation frequency was 4007.0 Hz. Figure 2.27 shows the dependence

15The one stage of the +50 dBm amplifier is burned out, resulting in a total amplification
of +41.1 dBm.
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Figure 2.22: The delay time for turn on of the FM shows the dependence of the
oscillator ring-up on the presence of the FM. The amplitudes of the steady-state
values are roughly 22 nm for each curve.
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Figure 2.23: Steady state amplitude of the oscillator in the presence of FM as a
function of RF power. The solid line is a fit of the data.

of the steady-state value of the oscillator excitation as a function of Ω.

2.5.4 Relative Tuning of Tank Circuit

We also investigated the affect of not having the tank circuit tuned to

the carrier frequency of the RF. For these data, the RF power was +41.1 dBm,

the FM modulation frequency was 4007.0 Hz, and Ω was 100 kHz. Since the

tank circuit had previously been tuned to 344.817 MHz, we simply changed

the carrier frequency instead of changing the actual tuning of the circuit itself.

As the data in Fig. 2.28 shows, the steady state amplitude of the oscillator is

strongly dependent on the carrier frequency. There is a small region around

the tuned frequency where the artifact level has a local minimum. The width
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Figure 2.24: Beats due to a difference in FM modulation frequency and the oscil-
lator resonance frequency. The blue curves on each are fits to a sine function.
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Figure 2.25: Beat frequency of artifact as a function of the FM modulation fre-
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Figure 2.26: AC beat amplitude of the oscillator in the presence of FM as a function
of FM modulation frequency.
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Figure 2.27: Steady state amplitude of the artifact in the presence of FM as a
function of FM amplitude. The solid line is a linear fit to the data, which yields
A/nm = 0.70 + 0.18Ω/kHz.

70

65

60

55

50

45

40

35

30

25

20

15

10

M
easu

red
 Im

p
ed

an
ce (Ω

)

354352350348346344342340338336334

Frequency (MHz)

70

60

50

40

30

20

10

0

O
sc

il
la

to
r 

A
m

p
li

d
u

d
e 

(n
m

)

Figure 2.28: Steady state amplitude of the oscillator artifact(blue) as a function
of RF carrier frequency. Also shown (red) is the measured impedance of the tank
circuit for each frequency.
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of this minimum may be advantageous to running long experiments because

the tuning of the coil can be moderately dynamic. Additionally plotted on

Fig. 2.28 is the measured impedance of the tank circuit for each frequency

that was used in the experiment. The plotted impedance was calculated as

Z =
√

Z2
re + Z2

im, where the real and imaginary parts were measured with

the network analyzer.

2.6 Laser-Induced Self-Excitation of Oscillators

An interesting “problem” was recently discovered: laser-induced self-

excitation of the oscillator. This is a fairly well-known effect that has been

researched by others [41–44]. Briefly: absorbed light energy (the “photother-

mal effect”) causes the oscillator to bend in, say, the +ẑ direction. If the slope

of the interference pattern is such that moving in this direction decreases the

absorbed energy, then the oscillator cools and tries to return to its equilibrium

position. However, as it passes its equilibrium position, it absorbs more light,

heats up, and bends back toward the +ẑ direction. This kind of cycle results in

a positive feedback loop that causes the self-oscillation phenomenon. On the

other side of the interference fringe, negative feedback is established because

the heating and deflection are out of phase; the oscillator’s amplitude is conse-

quently damped. Figure 2.29 shows the resulting behavior of the fringes. The

“cold side” of the fringe resembles what would be expected for any interfer-

ence pattern. The “hot side” has a region in space where the self-oscillations

occur. The boundaries of this region are where the slope of the fringe becomes
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Figure 2.29: Interference pattern showing the smooth “cold” side and the “hot”
side of the fringe for four successive fringes. The data have not been corrected for the
hysteresis of the tube piezo, so the fringes appear to have an unequal peak-to-peak
separation.

too small to induce the positive feedback. The interference pattern shown

was digitized with the Nicolet as the voltage on the tube piezo was increased

from zero. The trace on an oscilloscope that corresponds to each point on the

fringe should be a flat line, and it is just that for the cold side. The hot side,

however, causes the trace to be a sinusoid. This is the oscillator’s deflection

amplitude16.

We performed a detailed analysis of the self-excitation phenomenon to

determine the severity of its existence. We compared the amplitude of the

oscillator as a function of a driving voltage applied to the piezo plate on which

the oscillator was mounted for both the hot and cold sides of the fringe. All

16The sinusoid will also be seen on the cold side if the piezo plate is used to drive the
oscillator.
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Figure 2.30: Digitized lock-in signal as an external force is applied to the oscillator
with the interferometer locked to the hot side of the fringe. The steady-state ampli-
tude for t < 0 is the self-excitation. Only four curves are shown because otherwise
the behavior would make the graph a mess. The AC voltage sent to the piezo plate
is indicate for each curve. The strange behavior for the 112 mV curve is repeatable,
and is included as an example of the oddity of the hot side response.

data shown used a 30 ms lock-in time constant. Figures 2.30 and 2.31 show

the amplitude of the oscillator before and after the driving force was applied

(at t = 0 s) for the hot and cold sides of the fringe, respectively. Clearly, the

cold side is more well behaved. Because of the uncanny response of the hot

side, only a few of the time series are plotted. Figure 2.32 shows the RMS

value of the steady-state driven amplitude (t > 0.5 s) for the data used in

Figs. 2.30 and 2.31. The non-linearity of the hot side response indicates that

meaningful force detection experiments may be almost impossible to analyze

on this side of the fringe. This conclusion is further supported by Fig. 2.33,

which shows that noise level is not well-behaved.

We believe this phenomenon has always been present in our microscope,
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Figure 2.32: Steady-state driven amplitude of the oscillators for the cold side (blue,
vertical diamonds) and the hot side (red, horizontal diamonds). The linear behavior
of the cold side implies that it may be reliably used for force measurements, while
the odd response of the hot side implies that it cannot be used at this time.
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Figure 2.33: Noise level for the cold side (blue, vertical diamonds) and the hot side
(red, horizontal diamonds). These data support the conclusion that the cold side is
usable and the hot side is not.

but we have been unable to observe it until now for at least one of the follow-

ing possible reasons. First, the fringe-locking circuit was upgraded to include

the ability to lock to either slope of the interference pattern. Since the self-

excitation only occurs on one slope, it is possible all of the previous locking

circuits locked onto the smooth slope, leaving the oscillations undetected. Sec-

ond, the addition of isolation virtually eliminated external vibrations from the

probe. This allowed us to see crisp interference fringes with noise that was lim-

ited only by our electronics, and thus made the detection of the self-excitation

easy.

The solution to the self-excitation problem is to have the oscillator

absorb less light energy. One way to do this would be to change to infra-red
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lasers. Silicon does not readily absorb infra-red, and actually has an absorption

peak near our current laser wavelength. The other way around this problem

is to use less light power. We currently deliver around 3 mW to the laser.

Literature suggestions for the threshold power (i.e., the power below which

the feedback loop is not functional) of oscillators with characteristics similar

to ours are around 1 µW [41].

In the future, however, it may be possible to take advantage of the self-

excitation. We may be able to use the hot side of the fringe to synchronize the

output of the DS345 function generator. This may be advantageous (or at least

may make the hot side of the fringe usable) because the oscillator itself will

then be controlling the phase of the force applied to it, be that from the piezo

plate or from an actual NMR signal. If this were the case, then the amplitude

of the signal would add constructively with an applied force. As it stands, one

major reason for the non-linearity of the driven oscillator amplitude shown in

Fig. 2.32 is likely the randomness of the phase of the self-excitation and the

force from the piezo plate. Figure 2.34 shows that before the application of

the driving force at t = 0 s, the self-excitation had a constant phase. The

application of the force then alters this phase. For low driving voltages, the

phase appears to decay into its new state, but for high voltages the transition

seems rather violent. For completeness, Figure 2.35 shows the phase seen with

the cold side of the fringe to be rather random before the force is applied.

The oscillator immediately picks up the phase of the force, as indicated by the

constant phase for t > 0 s.
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Figure 2.34: Phase relationship while being locked on the hot side before and after
the driving force is applied. From bottom to top, the piezo plate’s peak-to-peak
driving voltages were 0.4 V, 0.5 V, 0.6 V, 0.7 V and 0.8 V. There is a transition
at ∼0.6 V, below which the phase of the oscillations smoothly incorporates the
external force, and above which the phase is violently changed; the 0.6 V curve
shows qualities of both regimes.
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Figure 2.35: Phase relationship while being locked on the cold side before and
after the driving force is applied. The curves are for different AC voltages sent
to the piezo, but this is not the point of this graph. The point is to show the
somewhat random nature of the phase for t < 0, which implies the absence of a
significant driving force (i.e., there is no positive feedback loop). As a result, when
the force from the piezo is applied, its (constant) phase is immediately assumed by
the oscillator.
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Chapter 3

Testing the Adiabatic Condition

“I don’t know what to tell ya’, Case...Have a drink for me.”

- John Markert, on the occasion of my laser exploding

In this chapter investigations of the adiabatic condition governing nu-

clear magnetic resonance force microscopy are described. The adiabatic condi-

tion is presented and the parameters involved are discussed in the light of the

maximum allowable manipulated magnetization. Data is then presented that

determines the necessary adiabatic factor for force detection of proton NMR

in ammonium sulfate crystals using cyclic adiabatic inversion. Adiabatic fol-

lowing is then discussed in the theoretical terms of a “following probability”

in the manner of Sawicki and Eberly [45]. The adiabatic following theory and

our data are compared, and future investigations are presented to further test

the applicability of this theory to NMR-FM.

3.1 Statement of the Adiabatic Condition

In its simplest form, the adiabatic condition says that the Larmor fre-

quency of the spins must be much greater than the angular frequency of the
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effective field. Translating this into a specific mathematical statement depends

on the particular inversion scheme, but the general adiabatic condition can be

written as

γ (Heff )min À
(

dφ

dt

)

max

(3.1)

where γ (Heff )min is the minimum Larmor frequency of the spins, and (dφ/dt)max

is the maximum angular velocity of the direction of the effective field. In the

case of cyclic adiabatic inversion where the frequency modulation is sinusoidal1,

γ (Heff )min is the rotating-frame Larmor frequency on resonance; the maxi-

mum angular velocity occurs as the field passes through resonance as well.

With Heff = (H1, 0, (Ω/γ) sin(ωosct)), we define φ by

tan φ =
Heff · ẑ
Heff · x̂′ . (3.2)

Simple differentiation results in the specific adiabatic statement for cyclic adi-

abatic inversion as

γH1 À ωoscΩ

γH1

. (3.3)

The adiabatic conditional statement used throughout this work com-

pares experimental parameters to unity, with a large number implying the

adiabatic condition is well met:

(γH1)
2

ωoscΩ
À 1. (3.4)

1Other groups have used different modulations such as triangular FM [46]; determining
the explicit adiabatic condition is a simple matter of differentiation.
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The data presented in this chapter tests the level of adiabaticity necessary

to lock spins during cyclic adiabatic inversion (i.e., determines what À really

means for some particular spin system).

3.2 Ω-H1 Parameter Space

Equation 3.4 implies the importance of three major experimental pa-

rameters, namely, the oscillator resonance frequency ωosc, the frequency modu-

lation amplitude Ω, and the RF field strength H1. The interplay between these

three parameters will determine whether or not cyclic adiabatic inversion can

be used.

While we do not have much control over ωosc once the oscillators are

fabricated, we have some control over both Ω and H1. Our current RF signal

generator is capable of frequency modulating a carrier of up to 500 MHz with

a modulation amplitude Ω ∈ [0, 100 kHz] when operating in external DCFM

mode. This simply means that a DC voltage of ±1 V input to the external

modulation jack will shift the RF frequency output by the instrument by

±100 kHz. The field strength H1 is obviously dependent on the amplitude of

the RF sent to the coil, which we can adjust from −120 dBm up to 13 dBm

directly from the signal generator2. If the +50 dBm RF amplifier is used and its

input restrictions are observed, then the signal level can reach 50 dBm. With

these parameters in hand, one may set out to map the NMR-FM response

2X dBm is defined relative to 1 mW of power as X dBm = log10
P

1 mW . Thus, 0 dBm is
equal to 1 mW, −3 dBm is 0.5 mW, etc.
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throughout the Ω-H1 parameter space of a particular sample.

3.2.1 Manipulated Magnetization

For a given set of parameters, how much magnetization can we expect

to manipulate? For the following discussion, imagine we have all of the spins

available locked without considering relaxation. The time varying ẑ component

of the magnetization as a function of ωosc, Ω and H1 is given by Chabot as

[27]:

Mz(t) = Mo

Ω
γ

sin ωosct√
(Ω

γ
sin ωosct)2 + H2

1

. (3.5)

The maximum clearly occurs when sin ωosct = 1, so it helps to rewrite Eq. 3.5

as
(

Mz

Mo

)

max

=

Ω
γ√

(Ω
γ
)2 + H2

1

, (3.6)

which we can reduce to3

(
Mz

Mo

)

max

=
1√

1 + (γH1

Ω
)2

. (3.7)

A plot of
(

Mz

Mo

)
max

as a function of Ω is given in Figure 3.1 for several H1.

Additionally, a plot of
(

Mz

Mo

)
max

as a function of H1 is given in Figure 3.2 for

several Ω.

From Eq. 3.7 we see that the maximum magnetization one can expect

to manipulate is independent of the oscillator resonance frequency. This seems,

3This form shows an interesting similarity to the adiabatic statement of Eq. 3.4.
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Figure 3.1: Maximum allowed magnetization in the ẑ direction as a function of the
FM modulation amplitude Ω, according to Eq. 3.7. RF field strengths are indicated
on each curve.
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at first glance, to be odd given our assumption that all of the spins are locked.

