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Oxygen hole-doping effects on a spin-chain system, Ca2+xY2−xCu5O10−δ

(CaYCuO) are reported. CaYCuO is a good specimen to study the magnetic

properties of the CuO2 chain at the ground state because it has no complex

structure other than the chain and it has hole dopability up to the formal

copper valence number of +2.4. Specifically, we can dope holes into the CuO2

chain by substituting Ca2+ for Y3+ or by utilizing oxygen deficiency. After

a systematic study of the two methods to dope holes, we found that oxygen

doping makes a more critical change in magnetic ordering in the chain than the

replacement of Ca2+. Oxygen deficiency effects of the chain on the magnetic

properties were explained using a mean field theory. A new relation for the

effective hole doping was found as p = x−aδ, where a = 3/2(x− δ)−1/4, and

the linear equation, p = x−(2/3)δ. We study the anisotropy of magnetic prop-

erties of single crystal Li-cathode material (LiFePO4) for g-factor, Curie-Weiss
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temperature, and effective moment. Magnetic properties Au/SiO2 coated γ-

Fe2O3 are compared with pure γ-Fe2O3 finding a decrease in the blocking

temperature and the irreversible temperature for the coated nanoparticles.

viii



Table of Contents

Acknowledgments v

Abstract vii

List of Tables xi

List of Figures xii

Chapter 1. Introduction 1

Chapter 2. Theory and Background 3

2.1 Basics of magnetism . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Ca2+xY2−xCu5O10−δ . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Oxygen deficiency in cuprates . . . . . . . . . . . . . . . . . . 25

Chapter 3. Experiments 31

3.1 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Sample Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 X-ray Diffraction [103] . . . . . . . . . . . . . . . . . . . 34

3.2.2 Iodometric Titration . . . . . . . . . . . . . . . . . . . . 36

3.3 Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Review of Measurement Techniques . . . . . . . . . . . 40

3.4.2 Semi-adiabatic calorimetry . . . . . . . . . . . . . . . . 44

3.4.3 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . 49

ix



Chapter 4. Fe magnetism in single-crystal LiFePO4 and in Fe2O3
nanoparticles 52

4.1 Anisotropy in the magnetic properties of single crystal LiFePO4 52

4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . 55

4.2 Effects of Au/Silica double coating on the properties of Fe2O3
magnetic nanoparticles . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . 69

Chapter 5. Results and Discussion of Ca2+xY2−xCu5O10−δ 80

5.1 Sample analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 x-ray diffraction . . . . . . . . . . . . . . . . . . . . . . 80

5.1.2 Iodometric titration . . . . . . . . . . . . . . . . . . . . 84

5.2 Magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Specific heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Chapter 6. Summary and Future work 105

Appendices 108

Appendix A. High Pressure Oxygen Furnace 109

Appendix B. Iodometric Titration[69] 112

B.1 Preparation of the solutions . . . . . . . . . . . . . . . . . . . 113

B.2 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . 115

B.2.1 Calculations, etc. . . . . . . . . . . . . . . . . . . . . . . 117

Appendix C. Derivation of the Magnetic Susceptibilities in anisotropic
systems 120

C.1 Magnetic field applied parallel to the z-axis . . . . . . . . . . . 120

C.2 Magnetic field applied perpendicular to the z-axis . . . . . . . 122

Bibliography 125

Vita 137

x



List of Tables

2.1 Absence (O) or presence (X) of a long-range phase transition at
a finite temperature for various magnetic systems [23] . . . . . 10
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Chapter 1

Introduction

Low dimensional cuprate spin systems have attracted much attention

because they are the key to understanding high-temperature superconduc-

tivity, and a playground to study fundamental physics of spin interactions.

Ca2+xY2−xCu5O10−δ (CaYCuO) is an interesting quasi one-dimensional sys-

tem because it only has a CuO2 chain structure which makes the analysis sim-

ple; and it is hole-dopable up to the formal copper valence of +2.4. Moreover,

calcium doping and oxygen deficiency have been shown to create hole-doping,

making available the direct comparison of the effects of Ca-doping and oxygen

deficiency on the properties of CaYCuO.

Oxygen has played an important role in cuprate superconductors and

manganite giant magnetoresistants (GMR), but many studies are compli-

cated by multiple oxygen sites, for example, the plane and chain site, in

YBa2Cu3O7−δ or the chain and ladder sites in Ca14Cu24O41. Our oxygen

deficiency study of the more ideal CaYCuO is a good starting point to further

understand the role of oxygen in for cuprate spin chain systems, since only a

single type of oxygen site (on-chain) is present.