This confusion can be easily remedied by considering the components of the

effective field vector: Heff = (H1, 0, Ω/γ). Because both the field strength and

modulation amplitude play important roles, the most convenient parameter is

actually the angle Heff makes with the x̂′ axis, namely φ = tan−1( Ω
γH1

). Thus,

when one adjusts the relative size of the two independent parameters Ω and

H1, then φ is also adjusted. For φ ∼ π/2, Ω/γ À H1, and Mz ∼ Mo. On

the other hand, for φ ∼ 0, Mz ∼ 0. The idea to take home here is that in

order to have most of the magnetization under your control, regardless of your

detection scheme, Ω/γ should be much greater than H1. This again raises the

question: “what does much greater than” really mean?

3.2.2 What does “much greater than” really mean?

Ah, the age old question of physicists...If you ask a famous theoretical

physicist like Willy Fischler [47], “much greater than” means roughly ten times

greater. Given that our experiments rely on a condition that requires an adia-

baticity factor to be “much greater than” unity, we set out to experimentally

answer the question, “what does much greater than really mean?”

3.2.2.1 Experimental Concerns

This proton-NMR-FM experiment was performed in the 8.073 T NMR

magnet in the sample-on-oscillator configuration depicted in Fig. 3.3. The

sample was a crystal of ammonium chloride, NH4Cl, which was mounted onto
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Figure 3.3: Experimental setup for the sample-on-oscillator configuration used in
this study.

the head of a double torsional oscillator in the manner described in [27]. The

sample was roughly a flat cylinder 10 µm thick and 25 µm in diameter. This

salt was chosen for its abundance of protons (6.9 × 1022 1H/cm3), and for its

long spin-lattice relaxation time at room temperature (T1 ∼ 1 s).

The double torsional oscillator had an initial resonance frequency in a

15 mTorr vacuum of 6618 Hz, a quality factor of 900, and an estimated4 spring

constant of 10−2 N/m. The minimum detectable force at room temperature

was thus 2.1× 10−15 N/
√

Hz.

Figure 3.4 shows the oscillator resonance frequency as a function of

time during the entire experiment. The resonance frequency of the oscillator

increased noticeably during each run. The shift was found to be so dramatic

4The spring constant is estimated from modelling the normal modes of a double torsional
oscillator. See [27] for more details.
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Figure 3.4: Range of resonance frequency of the oscillator each day as a function of
time throughout the experiment. The frequency always increased (almost linearly)
from the low end to the high end of the ranges indicated. The increase in frequency
is attributed to the liberation of water from the sample.

that the DS345 frequency had to be adjusted to the new resonance each time

the inversion cycle was performed. We attribute this effect to the liberation

of water from the sample during prolonged exposure to vacuum.

The laser used for this experiment was a 660 nm Panasonic 50 mW

(at 80 mA) laser diode. The current used during the experiment was held at

50 mA, resulting in a power of 3.7 mW delivered to the oscillator. The typical

peak-peak fringe size that resulted was 2.3 V. To convert from fringe size to

oscillator deflection, 2.3 V = λ/2π gave our conversion ratio as 1 V = 50.7 nm.

The permanent magnet that provided the field gradient was a 99.99%

iron cylinder that was molded in an arc furnace. The cylinder was 44.0 mm

long, and had a radius of 0.76 mm. Modelling of this cylinder (taking the
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Figure 3.5: The modelled magnetic field (green) and magnetic field gradient (red)
for the long bar magnet used in the experiment.

saturation magnetization of iron as 1700 emu/cc) yields the axial field, Bz,

and field gradient, ∇ zBz, as a function of distance depicted in Fig. 3.5.

The values of the field and its gradient from the permanent magnet at a

given distance are important parameters that allow us to estimate our expected

signal in two ways. First, the field in Curie’s Law is the total field seen by

the spins. Thus, to have an accurate estimate of the initial magnetization of a

sample, the total field Ho+Hperm needs to be used. Second, in order to estimate

the expected force from the signal, the spatial extent of the resonance slice

(i.e., how much of the sample is being manipulated) is needed. Additionally,

knowing the total field is critical for determining the resonance frequency of

the spins.

As mentioned previously, a reasonable estimate of the resonance slice

99



thickness, ∆z, is

∆z =
2Ω

γ∇ zB
. (3.8)

For the purposes of this experiment, the resolution of the “image” of the sample

was not a concern. As a result, the field gradient for operation was chosen

to be that of the comfortable operating distance of 1 mm. The field gradient

at 1 mm was −313 T/m, which yields a resonance slice thickness of 7.5 µm

for Ω/γ = 50 kHz. The field Hperm at 1 mm was 0.191 T, resulting in a total

polarizing field of 8.264 T and a proton resonance frequency of 348.7 MHz.

Given the resonance slice thickness, the expected force was estimated

via Curie’s Law for the magnetic moment M and the equation of force in the

ẑ direction:

Fz =

(
1

4
N(γ~)2 B

kBT

)
∇ zB, (3.9)

where N is the total number of spins contained within the resonance slice

N = nV = nA∆z

= 6.9× 1022 1H/cm3 × π(25 µm/2)2 × 7.5 µm

= 2.5× 108 1H. (3.10)

Plugging our parameters into Eq. 3.9 yields an expected force of 7.1× 10−14 N,

and an expected signal-to-noise ratio (SNR) of 34.

As just demonstrated, an interesting way to rewrite Eq. 3.9 is to use

Eq. 3.8 and N = nA∆z, where n is the proton density of the sample and A∆z
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is the volume of the resonance slice inside of the sample:

Fz =

(
1

4

(γ~)2

kBT

)
nA(∆z)B∇ zB

=

(
1

4

(γ~)2

kBT

)
nA

(
2Ω

γ∇ zB

)
B∇ zB

=

(
1

4

(γ~)2

kBT

)
nA

(
2Ω

γ

)
B (3.11)

From this final equation it is clear that if the resonance slice is smaller than the

sample, then the force is independent of the field gradient. This is an optimistic

point for NMR-FM because extremely large field gradients are necessary for

high resolution images; Eq. 3.11 tells us there is no problem with this in terms

of forces (line broadening and relaxation may be another story).

3.2.2.2 The Experiment

To record our data, the signal from the photodiode was fed directly into

the lock-in, and its X and Y outputs were digitized with the Nicolet digital

oscilloscope. The lock-in time constant for the entire experiment was 100 ms.

The permanent magnet was placed at an initial distance of 1.4 mm

from the sample, and thus with roughly 300 µm between the oscillator and the

resonance slice. Because we didn’t know how much internal motion occurred

during the violent act of inserting the probe into the NMR magnet, the initial

search for the sample was done by moving the iron magnet away from the

oscillator in steps of 15 µm. After no signal was seen over approximately

400 µm, the magnet was moved back toward the oscillator. A signal was

detected at roughly 180 µm from the initial position. To check the validity
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of this signal, the area in the range of 90 to 270 µm from the initial position

was scanned again by retracting the magnet; the signal appeared again. The

frequency of the RF was increased by 1 MHz to shift the resonance slice 100 µm

closer to the magnet; the presence of the signal at this new position verified

the NMR origin of our signal.

In order to map the Ω − H1 parameter space, we used Ω/γ ∈ [5, 40

kHz] with H1 ∼7 G. We actually also changed H1, but some jackass stole

our computer and these data from the lab. For each value of the modulation

amplitude, the iron magnet was scanned in 3 µm steps so that the resonance

slice scanned through the sample, with considerable baseline measurements on

each end of the scan. At each position, 5-8 scans were taken and averaged to

represent the signal at that position. The baseline signals were all averaged

together to represent the signal artifact, which is a spurious resonant excitation

of the oscillator not associated with an NMR signal5. In order to determine

the magnitude of the force on the oscillator, the signal artifact was subtracted

from the averaged signal at each position. The resulting RMS amplitude at

each position was taken as the NMR signal. The amplitude was converted to

a force using the relation F = koscA/Q.

Instead of displaying a force versus Ω curve, we present our data in

Fig. 3.6 as normalized SNR versus Ω. The normalized SNR is simply the

experimentally measured SNR normalized to the theoretical SNR. We present

5A more detailed study of the signal artifact is presented in § 2.5.
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Figure 3.6: Data showing the normalized SNR as a function of the frequency mod-
ulation amplitude. The decrease in SNR is due to loss of spins because of violations
of the adiabatic condition.

the data in this way because doing so implicitly accounts for the change in the

resonance slice thickness (∆z = 2Ω/γ∇ zBz) for each Ω; force data need more

intricate massaging to do the same. That our normalized SNR does not reach

unity implies that something was not optimal in either our theoretical SNR

or in our measurement of the SNR. Because the level is constant within our

error for the region where the adiabatic condition is well-met, we believe this

to be an insignificant issue because it is most likely due to the approximated

theoretical SNR.

Our data clearly show a decrease in the expected signal for large values

of Ω. This is in contradiction to both the functionality of (Mz/Mo)max, and

the expected SNR, which is Ω-independent. The decrease in the signal with

increasing Ω must then be due to violations of the adiabatic condition, which
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Figure 3.7: Data showing the normalized SNR as a function of the adiabaticity
factor. The decrease in SNR is due to loss of spins because of violations of the
adiabatic condition when the adiabaticity factor is small.

states (γH1)
2/ωoscΩ À 1. Figure 3.7 shows the normalized SNR as a function

of the adiabaticity factor (γH1)
2/ωoscΩ. In this light, the transition between

the two regimes is much more dramatic. The knee in the data occurs at

(γH1)
2/ωoscΩ ≈ 1.5. A previous study by Rugar’s group determined similar

results for 19F in CaF2 [46].

Based on the conclusions of this study, “À” really means something

more like “> 1.5×” for cyclic inversion of nuclear spins.

3.3 Adiabatic Following

The two-level system is one that is general and extends throughout

physics. This is advantageous because such general research has been per-

formed on the basic problem that their results can be applied to any one

individual field without loss of generality. To end this chapter on the adia-
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batic condition, we translate an interesting work by Sawicki and Eberly from

its original application6 of laser induced population transfers in atoms to our

nuclear spin interests. Future NMR-FM experiments with precise control of

modulation parameters and RF field strength could be used to tune the adia-

batic factor to experimentally verify the following theory.

3.3.1 Theoretical Formalism

To begin, imagine the magnetization in the rotating frame at equilib-

rium: M= (0, 0,M). If we apply an appropriate RF field, we can make the

magnetization rotate uniformly in the rotating frame. If the angular velocity

of this field is small compared to the Larmor frequency of the spins (both in

the rotating frame), then adiabatic following (commonly called spin-locking)

will be achieved. If, however, the angular velocity of the field is much greater

than the Larmor frequency, then the spins will not be locked and will not

follow the effective field vector.

The time evolution of the Bloch-vector M is given by

dM

dt
= γHeff ×M, (3.12)

where Heff is the “torque” vector about which M rotates (the effective mag-

netic field), and γ is the gyromagnetic ratio of the spins. When the Rotating

6An interesting twist to the general idea of adiabatic following is also addressed in their
work: diabatic following. According to their theory, if the effective field spins around
extremely fast, it will give the Bloch vector a kick each time it passes it. Since this is in the
extreme diabatic limit, the spins do not have time to relax, and inversion due to the kicks
eventually occurs.
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Wave Approximation (RWA) is used to transfer into the rotating frame, then

one finds γHeff= (γH1, 0, ωo − ω), or, equivalently, γHeff= (γH1, 0, γHz),

where the third component is called the detuning (i.e., how far off resonance

you are).

Now in order to make γHeff rotate uniformly we apply another “torque”

vector, A with constant magnitude in, say, the ŷ′ direction. In this case, γHeff

will have the same time evolution as M, namely

dγHeff

dt
= A× γHeff . (3.13)

The effective field then becomes

γHeff = (±γHeff sin At, 0,±γHeff cos At), (3.14)

where γHeff =
√

(γH1)2 + (γHz)2. The solution that satisfies both Eq. 3.12

and Eq. 3.13 is called the spin-locking solution [48]:

M = ± (γHeff (t)−A) T, (3.15)

The constant T has units of time and is under the constraint M · M = 1,

which is to say (γH2
eff +A2)T 2 = 1, where A is the angular velocity7 of γHeff

about A.

7At this point, observe the following regarding A and γHeff : when A ¿ γHeff , we are
in the spin locking regime because the angular velocity of the effective field, A, is small
compared to the angular velocity of the spins, γHeff . When A ∼ γHeff , the adiabatic
condition is being tested, and when A À γHeff it is completely broken.
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The exact solution of Eq. 3.13 can be written as

γHeff (t) = Â(Â · γHeff o) + (Â× γHeff o) sin At

+ Â× (Â× γHeff o) cos At, (3.16)

where Â is a unit vector along A and γHeffo is the initial effective field vec-

tor. If we assume γHeffo = (0, 0,−γHeff ), then the time dependence can be

written as

γHeff (t) = −γHeff (sin At, 0, cos At). (3.17)

At this point, it is useful to adopt a new coordinate system that is

rotating with γHeff (t) about A. The obvious orthogonal unit vectors of the

new time dependent axes are

Â(t) = (0, 1, 0)

ˆγHeff (t) = −(sin At, 0, cos At)

Â(t)× ˆγHeff (t) = (− cos At, 0, sin(At)). (3.18)

Next, we need to write an equation for the Bloch vector in this new frame,

namely

M(t) = α(t)Â + β(t)γ ˆHeff (t) + ξ(t)
(
Â(t)× γ ˆHeff (t)

)
, (3.19)

where, from the Bloch Equation in coordinate form, the time dependent coef-
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ficients α, β, and ξ obey the equations

dα(t)

dt
= γHeffξ(t),

dβ(t)

dt
= Aξ(t),

dξ(t)

dt
= −γHeffα(t)− Aβ(t). (3.20)

With the rotated initial conditions M = (0, 1, 0), the solutions of these equa-

tions are given by

α(t) = γHeffAT 2 (cos(t/T )− 1) ,

β(t) = 1 + A2T 2 (cos(t/T )− 1) ,

ξ(t) = −AT sin(t/T ). (3.21)

The exact solution for the Bloch vector in our doubly-rotating coor-

dinate system is found by substituting Eq. 3.21 directly into Eq. 3.19. This

solution can then be rewritten in the coordinates of the original rotating frame

as

(
AT sin t/T cos At− (1 + A2T 2(cos t/T − 1) sin At)

)
x̂′

+
(
γHeffAT 2(cos t/T − 1)

)
ŷ′

+
(−AT sin t/T sin At− (1 + A2T 2(cos t/T − 1)) cos At

)
ẑ′ (3.22)

3.3.2 The Inversion Probability Pπ

The object of interest for adiabatic inversion is the probability of spins

following γHeff through a rotation of π radians, Pπ. In so doing, we tacitly

108



assume any spins that are lost will relax back to equilibrium with the static

field. We determine Pπ through the relation Pesc + Pπ = 1, where Pesc, the

probability to escape following, is defined [45] as

Pesc =
1

2
(1−Mz(t)). (3.23)

Thus, evaluating Pesc for the inversion time t = π/A leads to the result

Pπ =
1

2

A2

1 + (A/γHeff )2


1− cos


π

√
1 + (A2/γH2

eff )

A/γHeff





 . (3.24)

Using the trigonometric identity 1 − cos θ = 2 sin2(θ/2) Eq. 3.24 reduces to

the quite simple formula

Pπ = 1− A2

1 + (A/γHeff )2
sin2


π

2

√
1 + (A2/γH2

eff )

(A/γHeff )2


 . (3.25)

To further illuminate this formula in the light of adiabatic inversion,

we introduce a diabaticity parameter Λ ≡ A/γHeff . This parameter compares

the angular velocity of the now rotating effective field to the angular velocity

of the spins about the effective field. Thus, Λ → 0 in the adiabatic limit of

γHeff À A, and Λ → ∞ in the diabatic limit of A À γHeff . Making this

substitution in Eq. 3.25 leads to the equation

Pπ = 1− Λ2

1 + Λ2
sin2

(
π

2

√
1 + Λ2

Λ2

)
. (3.26)
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Figure 3.8: Adiabatic following probability vs adiabatic factor.
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Figure 3.9: Adiabatic following with well-met adiabatic condition.
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Figure 3.10: Experimental data using cyclic adiabatic inversion plotted with the
theoretical curve for adiabatic following.

Figures 3.8 and 3.9 show Eq. 3.26 plotted as a function of the adia-

baticity parameter applicable to our experiment, namely

1

Λ
=

(γH1)
2

ωoscΩ
. (3.27)

The following probability Pπ is unexpectedly intricate.

3.3.2.1 Application to Cyclic Adiabatic Inversion

Our cyclic adiabatic inversion data from Fig. 3.7 are presented again in

Fig. 3.10 where they are shown with the theoretical curve of Fig. 3.8. The data

points have been normalized to their maximum value for ease of comparison to

the theory. We stress that no fit has been performed here, but the similarity

between the data and theory seems to imply that this theory could apply to

cyclic adiabatic inversion even though it inverts spins in a more simplistic

way (i.e., where Heff has a constant magnitude throughout inversion). In
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order to accurately fit this model to CAdI data, one might need to consider

the following probability after nπ rotations, which would result in a following

probability of P n
π . This seems like it might be wrong , however, since it would

make the deviations of Pπ from unity drop significantly in just a few cycles: for

a nominal Pπ = 0.99, we would find P 9
π = 0.0058 after only nine π inversions;

a CAdI cycle typically exists for thousands of oscillator cycles.

3.4 Future Adiabaticity Studies

An interesting future study would be to map out Pπ for a given sample

using NMR-FM. In order to meet the assumptions of the above theory, several

experimental factors must be considered. First and foremost, how does one

apply a field that is uniformly rotating in the traditional rotating frame? Other

questions would be sample specific, revolving around relaxing agents in the

form of impurities and dipole-dipole interactions.

The answer to the question of establishing a circular field in the rotating

frame could be addressed via phase modulation, wherein both the amplitude

and frequency of the RF field are time dependent. Establishing such a field

may not be straightforward; although both modulation frequencies would be

the same, the relative amplitudes may not be easy to precisely determine.

With this in mind, the effective field would trace out an ellipse as depicted in

Fig. 3.11, which has the representation Heff (t) = (H1 + ∆H1 cos At, 0, Ho −
1
γ
(ωo + Ω sin At)), where ∆H1 is the amplitude of the AM, Ω is the amplitude

of the FM, and A is the angular velocity of the above discussion. As the
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Figure 3.11: Heff traces out an ellipse centered about H1 with phase modulation
if both the FM and AM have different modulation amplitudes.

113



Figure 3.12: Schematic representation of the components required for the effective
field to trace out a circle centered at the origin. The colors are used to imply relative
phase; blue is φ = 0, and red is φ = π.

figure indicates, there is another problem with this method because the path

of the effective field is not centered in the rotating frame. In order to produce

such a field we need to introduce a π phase shift each half cycle when the

RF amplitude is at its minimum. This could introduce some experimental

difficulties for two reasons. First, the phase shift should occur sometime before

the RF amplitude is below the local fields (2-3 G), as its presence will be

meaningless otherwise and the spins will begin to relax. As a result, the second

problem is the discontinuity in the x̂′ component; this may induce spins to

become unlocked from Heff . A schematic representation of the effective field

components required for a circularly rotating field is presented in Fig. 3.12,

and the resulting curve it traces is given in Fig. 3.13.
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Figure 3.13: Effective field traces out a circle centered at the origin if appropriate
measures are taken. The discontinuity in the curves near x′ = 0 is the region where
Heff ∼ Hlocal. The colors indicate different phase, as in Fig. 3.12.
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Chapter 4

Field Effects on Oscillators Capped with

Magnets

“I should have been a cowboy.”

- Toby Keith

In this chapter we discuss the characteristics of CoPt-capped single-

crystal-silicon micro-oscillators when a magnetic field is applied perpendicular

to the magnetic film. After discussing the motivations for this study, the ex-

periment is described. Finally, experimental results and models that describe

the observed behavior are presented.

4.1 Motivation and Introduction

Magnetic resonance force microscopy (MRFM) has advanced quite ra-

pidly since its proposal by Sidles in 1991, with most work performed in the

sample-on-oscillator configuration [49–53]. The eventual practical use of MRFM

for biological and solid state imaging, however, is heavily dependent upon the

successful conversion to the magnet-on-oscillator configuration. This configu-

ration is often implemented with the external polarizing magnetic field, Ho,
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parallel to the cantilever axis. Such a setup is used in order to minimize the

interaction of the field with the magnetic particle [54, 55]. To our knowledge,

this is the first study where Ho is normal to the face of the oscillator; this

arrangement is necessary for operation in small bore (1.5 inch diameter) su-

perconducting magnets, as the axis of the interferometer optical fiber must

be, for the most part, parallel to the axis of the bore. Additionally, this

configuration will ultimately be beneficial because it offers a more convenient

field gradient geometry for MRFM image deconvolution as the highly symmet-

ric field gradient pattern can be readily calculated, whereas other, irregular

magnet geometries can provide force maps that are less straightforward to

interpret.

The general experimental setup for a magnet-on-oscillator NMR-FM

experiment is shown in Figure 4.1. The magnet on the oscillator generates

a field gradient ∇B in the otherwise homogenous field Ho. In the presence

of this field gradient, the magnetization M of the sample imposes a force on

the mechanical oscillator equal to (M · ∇)B. A frequency-modulated mag-

netic field is introduced using a radio-frequency coil to manipulate the spins

of the sample in such a way that a thin slice of the magnetization, and thus

the force on the oscillator, becomes a function of time. By cyclically invert-

ing this magnetization at a frequency equal to the resonant frequency of the

oscillator, a vibration amplitude measurable using a fiber optic interferome-

ter is attained. The force sensitivity is limited by the thermal noise of the
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Figure 4.1: Schematic overview of magnet-on-oscillator experimental setup.

mechanical oscillator,

Fmin =
√

4kBTkosc∆ν/Qωosc, (4.1)

where kosc, ωosc, and Q are the spring constant, resonant frequency, and quality

factor of the oscillator, and ∆ν is the equivalent noise bandwidth1 of the

measurement. Typical oscillators fabricated in our lab are ∼200 nm thick,

have spring constants ∼0.01 N/m, resonant frequencies ∼10 kHz, and quality

factors ∼ 103, resulting in a nominal room temperature force sensitivity on

the order of 10−15 N/
√

Hz.

1∆ν = 1/4τ , where τ is the time constant of the lock-in amplifier with a 6 dB/oct filter.
This changes depending on the slope of the filter chosen on the lock-in.
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4.2 Experimental Details

The micro-magnets discussed in this work were CoPt2 films deposited in

our lab by Troy Messina. The dimensions of these magnets and their host oscil-

lators are presented in Table 4.2, and schematics of the two types of oscillators

Table 4.1: Oscillator characteristics and magnet dimensions used in this study.

Oscillator fosc (kHz) Q l (µm) w (µm) t (nm) magnet size
A (paddle) 6.545 200 10 120 80 1/8 head
B (double) 10.50 270 20 150 80 1/2 head
C (paddle) 5.840 190 75 120 80 whole head

used, paddles and double torsionals, are given in Figure 4.2. The oscillators

used were processed in their entirety by Michelle Chabot as described in her

dissertation [27].

The CoPt source was produced by arc melting stoichiometric mixtures

of Co (99.9975% pure) and Pt (99.9999% pure) in a water-cooled copper hearth

in a zirconium-guttered inert atmosphere. The single crystal silicon oscillators

were then shadow masked with a razor blade under a microscope and placed in

the vacuum chamber with a base pressure of 10−8 Torr. The CoPt films were

deposited using electron-beam evaporation [56]; a film thickness of 80 ± 1 nm

was measured by a quartz resonant growth monitor.

2For the sake of clarity, CoPt here means Co0.50Pt0.50, that is, a 1:1 molar ratio of
cobalt to platinum. It is somewhat common in the literature to define the alloy initially as
CoxPt1−x, and to refer to it thereafter as simply CoPt or Co-Pt.
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Figure 4.2: Oscillators used in these experiments.

To determine the effect of Ho on the magnet-capped oscillators, room

temperature frequency scans were performed in an exchange gas pressure of

100 mTorr using the probe built by Tobias Graf [57] in a High Field Magnet

(HFM) for magnetic fields between −5 T and +5 T. Note that ideally the

pressure would have been 1 mTorr or lower so as to optimize the quality fac-

tor of the oscillators [35]. Unfortunately, 100 mTorr was the lowest pressure

attainable for this experiment. This high pressure is attributed to the combi-

nation of outgassing and low throughput to the pump due to the long, small

diameter hose. The probe was leak checked with a helium leak detector by the

Cryo Shop; no leaks were found. In retrospect, the pressure may have been

limited by outgassing from the rubber vacuum hoses; metallic hoses have been

used since this experiment to achieve pressures3 around 10−5 Torr.

3This pressure is read at the top of the probe; the pressure at the oscillators themselves
( 5 feet away from the gauge) is probably an order of magnitude higher.
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The oscillators with magnets were glued to a piezo plate that applied

a sinusoidal driving force. The vibration amplitude of the oscillators was

detected using a fiber optic interferometer operating at 660 nm. For each of

the oscillators discussed here, the first cantilever mode was utilized, as verified

by phase-sensitive detection on opposite sides of the oscillator heads [18]. The

resonant frequencies ωosc, and quality factors Q, were determined by fitting

the vibration amplitude to a Lorentzian using the least squares curve fitting

algorithm in Igor Pro. The initial field application from 0 T to +5 T was

irreversible for each of the magnets, and did not necessarily overlap with the

reversible behavior observed thereafter. Ho was changed from +5 T to −5 T

and back to +5 T for each oscillator in anticipation of hysteretic behavior,

though none was detected with the large field steps used here (several thousand

Gauss, which is much greater than the coercive field perpendicular to any

magnetic film). All changes of the field were done at the maximum allowed

rate for the current in the HFM of 0.0075 A/s, which is roughly 12 G/s. No

steps greater than 0.5 T were taken because the equilibrium position of the

oscillators appeared to change with field strength, as deduced from shifting

fringes in the interferometer signal.

The frequency shifts normalized to the zero field frequency of the magnet-

capped oscillators and one bare paddle are shown in Figure 4.3. The initial

frequency shift of the bare oscillator may be due to the paramagnetism of

the heavily boron-doped single-crystal silicon. Note that the resonant fre-

quency of the silicon paddles exhibit negligible field dependence in the high-

121



Figure 4.3: Normalized shift in resonant frequency for a bare paddle © and mag-
netically capped oscillators A, , B, 5, and C, 4.

field region of interest for NMR-FM. The magnet-capped oscillators exhibit

two regimes of Ho dependence. The low-field behavior occurs while the strong

shape anisotropy of the films confines the moment to the plane of the oscil-

lator, and thus nearly perpendicular to Ho. The high-field behavior occurs

when the field is strong enough to rotate the moment out of the plane, nearly

aligned with Ho. Although the frequency increases at high fields, it never

fully recovers to the zero-field frequency. This can be beneficial to NMR-FM

experiments because lower oscillator frequencies help to meet the adiabatic

condition for cyclic adiabatic inversion [58] of sample spins.