We made CaYCuO compounds with various calcium-doping and oxy-
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gen deficiency. After confirming their single phase and chemical stoichiometry

using x-ray powder diffraction and iodometric titration, magnetic susceptibil-

ity and heat capacity were measured to study the dependence of their magnetic

properties dependent on hole doping. During these experiments, oxygen effects

were investigated systematically on the structural and magnetic properties of

CaYCuO. Especially the dependence of the Néel temperature on hole dop-

ing was examined for both calcium-doping and oxygen deficiency. Oxygen

deficiency was found to be more influential in changing magnetic interactions.

In separate studies, the anisotropy of the magnetic properties of the

single crystal Li-cathode material LiFePO4 was measured to determine the

g-factor, the Curie-Weiss temperature, and the effective Fe moment. We ex-

plain these anisotropies with a mean-field theory. Also, magnetic properties

of Au/SiO2 coated γ-Fe2O3 nanoparticles were compared with pure γ-Fe2O3

nanoparticles. A decrease in the blocking temperature and the irreversible

temperature was found for the coated sample.
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Chapter 2

Theory and Background

2.1 Basics of magnetism

This section basically follows ’Quantum theory of magnetism’ by Robert

White [114]. Magnetic properties of solids, including cuprates, are derived

from the electrons in the materials. The electron’s intrinsic magnetic moment

can not be explained by classical mechanics. Therefore let’s use quantum me-

chanics and start with a Hamiltonian describing the motion of electrons. The

general wave equation is given by

i~
∂ψ(r, t)

∂t
= Hψ(r, t). (2.1)

Considering the relativistic symmetry of time and space, we need a linear space

derivative so we get the Dirac expression

H = cα · p + βmc2 (2.2)

where c is the speed of light, α and β are arbitrary coefficients, p = −i~∇ is

the momentum of electron and m is the rest mass of electron. To satisfy the

correct energy-momentum relation E2 = p2c2 + m2c4, α and β should be, by

the 4 × 4 representation,

α =

(
0 σ
σ 0

)
and β =

(
1 0
0 1

)
,
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where σ is the Pauli matrix

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,1 =

(
1 0
0 1

)
.

The wave function ψ has four components. Two of them have positive energy,

which is for electrons, and the others are negative, which is for positrons or

holes. We may add the effect of an external electromagnetic field with vector

and scalar potentials A and φ. Then the Dirac equation becomes

i~
∂ψ(r, t)

∂t
= [cα · (p− e

c
A) + βmc2 + eφ]ψ(r, t). (2.3)

Now if we consider the positive energy terms, the Hamiltonian is given by

H = [mc2 +
1

2m
(p− e

c
A)2 − p4

8m3c2
] + eφ

− e~
2mc

σ ·H− i
e~2

8m2c2
σ · ∇ × E− e~

4m2c2
σ · E× p− e~2

8m2c2
∇ · E. (2.4)

The first term in the second line shows the interaction of electron spins with an

external magnetic field H, the next two terms come from spin-orbit coupling

and the last term, which is called the Darwin term, represents the correction

to the Coulomb interaction due to electron’s fluctuations from the effects of

negative-energy component in the wave function [114]. If we imagine that

the vector potential stationary (∇ × E = 0) and the scalar potential V (r) is

spherically symmetric, then we obtain

σ · E× p = −1

r

∂V

∂r
σ · r× p = −1

r

∂V

∂r
σ · l,

where ~l = r× p. Now considering the p4/8m3c2 and the Darwin term to be

small, and defining the zero of energy as the rest-mass energy, the Hamiltonian

4



for the motion of electrons[114] is

H =
1

2m
(p− e

c
A)2 + eφ− e~

2mc
σ ·H + ζl · σ, (2.5)

where the spin-orbit parameter is

ζ =
e~2

4m2c2

1

r

∂V

∂r
.

For the vector and the scalar potentials, we may think of several sources in-

cluding the uniform external field, the electric quadrupole field, the magnetic

dipole (hyperfine) field which is from the electron-nucleus magnetic coupling,

the fields from other electrons on the same ion, crystalline electric fields, the

fields from interactions between an ion and its surrounding magnetic neighbors,

which is called dipole-dipole interaction, direct exchange, superexchange, dou-

ble exchange, RKKY exchange, etc. Direct exchange is from the direct overlap

of two wavefunctions of electrons within an atom or of adjacent atoms. In-

direct exchange needs intermediaries, which could be diamagnetic atoms for

superexchange and for double exchange. RKKY exchange is from the sur-

rounding conduction electrons [101].