The quality factor dependence on external magnetic field is given in

Figure 4.4. The Q of the magnet-capped oscillators decreased sharply in the
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Figure 4.4: Quality factor dependance on field for a bare paddle© and magnetically
capped oscillators A, , B, 5, and C, 4.

low field regime. The changes were extreme for each magnetically capped os-

cillator, with deviations as high as 70%. No appreciable shift was detected for

the bare oscillator. In the high field regime the Q of the oscillators have less

dramatic field dependence, and in the case of the 1/8 and 1/2 head magnets,

the quality factor actually increases with higher fields though it never recovers

its zero-field value. Though less obvious, these data show a transition point at

the same field value (Hs) as that of the frequency data. The overall decrease

in quality factor at high fields has a very small affect on our ultimate force

sensitivity, which is proportional to Q−1/2. No attempt to describe this behav-

ior mathematically is presented at this time. Similar behavior was reported

by Marohn’s group at the MRFM workshop held at UT in March, 2003.
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Figure 4.5: Normalized shift in resonant frequency oscillator A (1/8th capped head,
), and oscillator B (1/2 head capped, 5). The solid line is a fit of the high field

data to the model used previously by Rugar’s group.

4.3 Modelling of Data

4.3.1 High-Field Regime Model

The field dependence seen in the high-field regime is similar to that

previously reported by Rugar for the geometry where Ho is in the plane of the

oscillator . The increase in resonant frequency with Ho is due to an increase in

the effective spring constant that is caused by the small restoring torque that

is present. When the moment and Ho are aligned, such magnetic stiffening

causes a shift in the resonant frequency equal to

∆ωosc

ωosc

=
µHo

2koscL2
eff

(
Hk

Ho + Hk

)
, (4.2)

where µ is the moment of the magnet, Hk is the anisotropy field, and Leff is the

effective length of the cantilever [54]. Figure 4.5 shows the data for oscillators

A and B fit to Eq. (4.2) with the substitution Ho → Ho + Hs, where Hs is
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an offset field above which the moment and Ho are nearly aligned. This offset

field is necessary because for smaller fields the angle between the moment and

the field is too large to reasonably utilize the small angle approximation, which

is the backbone of this model. A least squares fit of the data to Eq. (4.2) allows

us to determine µ, Hk, and Hs of oscillator A to be

µA = 7.1 × 10−11 J/T,

HA
K = 0.61 T,

and HA
s = 1.21 T,

while those of oscillator B were

µB = 1.6 × 10−10 J/T,

HB
K = 0.69 T,

and HB
s = 2.27 T.

The measured moment values are in good agreement with those estimated

from the magnet volumes and saturation magnetization of CoPt (750 kA/m)

[59]: µA ≈ 7.2 × 10−11 J/T, µB ≈ 1.6 × 10−10 J/T.

This simple model, however, cannot explain the effects observed in the

low-field regime. The model we propose for the low-field behavior considers the

dependence of the magnetic energy on the direction of the magnetic moment

with respect to the three primary directions of the film. We model the magne-

tization of the film as a single domain that initially lies in the x̂ direction, and

that is confined to the x̂-ẑ plane. Further, we assume the oscillations of the
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Figure 4.6: Schematic illustrating the coordinate system used in our low field model.

cantilever occur in the ŷ-ẑ plane. Additional assumptions will be mentioned

within the derivation of this low-field model.

4.3.2 Low-Field Regime Model

We start by writing a general energy density equation that contains

only anisotropy and Zeeman energy terms:

E

V
= Kx̂ sin 2ξ + Kŷ sin 2φ + Kẑ sin 2θ − MsH cos ∠(~µ,H), (4.3)

where ξ, φ, and θ are the angles from the primary axes of the micro-magnet x̂,

ŷ and ẑ, respectively, as shown in Figure 4.6. We take ~µ = µ(cos ξ, cos φ, cos θ),
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and our assumption that the oscillations of the cantilever occur solely in the

ŷ-ẑ plane leads to H = H(0,− sin β, cos β), where β is the tilt angle of the

cantilever relative to the field. Using the definition of the dot product, we find

cos ∠(~µ,H) = − sin β cos φ + cos β cos θ. (4.4)

We make a small angle approximation based on the small cantilever amplitude,

namely sin β = β. Next, we assume for simplicity that the angle the moment

makes with the ŷ axis is π/2. With this last assumption, Eq. 4.4 becomes

cos ∠(~µ,H) = cos β cos θ. (4.5)

This assumption also allows us to use ξ + θ = π/2 to write sin 2ξ = 1− sin 2θ.

The energy density of Eq. 4.3 then reduces to

E

V
= Kx̂(1− sin 2θ) + Kŷ + Kẑ sin 2θ −MsH cos β cos θ. (4.6)

We then minimize this energy density with respect to θ:

∂E

∂θ
= 0 = 2(Kẑ −Kx̂) sin θ cos θ + MsH cos β sin θ. (4.7)

Accordingly,

cos θ = − µH cos β

2(Kẑ −Kx̂)
= −H cos β

HK(ẑ,x̂)

, (4.8)

where we define4 HK(ẑ,x̂)
≡ 2(Kẑ − Kx̂)/Ms. Then by our small deflection

angle approximation we have

cos θ = − H

HK(ẑ,x̂)

. (4.9)

4Note that this parameter is inherently positive.
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The next simple assumption we make is that only the x̂ component of the

torque affects the lower cantilever mode of our oscillators. We have τx =

µyHz − µzHy. Invoking our small angle approximation and assumption that

µ̃ ⊥ ŷ leads us to

τx = −µzHy = −µHo
Hoβ

HK(ẑ,x̂)

. (4.10)

Next, we assume that the change in the spring constant of the oscillator can

be directly related to the restoring torque, namely

∆k =
τx

βL2
eff

, (4.11)

where Leff is the effective length of the oscillator5. Taylor expansion then

leads to the approximation that ∆ωosc/ωosc = ∆kosc/2kosc, from which our

result for the normalized resonance frequency shift due to an applied field

| Ho | follows directly:

∆ωosc

ωosc

=
µH2

o

2koscL2
eff

(
1

HK(ẑ,x̂)

)
. (4.12)

Figure 4.7 shows the normalized frequency shift for oscillator A with

a least squares fit to Eq. (4.12). The fit yields H−1
K(ẑ,x̂)

= −3.7 T−1, where

we have taken the value of µ to be the magnetic moment obtained from the

high-field fit (7.1 × 10−11 J/T). The sign and magnitude of the composite

anisotropy field factor shows the preference of the moment to lie in the plane

of the film.

5For the lower cantilever mode, Leff = 1.378L, where L is the actual length of the
cantilever [54].
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Figure 4.7: Fits to 1/8th head magnet using the low field model is shown in red.
The fit to the high field model is shown for completeness in gold.
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The transition between regimes is marked by a sharp minimum that

reflects the energy necessary to overcome the shape anisotropy of the thin

films. For our films, with similar thickness and length, this energy scales

with the volume of the micro-magnets; the minima correspondingly shift with

volume. The volume ratios VA : VB : VC are 1 : 2.3 : 7.5. This is in good

agreement with the observed minima; the transition point for oscillator A

is approximately 1.0 T, and that for oscillator B is around 2.3 T, while no

transition is detected for oscillator C for field strengths below 5.0 T. These

transition points correspond well with the Hs values from the fit of the high-

field data to Eq. (4.2). One of the comments from the referee of the paper that

resulted from this work [60] suggested that the effect could be flux dependent,

meaning that it could be the area of the magnets that is important rather than

the volume. Either way, the prospects are very good for the future of magnet-

on-oscillator NMR-FM because the effects described, though not malignant,

will diminish as progress is made toward smaller and smaller magnets.

4.4 Notes

One thing we observed but are unable to explain at this time is the

qualitative difference in the shapes of the normalized frequency versus external

field curves. For low fields, oscillators A and B both have a concave down

shape, while the field dependence of oscillator C is concave up. The most

obvious difference, which may or may not be responsible for this discrepancy,

is that, due to the length:width ratio of the magnet, A and B both have a strong
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in-plane shape anisotropy while that of C is weaker. This shape anisotropy

confines the moments of oscillators A and B to being roughly perpendicular to

both Ho and the oscillator axis, while for C, the moment is only restricted to

being in the plane of the oscillator. Thus the in-plane direction of the moment

of oscillator C can no longer be determined strictly from shape considerations.

After concluding this experiment, it was determined that the oscillators

were located just outside of the homogeneous field of the HFM. The field gra-

dient that was thus present at the oscillator’s position is the most likely culprit

behind the dynamic equilibrium position. The probe has been altered so that

subsequent experiments find the oscillators safely in the homogenous field. One

such experiment that has been performed (this same experiment with different

oscillator/magnet configurations) showed the fringes to be stable during field

increments, but, thankfully, also showed the oscillator characteristics shifted

in a manner similar to that presented in this work.

4.5 Conclusions with Application to NMR-FM

The shift in resonance frequency of single-crystal-silicon oscillators with

magnetic films of various sizes has been observed to exhibit two regimes of

response to a perpendicular external field at room temperature. The low-field

regime is characterized by a sharp decrease in resonant frequency with applied

field, in agreement with our simple anisotropy model. The increase in resonant

frequency for high fields is consistent with previous results. The transition

point between regimes scales with the volume (or area) of the magnets. Similar
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behavior is observed for the quality factor of the oscillators.

This work suggests magnet-on-oscillator NMR-FM experiments can be

performed in the perpendicular configuration without significant sensitivity

degradation. Recall the minimum detectable force equation

Fmin =

√
4kBkoscT∆ν

Qωosc

. (4.13)

Assuming the spring constant of the oscillator is constant, then the sensitivity

is proportional to (Qωosc)
−1/2. If we take the worst case scenario from our

data, fosc → 0.7fosc and Q → 0.4Q, then Fmin → Fmin/
√

0.28 = 1.9Fmin. A

factor of two is insignificant with single-shot signal-to-noise ratios greater than

10. It is also comforting that the magnets to be used in future experiments

are smaller by several orders of magnitude from those studied here.
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Chapter 5

Demonstration of Magnet-on-Oscillator

NMR-FM

“I am not discouraged because every wrong attempt discarded in another step

forward.”

- Thomas Alva Edison

In this chapter we describe the first magnet-on-oscillator NMR-FM

study performed in our lab. The sample was a “semi-infinite” slab of ammo-

nium sulfate. The sample is “semi-infinite” because its dimensions are several

orders of magnitude larger than those of the gradient-producing magnet with

which it interacts. A SNR ∼ 4 was detected, and is in good agreement with

what was expected. Other work, mostly theoretical, has been published on

the semi-infinite slab [61, 62].

5.1 Experiment Overview

These experiments were performed in the magnet-on-oscillator setup, il-

lustrated in Fig. 5.1. In this configuration, the sample approaches the gradient-

producing magnet so that the gradient has the opposite sign from all of our
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Figure 5.1: Schematic overview of magnet-on-oscillator experimental setup to study
the semi-infinite slab. Note that the external field is pointing in the opposite direc-
tion from our other NMR-FM studies.

sample-on-oscillator experiments. The result of the relative sign change man-

ifests itself as a decrease of the oscillator’s amplitude during CAdI cycles be-

cause the signal artifact is out of phase with the NMR force. This is more of

an annoyance than a problem.

During the experiment, the sample was held by a tube piezo that was

mounted onto the ẑ positioner stage (known as the “magnet stage” for the

previous sample-on-oscillator experiments). This gave us fine positioning con-

trolled by the voltage on the tube piezo, and coarse position controlled via

external positioning rods. The oscillators used were produced by Michelle

Chabot at NIST with a process that integrates the magnet deposition with

lithography and fabrication [63]. The magnets were 4 µm diameter Permalloy
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(Ms = 650 kA/m) cylinders that were 180 nm thick. The resonance fre-

quency of the oscillators were measured to be ∼4000 Hz, the pressure-limited

quality factors were ∼1600, and the spring constant was measured1 to be

∼ 4 × 10−4 N/m. The resulting room-temperature force sensitivity using a

lock-in bandwidth of ∆ν = 1/(4× 30 ms) ≈ 8 Hz was determined using

Fmin =

√
4kosc kBT ∆ν

ωoscQ
, (5.1)

to be 5.8 × 10−16 N. The force expected from a resonance slice completely

immersed in the sample was determined via Curie’s Law and the discussion of

§1.3.2 to be 7.6× 10−16 N using

Fexpected = n
(γ~)2

4 kBT
Htotal

2Ω A

γ
, (5.2)

where the area of the slice was estimated from the diameter of the magnet to

be A = π (4 µm)2/4, and the FM amplitude Ω was 2π × 50 kHz. The expected

signal-to-noise ratio of 1.3 was thus smaller than we would have liked, so the

data were averaged N times2 to increase the SNR by
√

N .

5.2 Magnets on Oscillators

The gradient-producing magnets on the mechanical oscillators were

Permalloy cylinders. The diameters of the magnets produced varied from

1From its geometry, the expected spring constant was ∼ 2 × 10−4 N/m, where we used
kosc = Et3w/4l, taking E = 1011 N/m2, t = 250 nm, w = 3 µm, and l = 180 µm.

2N was usually 4. . . run-specific details below.
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Figure 5.2: SEM showing the irregular geometry of 370 nm thick cylinders on the
head of an oscillator. These thick magnets are deformed during the lift-off stage of
the fabrication; thinner magnets are more uniform.

3 µm to 5 µm, and the thicknesses were 170 nm, 180 nm, and 370 nm. Ide-

ally, the 370 nm magnets would have been used to push a given field gradient

farther from the magnet. These magnets, as depicted in Fig. 5.2, did not have

well-defined geometries due to tearing during lift-off, which would have made

modelling them difficult. Instead, we chose to use an oscillator whose magnet

was actually cylindrical (4 µm in diameter and 180 nm thick) so that we could

confidently model its field and gradient.

The ẑ component of the magnetic field B from a magnetic cylinder with

136



4

6

8
0.001

2

4

6

8
0.01

2

4

 M
ag

n
et

ic
 F

ie
ld

 (
T

)

7.06.05.04.03.02.01.0

Distance from Magnet (µm)

180 nm thick
 3 um
 4 um
 5 um

Figure 5.3: Magnetic fields as functions of distance from the magnet along the axis
of 180 nm thick cylindrical Permalloy magnets modelled using Eq. 5.3.

saturation magnetization Ms, length L, radius r, at a distance z along its axis

is given by

Bz(z) = 4 π Ms

(
z

2
√

z2 + r2
− z − L

2
√

(d− L)2 + r2

)
. (5.3)

This is a general formula that does not make assumptions of the aspect ratio

L/r of the magnet. Its derivative with respect to z shows that the field gradient

along the axis is given by

∇zBz(z) =
−4 π Ms

(
r
L

)2
/2L

[(
r
L

)2
+

(
r
L
− 1

2

)2
]3/2

−
[(

r
L

)2
+

(
r
L

+ 1
2

)2
]3/2

. (5.4)

Figures 5.3 and 5.4 show the results of these models for the 180 nm thick

cylindrical Permalloy magnets that have been deposited on mechanical oscil-

lators. The oscillator type used in these experiments is shown in Fig. 5.5, and

a zoom in showing the magnet and the oscillator thickness is shown in Fig. 5.6.
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Figure 5.4: Magnetic field gradients as functions of distance from the magnet along
the axis of 180 nm thick cylindrical Permalloy magnets modelled using Eq. 5.3. The
solid and dotted straight lines indicate resonance slice thicknesses of 100 nm and
1000 nm taking the FM amplitude Ω/2π = 50 kHz.

Figure 5.5: SEM of the oscillator type used to study the semi-infinite slab. The
gradient-producing magnet is the small white spot in the middle of the head. The
neck width and length are 3.00 µm and 130.0 µm, the head is 30.0 µm × 40.0 µm,
and the thickness is about 250 nm.
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Figure 5.6: Angled SEM of the oscillator type used to study the semi-infinite slab
showing the thickness of the oscillator and the magnet. The cylindrical gradient-
producing magnet shown is 180 nm thick and ∼ 5 µm in diameter. Working back-
ward from the known tilt angle of the SEM and the bevel of the oscillator reveals a
thickness of about 250 nm.
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5.3 Sample Preparation

The semi-infinite slab sample was prepared from granular ammonium

sulfate, (NH4)2SO4. We chose ammonium sulfate as our sample for this demon-

stration experiment because its spin-lattice relaxation time is long (∼ 5 s), its

proton density is large (6.4 × 1022 1H/cm3), and it is easily cleaved to yield

a flat vacuum-sample interface. Once a satisfactory crystal is cleaved, the

sample is glued to a graphite rod and aligned with the fiber and sample.

5.3.1 Crystal Selection

To select a sample, the following procedure was followed. A small

number of grains were placed in a weighing boat. Separate from this, dirty

double-sided tape was placed in the bottom of another weighing boat. The

grains were inspected using the telescoping microscope to choose grains with

good initial characteristics. Attractive grains are relatively small, right paral-

lelepipeds with length-to-width-to-height ratios of roughly 4:3:1, have a rough

yet finished sheen, and have few internal voids. Voids and other defects are

most easily observed by blocking the light from the lamp with the tip of a

scalpel (the direct light washes out the light reflected from the defects). Once

a grain was chosen, it was placed very near the edge of the double-sided tape so

that it could be easily removed if the cleave went well. Samples were initially

placed in the middle of the tape, but it was soon found that even the dirtiest

tape was still so sticky that the sample was nearly impossible to remove with-

out either crushing it or having the cleave end up face down and thus covered
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with dirt.

Cleaving the (NH4)2SO4 grains was straightforward. A clean straight-

edged scalpel was used to cleave the samples along their length. If the sample

was too long, it was cut down to size along the width before being cleaved. The

tip of the scalpel was secured in the base of the weighing boat, and a chopping

motion was used to touch blade to the crystals. This was done in order to get

several cleaves per crystal, which is necessary because although the (NH4)2SO4

grains cleave fairly easily, they do not always form large planar regions. The

most useful crystals cleaved easily if the scalpel was pressed lightly against

their edges.

After each cleave it was necessary to inspect the region of the cleave

to make sure it was planar and free of defects and particles. The stickiness

of the tape was useful at this point because the sample could be tilted while

being held in place. Samples that were chosen for mounting looked uniform

in the center of the crystal, while unacceptable samples had obsidian-like ring

shaped fractures. Because these samples were supposed to represent semi-

infinite slabs, the crystals chosen were roughly cubic with 300− 500 µm sides.

5.3.2 Sample Mounting

A 0.5 mm graphite rod (pencil lead) served as our sample holder. This

sample holder was chosen for its availability, rigidity, and conductivity. The

setup for mounting the crystal onto the rod is depicted in Fig. 5.7. The

crystal was picked up with one tine of a pair of tweezers, presumably attached
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Figure 5.7: Setup for sample mounting using a graphite rod and three microscope
slides. The slides only allow the rod to move in one direction and hold the crystal
steady during mounting.

by an electrostatic interaction, and placed in the corner made by three glass

microscope slides. The graphite rod was then placed along two of the slide-

walls so that it could only move in the direction perpendicular to the third

wall (and thus the plane of the crystal). The crystals were mounted on the

graphite rod using Torr-Seal epoxy. The epoxy was mixed for one minute, then

using a single strand of wire from a braided cable, a small drop of epoxy was

transferred to the tip of the graphite rod and smeared around. The graphite

rod was then pushed up against the back of the crystal, and the excess epoxy

was smeared around the crystal-graphite interface. This alignment procedure

was done in its entirety under the stereoscope. The epoxy was cured by placing

a 60 W lamp about 1 inch above the setup for at least two hours.

A fitted aluminum insert was pressure-fit into the grounded inner elec-

trode of a tube piezo by placing a 2 mm × 1 mm strip of aluminum foil between
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it and the piezo. The graphite rod was inserted into a fitted through-hole in

the aluminum insert until the crystal was 5 mm from the insert. The end

of the hole was slightly deformed so that it scratched the graphite rod as it

passed this point; this serves to hold the rod in place and to establish an elec-

trical contact that grounds the rod. The sample was then approached within

about 50 µm of the oscillator. The height and three angle-controlling screws

of the scanner stage were adjusted so that the normals to the oscillator and

the vacuum-sample interface were as parallel as possible. The alignment is

critical because the relative angle between the oscillator and the sample must

be less than ∼ 5◦ in order for the resonance slice to enter the sample3. §5.4.1
below demonstrates that the alignment was good enough that at distances of

∼ 50 µm or more the laser light could reflect off the sample back into the 5 µm

diameter fiber core; the alignment error thus less than 5/100.

5.4 Experimental Difficulties

We ran into several unexpected difficulties while trying to perform our

first magnet-on-oscillator experiment. Our trials and tribulations are noted

here.

3The magnet was ∼ 20 µm from the top of the oscillator, and the useful gradients are
found at ∼ 2 µm; θmisalign ∼ 2/20.
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Figure 5.8: Artist’s rendition of the double interferometer. In the normal interfer-
ometer, reflected waves B and C interfere. The double interference is observed when
the light reflected from the sample-vacuum interface (wave D) enters the fiber and
interferes with the normal interference pattern.

5.4.1 Sample-Mediated Double Interference

Our initial experimental setup was naively exactly that depicted in

Fig. 5.1, where the fiber is pointed at the head of the oscillator, which is close

to the sample. Some of the incident laser light transmits through the ∼250 nm

thick oscillator and eventually strikes the sample. Because the sample has been

aligned with the oscillator so that their normals are nearly parallel, the light

that hits the sample reflects back through the oscillator into the fiber where

it establishes a second interferometer with the light that is internally reflected

from the fiber-air interface. This results in two coupled interferometers as the

intensity of the light at the photodiode can be independently modulated by

both the fiber-oscillator distance and the fiber-sample distance. Figure 5.8

schematically illustrates the “double interferometer”.

As an aside, the reader should note that there are actually three in-
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terferometers; they can be identified by their path length differences, namely

oscillator-fiber, sample-fiber, and sample-oscillator. Practically speaking, how-

ever, there are only two interferometers because, for instance, the path length

differences of the sample-fiber cavity and the oscillator-fiber cavity are always

changed in synchrony when the oscillator-fiber distance is changed. A similar

argument applies if the sample-oscillator cavity is changed. If we could move

all three elements independently, the third interferometer would reveal itself.

The quality of the interference pattern was strongly dependent on

whether the fiber-oscillator distance or the fiber-sample distance was changed.

The former gave normal high quality patterns, while the latter produced ab-

normal interference patterns. Three examples of each interference pattern are

depicted in Fig. 5.9. The initial conditions (at 0 V) were prepared by changing

the constant distance to maximize the DC level, maximize the slope, and to

minimize the DC level for the top, middle, and bottom curves in the figure.

For instance, for the top curve of the left graph, the sample-fiber distance

was changed to maximize the interference pattern for the initial oscillator-

fiber distance, then it was held constant as the oscillator-fiber distance was

changed. The double interferometer was shown via modelling using only first

order reflections to yield normal patterns by changing either distance. We con-

clude that the erratic behavior of the sample-mediated interference pattern of

Fig. 5.9 is due to multiple reflections within the fiber-oscillator cavity.

While the discovery of the double interferometer is interesting, it is

detrimental to our experiment because it makes the validity of the traditional
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Figure 5.9: Interference patterns formed by changing the oscillator-fiber distance
(left), and the sample-fiber distance. The left axis scale applies directly for only
the red middle curve on each plot; the others were offset for clarity. The top curves
have their initial DC level at the maximum of the pattern, the middle curves begin
at the middle of the fringe (where we would normally lock with feedback), and the
lower curves begin at the minimum DC level.
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conversion interferometer light intensity to oscillator displacement question-

able. If the sample is far from the fiber (∼ 50 µm), the sample-mediated inter-

ference pattern is small, if noticeable at all. As the sample is brought closer to

the oscillator, its effect increases to the point that the sample-mediated pat-

tern has an amplitude equal to that of the oscillator-mediated pattern. In a

normal interferometer, the conversion from intensity to deflection amplitude is

straightforward (see §2.1.4). The dependence of the intensity on the sample-

mediated interferometer undesirably changes the conversion ratio. We have

chosen to postpone further analysis of this phenomenon at this time. In order

to avoid the double interference, we raised the sample about 100 µm so that

only the head of the oscillator can contact it, and lowered the fiber so that the

laser is incident half way down the oscillator on its 3 µm neck. The resulting

setup is depicted in Fig. 5.10.

5.4.2 Position Dependence of the Artifact

With the double interference problem alleviated, the experiment went

forward. The sample was initially placed as close to the oscillator as it could

be as viewed using the adjustable microscope on the lab bench, then retracted

by approximately 100 µm. The oscillators were then moved laterally so that

the last oscillator on the chip was ∼ 100 µm away from the laser light from the

fiber; this is a preventative measure against fiber-oscillator collisions during

can mounting and probe insertion. The can was placed on the probe, it was

pumped down to about 10−4 Torr, then placed into the 8.073 T NMR magnet.
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Figure 5.10: Experimental setup used to study the semi-infinite plane. The fiber
was lowered and the sample was raised to avoid the double interference effect, though
the latter is not evident in this picture.

The sample was then brought forward in ∼ 6 µm coarse steps with +117 V

initially on all four quadrants of the tube piezo so that it was fully retracted.

After each coarse step, the tube-piezo voltage was decreased to zero to make a

fine approach of up to 3 µm. Before advancing coarsely again, the electrodes

of the piezo were grounded so that the hysteresis was repeatable (see §2.3),

and the applied voltage was increased to +117 V to retract the piezo.

At each coarse and fine position, a cyclic adiabatic inversion (CAdI)

cycle was performed to search for an NMR signal for five different carrier

frequencies. The resulting data is shown in Figs. 5.11 and 5.12. These data

appear to be what we are looking for at first glance, but further scrutiny proves

otherwise. Because the expected signal is out of phase with the artifact we

expect the force from NMR to decrease the oscillator’s amplitude during a
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CAdI cycle. This clearly appears to happen in our data. However, the length

scales on which the transition happens are roughly an order of magnitude

too large. The resonance slice thicknesses for these frequencies are all in the

range 0.5 µm to 1.4 µm. The transition shown in the data occurs over about

20 µm. The obvious conclusion is that something other than (or more likely,

in addition to) NMR is changing the oscillator’s spurious amplitude. We thus

believe the data of Figs. 5.11 and 5.12 are dominated by a position-dependent

artifact unrelated to NMR.

In addition to the CAdI cycles, we also performed frequency scans at

each position to monitor the resonance frequency of the cantilever over time.