We usually choose only the most important terms for each case out

of the above Hamiltonian because it is so general and not easy to find solu-

tions. Transition-metal ions including Cu2+ have the magnetic electrons in the

outermost d shell of the ions contrary to rare-earth ions which have unpaired

electrons inside the 6s2 shells. So the 3d electrons can easily participate in the

interaction with the ligands and overlap with the oxygen 2p orbitals. It means

5



the crystalline field interaction is important. But the spin-orbit interaction

is not strong because the electrons lie relatively far from the center of the

ions compared to rare-earth ions. Therefore we may write down the effective

Hamiltonian as, in order of descending strength,

H = Hintra−atomic Coulomb + Hcrystal field + Hspin−orbit + HZeeman. (2.6)

The intra-atomic Coulomb interaction gives the spectroscopic energy level,

whose lowest energy sub-level can be determined by Hund’s rule; for example,

the lowest energy level of Cu2+, 3d9, is 2D 5
2
. And the lowest level is enough to

explain magnetic properties because the spectroscopic energy is on the order

of a few eV, but the magnetic energy is on the order of a few meV. The

crystal field Hamiltonian reduces the degeneracy of the lowest spectroscopic

level state. With the help of group theory, we find the degenerate d states are

split into t2 and e states [17]. That is, the ground state of the Cu2+ ion is from

Hund’s rules

|L,ML; S, MS >= |2,ML;
1

2
,MS >, (2.7)

which is (2L + 1)(2S + 1) = 10-fold degenerate. Adding the crystal field,

the ground state would be |Γ, γ; S, MS >= |t2, γ; 1
2
,MS >, where Γ is the

irreducible representation of the point-group symmetry.

For a given spin state, we may calculate the spin-orbit and Zeeman

energy term by using perturbation theory based on the orbital ground state,

|Γ, γ >. This is because the orbital and spin states are not mixed due to

either the inter-atomic or the crystal field, so we may separate the state into a

6



product of two states, |Γ, γ; S, MS > = |Γ, γ > |S, MS >. So the expectation

value of Hspin−orbit + HZeeman is, in first order perturbation,

Heff = Hspin−orbit + HZeeman (2.8)

= λL · S + µB(L + 2S) ·H (2.9)

= 2µBH · S−
∑

Γ′,γ′

| < Γ′, γ′|µBH · L + λL · S|Γ, γ > |2
EΓ′,γ′ − EΓ,γ

(2.10)

=
∑
µ,ν

(µBgµνHµSν − λ2AµνSµSν − µ2
BΛµνHµHν). (2.11)

Here gµν is the g tensor,

gµν = 2(δµν − λΛµν) (2.12)

Λµν =
∑

Γ′,γ′

< Γ, γ|Lµ|Γ′, γ′ >< Γ′, γ′|Lν |Γ, γ >

EΓ′,γ′ − EΓ,γ

. (2.13)

These equations will be used to explain the magnetic anisotropy of LiFePO4.

The Coulomb interaction between the valence electrons on different ions

can be expressed as an effective interaction between the individual electron

spins. Many systems can be explained by this interaction expressed in the

spin states, called the Heisenberg exchange Hamiltonian, whose general form

for the ground spin state of the same ions is

Hex = −2
∑
i<j

(JxSixSjx + JySiySjy + JzSizSjz)−D
∑

i

S2
iz (2.14)

where the second term shows anisotropy from the crystal-field term called

Dzialoshinski-Moriya exchange [23]. For D → ∞, the moments are forced to

lie along to the z-axis, which makes the system behave like the 1D Ising model,
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Figure 2.1: Magnetic specific heats of Ising (left) of Heisenberg (right) model
with the calculation performed using the mean field theory[24]

and for D → −∞, the moments lies perpendicular to the z-axis, which makes

the system 2D planar or XY type.

From the Hamiltonian, we may calculate the partition function Z and

the free energy F = −kT lnZ, which enables us to find all physical quantities.

That is, the magnetic energy Um, the entropy S and the magnetization MT

are the first derivatives of the free energy. And the specific heat C and the

magnetic susceptibility χ are its second derivatives.

Um = < H >= − ∂lnZ

∂(kT )−1
; S = −∂F

∂T
; M = −∂F

∂T

C =
∂U

∂T
= −T

∂S

∂T
= −T

∂2F

∂T 2

χ =
∂M

∂H
= − ∂2F

∂H2
.
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However, only 1D and 2D Ising models have exact solutions. The other

models should be calculated numerically or approximately [24]. Figure 2.1

represents the magnetic specific heats of all models. From these figures, we

find the phase transition occurs for the 2D and 3D Ising models and the 3D

Heisenberg model. The phase transition on each model is summarized in

Table 2.1. For example, mean field theory, one approximate method, gives the

partition function for spin S = 1
2

as

Z = 2cosh(gµBHMF /2kT ) (2.15)

where the mean field HMF = 2nJ < Sz > /gµB = λMs, n is the number

of nearest neighbors, λ = 2nJ/g2µ2
B is the molecular field parameter, and

Ms = gµB < Sz > is the spontaneous magnetization per spin [23]. The Curie

- Weiss constant from this theory is θ = 2zJS(S + 1)/3k [10] which will be

used to explain the Néel temperature of the data.