The resonance frequency of 4004.7 Hz and quality factor of ∼1600 of the

oscillator remained constant throughout the experiment. However, as shown

in Fig. 5.13, the response of the cantilever to an assumedly constant driving

voltage of 10 mV was not constant. The response amplitude increases as the

sample-oscillator distance is decreased. One might expect the opposite of this

if there were some sort of long-range interaction (e.g., electrostatic), but in

that case the response would decrease because of an interaction magnitude-

dependent decrease in the quality factor. The source of this position-dependent

response has not been determined, and its presence may require an additional

calibration correction for each position.
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Figure 5.13: Oscillator response to a constant driving force for different sample-
oscillator distances. The lowest amplitude group of curves correspond to the dis-
tances below the transition (<∼ −20 µm), and the largest amplitude group corre-
sponds to the closest approach (∼ 0 µm). The origin of this amplified response is
unknown.

5.4.3 Tuning Dependence of the Artifact

As the astute reader noted, the artifact strength in the preceding section

was a strong function of the detuning of the carrier frequency from the tank

circuit’s resonance frequency. This was noted previously for the ideal artifact

in §2.5.4, but that study implied that there was a region of roughly 3 MHz

centered at the tuned frequency where the artifact was minimized. The artifact

for the +0.1 MHz detuned carrier was an order of magnitude larger than that

of the tuned carrier (see Fig. 5.11). This led us to investigate this phenomenon

further.

Figure 5.14 shows the observed oscillator amplitudes during CAdI cy-

cles for two different tunings of the tank circuit as functions of the carrier

frequency for an RF power of +26.1 dBm. The carrier frequencies used were
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the tank circuit.

in the range from 343.70 MHz to 344.85 MHz, separated by 0.05 MHz. The

sample was retracted ∼ 100 µm from the oscillator to the region where the

artifact was observed to be position-independent prior to taking the data.

We believe that the minimum artifact level occurs at the resonance fre-

quency of the tank circuit, but the observed minima appear to occur above

the tuned frequency. This discrepancy is most likely the realization of system-

atic errors associated with tuning the tank circuit. If we take the phase of

the artifact signal into consideration, as in Fig. 5.15, then we realize that the

minimum artifact level corresponds to a sign change of the phase of the signal.

This supports our belief that the minimum occurs at the resonance frequency

154



345.2

344.8

344.4

344.0

343.6

γH
to

ta
l (

M
H

z)

1086420

Distance from Magnet (µm)
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of the tank circuit.

5.5 Carrier Frequency Scan

After encountering the long-range position dependence of the artifact,

we decided to search for an NMR signal by changing the carrier frequency

of the RF. This method of scanning has always seemed to be the favorite

method of the other MRFM groups that have performed magnet-on-oscillator

MRFM. . .we suppose we now know why. Because the sample-oscillator posi-

tion is fixed in this sort of experiment, changes to the artifact level are due

to either the relative tuning of the tank circuit or NMR; no other effects have

been discovered (yet) that alter the artifact level.
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5.5.1 Sub-Micron Resonance Slices

Figure 5.16 shows the resonance frequencies of protons as a function

of distance from the magnet to the center of the resonance slice. The center

position of the resonance slice can be swept by changing the carrier frequency

to match the resonance frequency at the desired position; doing so for several

frequencies constitutes a scanning experiment. Additionally, because the field

gradient is a strong function of distance (see Fig. 5.4, the thickness of the

resonance slice becomes a function of the carrier frequency. Figure 5.17 shows

the effect of the carrier frequency on the resonance slice. Figure 5.18 explicitly

shows the thickness of the resonance slice for an FM amplitude of 50 kHz for

relevant frequencies. Note that the slice thickness is less than 500 nm for most

of the frequency range, with a minimum thickness of 150 nm at 344.85 MHz.
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Figure 5.18: Resonance slice thickness for different frequencies. The curve was
calculated using an FM amplitude of 50 kHz and the normal equation for the slice
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5.5.2 The Experiment

The sample was initially positioned about 50 µm from the oscillator,

and was approached in ∼ 6 µm steps. Making lemonade from lemons, we

observed the response of the mechanical oscillator to the constant driving

force as the approach was made. When the oscillator’s driven amplitude nearly

reached the highest level previously observed (just before the sample touched

it in the position scan of above), the approach was stopped. This approach

method brought the sample to about 2 µm from the oscillator.

With the sample in position, we began to search for an NMR signal

by performing CAdI cycles that were 1.8 s long, embedded in a ∼ 2.2 s RF

exposure. Using a Rhode and Schwarz signal generator, the initial frequency

offset was set to 400 kHz above resonance, and the decay from this level down

to resonance had a time constant of 10 ms. The CAdI cycle was initiated 10 ms

after the decay to resonance4. The FM amplitude Ω/2π was ∼ 50 kHz. The

pulse programmer was used in its “auto cycle” mode to repeat the decay and

CAdI cycle once every 40 s. This long repetition period was chosen because it

was about eight times the spin-lattice relaxation rate for ammonium sulfate.

The RF power was held constant at 26.1 dBm throughout the experiment,

which we estimate yielded an RF field strength of about 5 G. The lock-in had

a time constant of 30 ms. The oscillator resonance frequency was 4006.1 Hz

and its Q of ∼ 1600 was measured from the ring-down when the CAdI cycle

4This was a limitation of the pulse programmer time base that was used
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Figure 5.19: Frequency scans of the mechanical oscillator. The scans were taken
twice per carrier frequency throughout the experiment.

was terminated. In contrast to the position scan, the oscillator’s response to

a constant driving amplitude was quite constant (see Fig. 5.19).

The fringe size was constant throughout the experiment at 0.8 Vpp. In

order to convert to oscillator displacement, however, we could not use the nor-

mal conversion factor. Instead, we needed to take into consideration that the

laser was aimed half way down the oscillator to avoid the double interference,

and that we were locking on the side of the fringe that damped the oscillator.

To first order, we estimate that the oscillator’s amplitude at the magnet was

twice the measured amplitude. In order to correct for the damping, we gener-

ated a conversion factor using the Equipartition Theorem to tell us what the

room-temperature mean-square displacement of the oscillator due to thermal

noise should have been for kosc = 4 × 10−4 N/m.
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To perform the scans, the tank circuit was tuned to frequencies ftuned

that gave 500 nm separation between each position of the resonance slice.

Five carrier frequencies fc were used for each tuned frequency. Specifically,

four carrier frequencies5 in addition to the tuned frequency were used while

the tank circuit was tuned to ftuned, namely fc = ftuned ± 0.05 MHz and

fc = ftuned ± 0.10 MHz. For each tuning and carrier frequency, four CAdI

cycles that were averaged constituted a measurement. Figure 5.20 shows the

raw data for all five frequencies. The arbitrary units of the signal are directly

proportional to the oscillator’s deflection; Figure 5.21 shows the ring-ups for

all fc = ftuned converted to oscillator amplitude. The transition to lower

amplitude ring-ups for each frequency group is the due to the NMR force

signal.

We present processed data for tuned carrier frequencies fc = ftuned in

Fig. 5.22. In order to generate these data, the RMS value of the signal artifact

was subtracted from the total signal, leaving only noise and the negative signal

due to NMR. The calculated RMS value of the resultant oscillator displacement

was 3.9 nm, and the calculated RMS noise level was 1.0 nm. The observed

SNR is thus 3.9. We expected an SNR of 2.6 for N = 4 averages and a

single-shot SNR of about 1.3 (see §5.1). This discrepancy is most likely due to

the conservative estimate of expected force using only the area of the gradient-

producing magnet; the field actually intercepts an area larger than the magnet

5This was done with the intention of making sure that the artifact was minimized due to
tuning—only later did we realize the discrepancy between the “tuned” frequency and the
actual minimum of the artifact (see Fig. 5.14).
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Figure 5.20: Raw data for all five frequency regimes investigated. The larger am-
plitude blue curves are artifact signals, and the lower amplitude red curves contain
both the artifact and the NMR signals; the signal level decreases because the artifact
and NMR forces are out of phase. The RF is turned on at t = 0 s, and goes off at
2.2 s; the embedded CAdI cycles begin at 70 ms, and end at 1.85 s.
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Figure 5.21: Ring-up data during CAdI cycles for fc = ftuned. The larger am-
plitude blue curves are artifact signals, and the lower amplitude red curves contain
both the artifact and the NMR signals; the signal level decreases because the artifact
and NMR forces are out of phase.

itself.

The data for the carrier frequencies that were above and below the

resonance frequency of the tank circuit show an unexpected, but small, shift

in the location of the sample. These data are presented in Fig. 5.23. The

origin of this shift is currently unknown. The mechanism may be related to

some sort of H1 effect that is mediated by the apparently extreme sensitivity

of the experiment to the tank circuit tuning. This, however, seems unlikely

because the quality factor of the resonant circuit is probably no greater than

100, which implies that H1 should be quite constant over the 200 kHz range

we observe. The cause is not obvious.
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Figure 5.22: NMR signal detected by scanning the carrier frequency to move the
resonance slice position. The SNR is about 3.9, which is in accord with the expected
improvement with N = 4 averages. The solid lines are the means for the artifact
level (top) and the NMR signal (bottom) and the dashed lines are one standard
deviation from the means. The error bars indicate the standard deviations of the
steady-state levels of the ring-ups.
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Figure 5.23: Raw data for each of the frequency groups used. The transition at
the sample interface is seen for each of the frequencies, but the location of the shift
is dependent on the detuning of the carrier frequency from the resonant frequency
of the tank circuit. The shift is of unknown origin.

5.5.3 Nutation

Once the NMR signal was detected, we tried to perform spin nuta-

tion experiments to calibrate the RF field H1 so that we could apply accurate

π/2 pulses to the sample. A single pulse of length τp was applied 5 ms be-

fore the magnetization was sampled with a CAdI cycle. The values of τp

ranged from 0.5 µs to 16.5 µs. The smallest pulse increment was 500 ns for

τp ∈ [0.5 µs, 6.5 µs]; H1 field strengths of up to 80 G could have been detected

(assuming three points per π rotation). The data presented in Fig. 5.24 indi-

cate that no nutation signal was detected. The absence of a nutation signal

most likely indicates that there was a non-zero concentration of paramagnetic

impurities in the sample that caused the relaxation rates to be rapid enough
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Figure 5.24: Typical results of nutation experiments with the resonance slice just
inside the sample. Each data point is the peak value of an N = 8 averaged signal.

that, in conjunction with spin-diffusion, the coherence was degraded in a time

shorter than the 5 ms interval between the pulse and the onset of the CAdI

cycle. It is possible, even likely, that the crystal was significantly contaminated

with water, which would certainly cause shorter relaxation times—recall the

discussion of § 3.2.1 and Fig. 3.4 where in the sample-on-oscillator setup the

resonance frequency of the oscillator increased even after several weeks in vac-

uum due to the liberation of water from the sample.
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Chapter 6

Future Work: NMR-FM Measurements of

Magnesium Diboride

“The Force will be with you...always.”

- Star Wars

6.1 Future Work: MgB2

It was discovered in 2000 that magnesium diboride (MgB2) becomes

superconducting at Tc = 39 K [64]. This superconducting transition tempera-

ture is not extraordinarily high, but is nearly twice the highest Tc known for all

other intermetallic superconductors (Nb3Ge held the record at 23 K). It owes

its high Tc to the small masses of its composite two atoms; the electron-phonon

interaction of the theory of Bardeen, Cooper, and Schrieffer is manifested in

this material. Within about one and a half years of its superconductivity being

discovered, most of the physical properties of MgB2 were reported; a review

of this research can be found in a special issue of Physica C [65], and a fairly

transparent overview of the history and importance of MgB2 can be found in

the March 2003 issue of Physics Today [66].

NMR measurements are among the many experiments performed on
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any superconductor. In particular, relaxation times as functions of temper-

ature can tell us the mechanism mediating superconductivity. For instance,

s-wave superconductors (i.e., those where the electron-phonon interaction is

at work like MgB2) exhibit the well-known Hebel-Slichter coherence peak in

the relaxation rate 1/T1 at Tc, while d-wave superconductors (like the high Tc

copper oxides) do not. Furthermore, the temperature dependence of 1/T1 can

shed light on the symmetry and anisotropy of the superconducting gap.

The temperature dependence of 1/T1 has been measured for MgB2 pow-

der samples [67, 68]. However, the Hebel-Slichter coherence peak has been

broadened so much by the angle-averaging due to the powder that it is hard

to claim that it has been observed. This is the heart of the issue: one of the

unfortunate qualities of MgB2 is that large single crystals cannot be made.

The size limit to date is a hexagonal cylinder ∼ 100 µm between opposite

vertices and 10 µm thick. Because of the limits on size, all NMR data to date

have been powder measurements. These measurements average over all angles

of the crystal because of the random orientation of the crystal axes of the

powder. This results in data that is broadened because the electronic proper-

ties of MgB2 are highly anisotropic. For example, in a magnetic field of 8 T,

grains of the layered structure of MgB2 shown in Fig. 6.1 with layers parallel

to the field are superconducting, while those with layers perpendicular to the

field are not. To understand superconducting properties, single crystal data

is infinitely more important than powder data. Enter NMR-FM: the only

present technique that can measure NMR data on single crystals
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Figure 6.1: Unit cell of MgB2. The in-plane lattice parameter for the boron planes
is a = 0.3086 nm, and the out-of-plane lattice parameter is c = 0.3524 nm.

of MgB2 is NMR-FM. This alone demonstrates the potential of NMR-FM,

but the future experiments outlined below will prove its power.

6.1.1 Feasibility Calculations

Here, we present conservative calculations of the feasibility of using

NMR-FM to measure 11B NMR in MgB2 single crystals. The unit cell is shown

in Fig. 6.1. We will begin by calculating the magnetization from Curie’s Law

Mo = N
γ2~2(I(I + 1))

3kBT
Ho, (6.1)

where γ = 2π × 13.66 MHz/T and I = 3/2.

We determine N from the atomic density n of 11B and the volume

of the crystal to be measured V , taking into consideration that the natural
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abundance1 of 11B is 81.2%

n =
6 B/u.c. × 0.812 11B/B

6
(

1
2
(0.309 nm)2 × 0.352 nm

)
/u.c.

= 4.83 × 1028 11B/m3, (6.2)

where the denominator is the volume of the unit cell. We will assume a sample

volume of (20.0 µm)2 × 1.00 µm = 4.00 × 10−16 m3; the area is typical of

smaller crystals, and the thickness is that of the resonance slice (we have tacitly

assumed the slice is entirely within the sample). Thus, in such a volume we

find N = 1.93 × 1013 11B. Equation 6.1 then tells us that in an 8.2 T field

the magnetization at temperature T is

Mo =
1.2 × 10−15 J/T

T
. (6.3)

If we now assume that the field gradient at the sample is 10 G/µm, we can

calculate the expected ideal2 force at each temperature using

F =
1.2 × 10−15 J/T

T
× 103 T/m. (6.4)

To calculate the minimum detectable force, we assume previously ob-

served values of kosc = 4 × 10−4 N/m, ωosc/2π = 2 kHz, and Q = 103.

The sensitivity in a bandwidth ∆ν is thus

Fmin = 4.2 × 10−17 N√
K · Hz

×
√

T ∆ν. (6.5)

Table 6.1 delineates the temperature dependent parameters for the experiment

1It is possible to make crystals using only 11B, but since this is supposed to be a conser-
vative calculation, we simply assume the natural abundance.

2Ideal in the sense that we can manipulate all possible spins.
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T (K) Mo(J/T) Fexpected(N) Fmin(N) SNR
300 3.8× 10−18 3.8 × 10−15 1.1 × 10−15 3.3
77 1.5× 10−17 1.5 × 10−14 5.8 × 10−16 26
39 2.9× 10−17 2.9 × 10−14 4.1 × 10−16 71
10 1.2× 10−16 1.2 × 10−13 2.1× 10−16 550
4 2.7 × 10−16 2.7 × 10−13 1.4 × 10−16 2000

Table 6.1: Important values for the magnetization, expected force, force sensitivity,
and signal-to-noise ratios at interesting temperatures.

for interesting temperatures. The prospects for the experiment in this light

are outstanding as the temperature is decreased.

Aside from the expected ideal signal, the other major concerns are based

around the experimental parameters, namely that the spins meet the adiabatic

condition, and that the fraction of spins available is large. The adiabaticity

factor for sinusoidal frequency modulation is given in terms of the modulation

amplitude Ω, the RF field strength H1, and the oscillator resonance frequency

as

1

Λ
=

(γH1)
2

ωoscΩ
, (6.6)

and the maximum ẑ component of the magnetization is

(
Mz

Mo

)

max

=
1√

1 + (γH1

Ω
)2

. (6.7)

A typical FM amplitude is 2π × 50 kHz (or below), and H1 ∼ 5 G is safe to

assume. Some values of the adiabaticity parameter and maximum manipula-

ble magnetization for specific FM amplitudes are given in Table 6.2. While
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Ω/2π (kHz) (Mz/Mo)max 1/Λ
10 0.83 2.3
20 0.95 1.2
30 0.98 0.78
40 0.99 0.58
50 0.99 0.47

Table 6.2: Values of the adiabaticity parameter and maximum manipulable mag-
netization for specific FM amplitudes assuming H1 = 5 G.

the maximum magnetization is comforting, the adiabaticity factor is not. In-

creasing H1 to 10 G increases 1/Λ by a factor of four, but this is still relatively

low for large Ω. An alternative method of FM modulation using the tangent

function that will increase this factor further is presented below.

6.1.2 Experimental Plan and Considerations

The first experiments to be performed are to measure the relaxation

times T1 and T2 as functions of temperature using the sample-on-oscillator

setup. While magnet-on-oscillator may be feasible for this sample, it is not

recommended. In fact, the refining of magnet-on-oscillator MRFM experi-

ments is a difficult, long-term goal, whereas many readily accessible sample-

on-oscillator MRFM experiments can be conceived. What we need right now

is to show that NMR-FM can be used to actually do NMR, and the best way

for this to happen is to use the sample-on-oscillator experiment.

The other major reasons for using the sample-on-oscillator setup are

due to the gradient-producing magnet. This magnet should be a long cylinder
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whose field and gradient profiles are easily and accurately calculated. The

magnet should be made from iron (Ms = 1700 kA/m), if not gadolinium

(Ms = 1980 kA/m); this will maximize its field gradient at a given sample-

magnet distance for a fixed length-to-diameter aspect ratio. The magnet

should be mounted in the center of the tube piezo, or a new holder should

be made. One important thing is that the magnet must be held securely oth-

erwise the field from the NMR magnet will move it; two 0-80 set screws have

been successfully used for this purpose in the past. The length of the magnet

will be limited by the spacing between the tube piezo stage and the oscillators;

this is currently 1.25”. The purpose of this experiment is not to show an image

of the sample, so any resonance slice that maximizes the SNR will suffice. The

largest such slice is the one that is exactly as thick as the MgB2 crystal itself,

but note that all other smaller slices have an equal SNR.

We state with confidence that the probe is ready to use on a daily ba-

sis. The major issue then that will be faced in making the first measurements

on MgB2 will be maintaining the alignment of the fiber to the oscillator dur-

ing cool-down. This, however, may prove to be less difficult than expected;

the large range (roughly 1 cm) of the external positioners3 of the three main

stages and the use of the piezo bimorph should be able to counter act any

temperature-driven misalignment. Using a large diameter magnet like that

described above will be useful because its motion relative to the oscillator will

3It will be extremely advantageous to install some kind of turn-meter, something similar
to those used for 10 or 15-turn potentiometers.
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likely be less than the magnet’s radius, leaving only the fiber and the oscillator

to align.

If necessary, the piezo bimorph can be adjusted to give a larger range

of motion because it is currently configured with one of the outer electrodes

grounded, while the voltage is applied to the other outer electrode. In order

to maximize its range, the inner electrode should be grounded, and opposite

voltages should be applied to the two outer electrodes. This option also im-

plies the design and construction of a new bimorph holder that will keep its

electrodes isolated from the probe; delrin and phenolic are low-temperature

compatible and should do the trick, but macor is always an option4.

6.1.3 Tangent-Wave Cyclic Adiabatic Inversion

After all of the cool-down issues have been dealt with, another major

issue to be handled is that of spin inversion. As demonstrated above, the

adiabatic condition may be an issue for MgB2 using cyclic adiabatic inver-

sion. More precisely, sinusoidal adiabatic inversion may be a problem. In this

section, we outline different ways one might try to optimize the adiabaticity

factor 1/Λ.

Increasing the adiabaticity factor can be achieved most readily by

changing the two main parameters of CAdI, namely the frequency modula-

tion amplitude Ω and the RF field strength H1. Spin-lattice relaxation times

4The shop always has plenty of free scrap macor chunks.
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for 11B from powder NMR at 7.2 T have been measured as short as ∼ 500 ms

at 300 K, and as long as ∼ 3000 ms at 5 K [69], so if we can boost the adiabatic

factor, we may be able to use cyclic adiabatic inversion. Using the sample-

on-oscillator configuration will help us do just this because the unloaded os-

cillators to be used in this study have resonance frequencies of about 4 kHz;

placing one crystal (tens of nanograms) of MgB2 will reduce the frequency

(recall the adiabaticity factor 1/Λ ∝ 1/ωosc). However, the most efficient

way to boost Λ is by reducing the diameter of the RF coil and thus increasing

the RF field strength H1 (1/Λ ∝ H2
1 ). This will mean that the coil’s motion

during cool-down will then become an issue if it is less than ∼ 1 mm in di-

ameter. If this route is chosen, then the coil should be secured to either the

permanent magnet (or its stage) or the fiber chuck. Making a new coil may

further prove useful because less power will be needed to establish acceptable

values of H1 and the oscillator and sample will then absorb less power and

have stable temperatures5. In the end, if cyclic adiabatic inversion of any kind

does not appear feasible, it is not the end of the world because other inversion

methods exist (see Section 1.3.1.3: Spin Manipulation Regimes).

The less direct method, but perhaps the only way to go, is to use an

inversion function other than our typical sinusoidal modulation of Heff · ẑ.

If the adiabatic condition is to be pressed at all, it should be pressed far off

resonance because although spins that are lost will begin to relax along Ho,

5The issue of sample and oscillator temperature may be enough to warrant using inter-
rupted cyclic adiabatic inversion regardless of 1/Λ.
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they may be subsequently relocked as the field sweeps past them again in a

short amount of time; relocking of spins is less probable if they were lost near

resonance because the effective field will only pass by them again after π/ωosc.

Thus, if we consider H1 fixed for all time, then the function we choose should

move more slowly through resonance than at its extrema. One of the most

obvious analytical functions that would satisfy this criterion is the tangent

function. We cannot simply use the tangent function in all its glory because

it is unbounded, and because it only has a positive slope. The true function

that should be used would be piecewise-composed of part of −tangent and

part +tangent. The “part” of tangent used would be where it is finite, say, in

the range from −π/4 to +π/4 (tan(±π/4) = ± 1. The proposed function is

shown in Fig. 6.2.

We need to now derive an adiabatic condition in terms of our mod-

ulation parameters and the oscillator resonance frequency. For the sake of

generality, we will first derive a statement for a function f(t), then apply it to

the tangent wave.

The basic adiabatic condition states that the Larmor frequency of the

spins about the effective field (ωL) must be much greater than the angular

frequency of the effective field about the origin (ωeff ). To apply this statement

to our system, we take

Heff (t) = H1x̂
′ +

Ω

γ
f(t)ẑ, (6.8)

ωL(t) = γ | Heff (t) |, (6.9)
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Figure 6.2: Proposed piecewise inversion function for cyclic adiabatic inversion.
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periods are +tan(ωosct). The tangent functions are truncated and merged at ωosct =
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ωeff (t) =
dθ

dt
, (6.10)

where ωL(t) and ωeff (t) are functions of time, and where we take θ to be

the angle from x̂′ to Heff as in § 3.2. In this notation, the time-dependent

adiabatic statement is

ωL(t) À ωeff (t). (6.11)

Next, we write

ωeff (t) =
d

dt
tan−1

(
Ω

γH1

f(t)

)
, (6.12)

which reduces to

ωeff (t) =
Ω/γH1

1 +
[

Ω
γH1

f(t)
]2

d

dt
f(t). (6.13)
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At this point we have two choices. We can make the normal adiabatic

condition proclamation that ωL À ωeff , or we can adopt the time dependance

of Eq. 6.11. The latter will result in a function that would be most efficient,

which is to say that one could declare that ωL(t) = nωeff (2) for all time,

then derive a function for each value of n. We will not undertake this exercise

at this time, but emphasize that this method is the best route for optimizing

the adiabaticity factor for a given set of parameters. This will also likely

lead to the maximum force signal because, as noted in § 3.2, the maximum ẑ

component of the magnetization (and thus force) decreases as the adiabatic

condition is more well-met. At this time, we opt for the former, and apply the

very general result of Eq. 6.13 to the specific case of tangent-like modulation.

Let f(t) = n tan(ωosct), where n ∈ R and ωosc is the oscillator reso-

nance frequency. The angle the effective field makes with the x̂ axis is

θ = tan−1

(
Ω

γH1

n tan(ωosct)

)
. (6.14)

Notice that if n Ω/γ = H1 then ωL = ωeff . In this case, the angular velocity

ωeff is constant and equal to the oscillator resonance frequency. For usable

present-day oscillators whose ωosc ∼ 2π × 5 kHz, the adiabatic condition is

well met because γH1 ∼ 2π × 50 kHz. This represents a case that we may

not want because the adiabatic condition is too well met, which may result in

degradation of the force signal.

Moving along then, Equations 6.10 and 6.13 then tell us

ωeff (t) =
Ω/γH1

1 + ( n Ω
γH1

)2tan2(ωosct)

nωosc

cos2(ωosct)
, (6.15)
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which we can rewrite as

ωeff (t) =
nωoscΩ/γH1

cos2(ωosct) + ( n Ω
γH1

)2sin2(ωosct)
. (6.16)

The traditional adiabatic statement compares the maximum value of Eq. 6.16

to ωL = γH1. The maxima of Eq. 6.16 are found by determining the points

at which the angular acceleration of the effective field, αeff (t), goes to zero.

Straightforward differentiation of ωeff (t) reveals

αeff (t) =
2nω2

oscΩ

γH1

1−
(

n Ω
γH1

)2

csc2(ωosct) +
(

nΩ
γH1

)2

sec2(ωosct)
. (6.17)

The possibilities for the extrema of ωeff are when

γH1 = n Ω, (6.18)

ωosct = m
π

2
, m ∈ R. (6.19)

The condition of Eq. 6.18 was noted above (when ωeff (t) was constant). The

second condition, Eq. 6.19, occurs when the tangent function diverges—we

will avoid this region by truncating our piecewise waveform so that its domain

is [−π/4, π/4]. The maximum angular velocity of the effective field will then

be at the extrema of this domain. This domain is also nice because the re-

sulting range is [−1, 1], which allows Ω/γ to retain its usual meaning as the

modulation amplitude. . . though this does change if n 6= 1.

To finally arrive at an adiabatic condition, we evaluate the angular

velocity of the effective field ωeff (ωosct = π/4) to obtain

2nωoscΩ/γH1

1 +
(

n Ω
γH1

)2 ¿ γH1, (6.20)
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which we rewrite in the usual way as

1

Λ
=

(γH1)
2

2nωoscΩ
+

n Ω

2ωosc

À 1. (6.21)

Figure 6.3 shows the effect the parameter n has on 1/Λ. The parameters

chosen for the figure had realistic experimental values Ω = 2π × 50 kHz,

γ = 2π × 13.66 MHz/T, H1 = 3 G, while the oscillator resonance frequencies

ωosc/2π were chosen between 1 kHz and 32 kHz. The adiabatic condition is

well-met for all values of n for low frequency oscillators, but is quite close for

each of the resonance frequencies chosen. This is allows us to fix n at unity,

and thereby keep the traditional meaning of Ω as the modulation amplitude.
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6.2 Conclusion

In conclusion, the prospects for performing NMR-FM measurements

on the superconductor MgB2 are good. The calculations presented imply that

the signal strength should not be an issue if the spins can be locked to the

effective field. If the traditional sinusoidal FM does not appear to work, the

tangent-wave FM may increase the adiabaticity factor enough to readily lock

the spins. It appears that the only thing left to do is the experiment (which

of course will reveal a seemingly endless number of sub-experiments).
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Appendix A

Launching into the Fiber

Launching the light from the laser diode into the fiber optic cable of

the directional coupler is, by any measure, the most tedious task of the current

experimental setup. It is in principle a very simple procedure that in its most

basic form is simply the collimation of light between two lenses. The arduous

nature of the event (and it is an event) rears its ugly head when you realize

that the margin for error in positioning of the two lenses is exceptionally

small, a consequence of the size of the light emitting area of the laser and the

diameter of the single mode fiber. The fiber port and laser port of the laser

bench from Optics For Research (OFR) are quite well manufactured, and can

allow up to 25% coupling into the fiber. The key element to assuring a decent

coupling (> 18%) is patience. In addition to this, I have found the step-by-

step instructions from OFR, and a basic understanding of the two-lens system,

invaluable.

The first time you perform an alignment, it is extremely instructive to

take the ports apart. This will give you some idea of the guts of the system,

and will acquaint you with what happens when you turn each of the screws.

The main components of the fiber and laser ports are the same; the only real
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differences are that one has an FC connector for a fiber cable, and the other

has a holder for a laser diode. The direction of light flow is the +ẑ direction,

as in Fig. 2.4.

When looking at the FC connector (or diode leads), you are looking at

the rear face of the port. The rear face has one through hole for the connector

or diode and three sets of three screws located 120◦ apart. The through hole is

smaller than the actual component and serves to hold the component in place

by squeezing it against the bulkhead. In each set of screws, the left socket cap

screw is used for ẑ adjustments, the middle flat-headed socket screws hold the

component in place, and the right steel plunge screws that are recessed are

spring-loaded and apply the counter force for the ẑ adjustments.

The front face of the port is plain, and should face the front face of

the other port during adjustments. The lens is attached to the inside of the

front face of the port with a ring magnet. Additionally, the spring-loaded

feet of the steel plunge screws touch the inside of the front face. Adjusting

the socket cap screws on the rear will move the front face and thus the plane

in which the lens resides. The ring magnet is held in the x̂-ŷ plane by two

positioning screws on the outer perimeter of the port1 at 12 and 4 o’clock, and

by the spring-loaded counter force at 9 o’clock, when viewed from the rear.

The screw at 9 o’clock on the perimeter is for locking the x̂-ŷ position of the

lens, which is unnecessary for our application so it should not be touched2.

1These screws move in the x̂-ŷ plane.
2Locking the port can lose all of your diligently sought after coupling-don’t risk it!
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The first thing to do when launching into the fiber is to remove the

fiber bench from the probe. I have tried launching into the fiber with the

bench attached to the probe in two situations, once on the table, and once

while the probe was in the NMR magnet-both failed miserably. You need the

stability the lab table provides, not for the optics, but for your hand. Every

adjustment you make to the ports should be done with your wrists planted

on the table. This posture will allow only your fingers to move as they make

the adjustments. These restrictions sound quite silly and it may seem that

I’m over dramatizing things, but I’m not; a rotation of any one screw by 15◦

is enough to lose over half of your coupling. Having the fiber bench on the

lab table also saves your back a lot of pain during this procedure, which takes

even the experts at OFR at least two hours.

In order to collimate the light into or from the ports, you must first

secure the bench to a small piece of optical breadboard, and fix the assembly

to the table with some duct tape. You will need to borrow the connectorized

laser from the other probe to align the fiber port, the short (20 cm) lime-

green multi-mode fiber from the black OFR box, the photodiode from the

Yttrium-Hydride transmission breadboard (or where ever), a voltmeter, and

a hex-driver (not an Allen key!) that fits the ẑ socket caps.

The fiber port should be collimated first. Attach the FC connector

from the laser to the fiber port. Check the beam by moving a flat screen3

3I make the screen out of scotch tape so that the beam spot is not too intense to view
with the naked eye
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back and forth from the fiber port to the laser port. Though the x̂-ŷ position

shouldn’t need to be altered much at all, adjust the x̂-ŷ screws to obtain a

circular beam. If the beam is well collimated, then the laser spot will appear

to have a constant diameter over this entire range. If the beam is diverging,

the lens is too close, and the ẑ screws need to be loosened; if it is converging, it

is too far from the fiber and ẑ screws should be tightened. Make the necessary

adjustments to collimate the beam with great care-you should use 1/8 turns

or less.

Next, set up the laser port. Make sure to protect the laser during

this entire process by making certain that the leads of the laser diode are all

electrically connected, and that you and the entire fiber bench are grounded.

Once everything is in place and adjustments are ready to be made, connect

the laser to the current supply and turn it on so the beam is easy to see, but

not too bright. Now you should collimate the beam from the laser port in the

same manner as for the fiber port (when it doubt, a slightly converging beam

is preferred to a slightly diverging beam). The major difference here will be

the magnitude of adjustments needed to obtain a circular beam. Additionally,

you will notice the laser spot will have a bright stripe across its middle. This

is due to the actual shape of the light emitting portion of the device being

rectangular-there is no way to get rid of this without replacing the lens.

Now that both ports are collimated, replace the connectorized laser in

the fiber port with the lime-green multi-mode fiber. Set the free end of the

fiber up so that it is pointed at the photodiode. Adjust and fix this assembly
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using black cloth and foil to reduce stray light from hitting the photodiode.

The final setup should not be touched after finding a good light level-brushing

your hand against the cloth is enough agitation to cause a light leak during

alignment.

The next step is the actual coupling of the light from the laser diode into

the fiber, and requires, as previously mentioned, extreme patience. Increase

the laser current until a visible amount of light is launched from the laser

port toward the fiber port. Adjust the transverse plane screws to minimize

the clipping of the beam entering the fiber port aperture. Adjust the gain

of the photodiode circuit so that this light level is near the low end of its

response. Next, iteratively adjust the x̂-ŷ screws to maximize the voltage on

the voltmeter. You will have to periodically adjust the gain because the voltage

will increase dramatically as the focal point of the lens gets closer to the light-

emitting part of the diode. Once you have reached the first maximum in the x̂-ŷ

plane, you will have to make extremely small (less than 1/20th of a turn) back

and forth adjustments while monitoring the voltage. When you are confident

the maximum has been achieved, switch to the ẑ screws. Tighten each ẑ

screw slightly going clockwise while monitoring the voltage. It is common

(and perhaps necessary) to see the voltage dip as you tighten one or two of

the screws; the third one should then increase the voltage beyond the previous

maximum; you will develop a feel for when it won’t hurt to tighten while the

voltage is decreasing. As the voltage gets higher and higher, the system gets

touchier and touchier. You will need to make extremely small adjustments to
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squeak out 20% coupling. The technique I have used to successfully make these

small adjustments is to balance the Allen driver on my finger so that its center

of mass is slightly off my finger; the torque resulting from the gravitational

pull will then turn the screw the ridiculously small amount needed. When you

have again maximized the coupling, repeat the process starting with the x̂-ŷ

screw adjustments until the coupling is about 20%.

The fiber bench with the fiber and laser ports is the most economi-

cal long-term option, but is also the most tedious to maintain. The above

instructions should lead you to good coupling, but remember that 25% is as

good as it gets. Other laser options that come with 25% nominal coupling

include pigtailed laser diode modules and fully connectorized and optically

isolated laser-supply stations; both are suitable for room temperature pur-

poses, though the full potential (and price justification) of the latter will likely

only be realized at low temperatures where noise from the laser is a serious

issue.

The pigtailed design used on the other probes in the lab is easy to use,

but has no optical isolation, which has been the cause of observable power

fluctuations during experiments4. One advantage of the fiber bench is that

an optical isolator can be inserted between the two ports in order to stabilize

the laser power output (connectorized isolators exist for the pigtailed mod-

ules). The isolator uses Faraday Rotation of polarized light: light from the

4The laser settles down after a few hours, but having to wait is annoying.
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laser passes through a polarizer (P1), is rotated 45◦ clockwise by a permanent

magnet in the isolator, passes through a second polarizer (P2) at 45◦ degrees

to the first, goes out to the fiber, reflects somewhere causing it to head back

toward the laser, passes through P2, is rotated another 45◦ by the isolator’s

magnet, and finally hits P1 at 90◦ to its axis, which allows no light back to the

laser. One disadvantage of using the optical isolator with the current setup

is that the fiber bench would have to be kept out of the field of the magnet

because the extra field will cause additional rotation of the light, which would

decrease the isolation. Our current optical isolator from OFR has been on the

probe while it was in the magnet so its isolation may not meet specs. This

may also have caused an observed decrease in fringe size when the probe was

in the magnet [27]. Because the laser stability does not seem to be a current

issue with this probe, and because the isolator halves (or more than halves)

the coupling into the fiber, it has been removed for the time being.
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Appendix B

BNC Feedthrough Vacuum Compatibility

Leaks in the vacuum system are a great headache. After many attempts

to make vacuum compatible BNC feedthroughs, the following procedure has

proven successful. Begin with a 1 inch thick KF blank flange. Drill a clearance

hole through the axis of the flange. Next, mount the flange on the mill so that

it can be cut at 45◦ to its axis. Remove just enough material that the flat is

slightly larger than the diameter of the collar of the BNC. Drill a clearance

hole perpendicular to this flat, but only so deep that it breaks into the through

hole along the axis. At this point, make sure you can see material around the

outside of the collar of the BNC when it is placed in the hole; remove more

material if necessary. Rotate the part 90◦ and repeat these first steps. Do

not chamfer the holes or else the collar will not evenly touch the flats. When

the milling and drilling is finished, you will notice rough edges inside the axis

hole where the other holes have broken through: clean off any large burrs, but

don’t waste your time trying to make the edges smooth. Remove the cutting

fluid from the part by boiling it in acetone for several minutes at least twice.

After the final hot acetone bath and before the part dries, rinse the flange with

methanol to remove the acetone polymer. Wrap the clean flange in aluminum

foil to keep it lint free.
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The next thing to do is prepare the chassis-isolated BNC feedthroughs

for the epoxy. First, solder all leads to the BNCs1. I recommend using solid

wire instead of braided wire. Fill the core cups up with solder before inserting

the wire. Make sure there are a few millimeters of bare wire between the solder

and the insulation so the epoxy can bind directly to metal. When they have

dried, clean the flux off all surfaces with clean acetone-soaked cotton swab;

repeat this until the swabs no longer pick up any visible residue2. After the

BNCs have been cleaned, apply a generous layer of superglue to the metal-

insulator interfaces and over the solder joint on the core electrode. Next,

repeat this with 5-minute epoxy, one BNC at a time. Apply the epoxy using

the wood end of a cotton swab. Be sure to use only enough epoxy to cover

the soldered leads and the metal-insulator interfaces since if there is too much

epoxy it will run over the sides and drip onto the threads, making the piece

too large to fit into the clearance holes in the flange. When the epoxy has

dried, inspect the lab side of the feedthrough to make sure no glue or epoxy

has leaked through and filled up the center female electrode.

At this point, the BNCs should appear as depicted in Fig. B. Once the

BNCs are sealed, they should be secured into the flange3. Do this, as before,

using the 5-minute epoxy, one feedthrough at a time. Apply just enough epoxy

to form a continuous ring to the vacuum side of the BNC collar (where the

1Make sure to do a good job because soldering after the BNCs are set in epoxy is
dangerous because the heat can crack the epoxy.

2Do not soak the BNCs in acetone to remove the flux because the insulating material is
readily dissolved by acetone.

3Test the conductivity through both electrodes of each BNC before proceeding.
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Figure B.1: BNC with the proper amount of epoxy. Any more epoxy will spill over
the edge onto the threads.

BNC will touch flange). Insert the BNC into its hole in the flange and twist it

around twice while pressing gently; this will make certain the epoxy is evenly

applied around the BNC. Inspect the piece from the vacuum side to make sure

that the leads are not touching other leads or the walls of the holes in its final

position. Allow the epoxy to fully cure with the BNC in place before repeating

these steps for the other feedthroughs. After all the feedthroughs have cured

in place, apply a coating of superglue over the flange-epoxy-BNC interface

as a bit of insurance. Finally, prepare the flange for the vacuum compatible

Stycast epoxy. Make a small protective barrier around the axis hole of the

flange out of modelling clay incase the epoxy overflows. Prepare the Stycast

epoxy according to its directions, making sure to pump on it until the bubbling

has subsided for several minutes. Slowly pour the epoxy into the hole while

maintaining a constant flow. Pour in the epoxy until the level reaches the

surface of the flange. Let the epoxy cure overnight at room temperature; do
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Figure B.2: Photographs of completed BNC feedthrough.

not cure the flange with heat cycle. Have the part leak checked after removing

the modelling clay with an alcohol-soaked cotton swab. The final part should

look something like Fig. B.
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