2.2 Ca2+xY2−xCu5O10−δ

Low dimensional spin systems have attracted a great deal of attention

because they are excellent models for linking experimental and theoretical

studies of spin and charge dynamics. Moreover the low dimension cuprate sys-

tems have been a main topic in condensed matter physics since the discovery

of high - Tc superconductivity in cuprate materials. Cuprate chain systems

can be categorized into two groups according to their geometrical alignment,

see Fig. 2.2. One is the corner-sharing chain where the copper-oxygen-copper
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Table 2.1: Absence (O) or presence (X) of a long-range phase transition at a
finite temperature for various magnetic systems [23]

model interaction d=1 d=2 d=3
Ising Jx and Jy = 0 O X X
XY Jz = 0 O ⊗1 X
Heisenberg J2

x + J2
y + J2

z 6= 0 O O X
1 No temperature below which an order-parameter,
for example spontaneous magnetism, can be defined
but there is a temperature where the susceptibility
diverges in an exponential pattern.
At this temperature, termed the Kosterlitz-Thouless
temperature, vortex-antivortex pairs are
unbounded [59]

interaction has almost an 180o angle. Its ground state shows long range anti-

ferromagnetic order, and high Tc superconductors possess the same structure

in a 2 dimensional plane. Ca2CuO3, La2CuO, Sr2CuO3 and SrCuO2 are ex-

amples of this type. The other group is the edge-sharing chain which shows

around 90o copper-oxygen-copper coupling. The super-exchange interaction

of the edge-sharing chain critically depends on the Cu-O-Cu bonding angle

[33, 74]. This group has been more attractive than the corner-sharing one

because it has diverse magnetic ground states including spin-Peierls phase in

CuGeO3 [75], spin-charge separation [1], spin gap [62], superconductivity un-

der high pressure [110] in a spin ladder system Sr14−xCaxCu24O41+y, extended

magnetic moment formation in Li2CuO2 [112], and Wigner crystallization in

Na1+xCuO2 [46].

Ca0.8CuO2, the x = 2 limit material of the Ca2+xY2−xCu5O10−δ (CaY-
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θ

θ

Figure 2.2: Geometric view of edge-sharing and corner-sharing cuprates

CuO) family, was reported to be stable at 750oC in one of the enormous

trials to find the high Tc superconducting phase right after the discovery of

cuprate superconductors [94], which is isostructrual with NaCuO2 consisting

of one-dimensional chains of edge-sharing square planes linked by Na ions in

an octahedral coordination. After a series of studies following the phase di-

agram (see the Fig. 2.3), Davies [21, 22] published the fabrication and the

structural study of new phases including CaYCuO at 1000oC. The reported

system was for 0 ≤ x ≤ 0.8; x-ray diffraction data shows this system has an

orthorhombic unit cell, and space group Fmmm. The lattice parameters for

x = 0, a = 2.817 Å, b = 6.185 Å, c = 10.594 Å and V = 184.63 Å3. Figure

2.4 shows the powder diffraction data of CaYCuO where the shaded peaks are
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Figure 2.3: Phase diagrams for the CaO-Y2O3-CuO systems at 1000oC [22]

from incommensurate superstuctures. That is because, contrary to NaCuO2

whose available locations are occupied with Na, CaYCuO shows an incom-

mensurate relationship between Ca/Y chain repeat distance and the Cu chain

one. With Ca doping, the positions of the reflections corresponding to the

orthorhombic subcell shifts to a lower angle which indicates a small increase

in the size of the cell as the larger Ca ions are replaced for Y, but the shaded

peaks in Fig. 2.4 undergo a large and systematic variation. The schematic

structure of CaYCuO for x = 2 is shown in Fig. 2.5 where Y and Ca ions

randomly occupy the same sites. The dotted line shows a unit cell which shows

the ratio Ca ions to Cu ions is incommensurately 4 to 5.

The whole range of doped samples of CaYCuO (0 ≤ x ≤ 2) was syn-

thesized successfully with high-pressure oxygen annealing in 1998 by Hayashi

12



Figure 2.4: Powder x-ray diffraction pattern of CaYCuO. Incommensurate
superstructure peaks shaded [22]

et al. [39]; this doping range allows the formal copper valences to change from

2.0 to 2.4. Thereafter these compounds have been revisited because of two

big merits. One is that this system consists only of one-dimensional copper-

oxygen chains without any other complex structures, such as ladders, which

make analysis difficult. The other is this system is very hole-dopable not like

many other spin-chain system including its isostructural compound NaCuO2.

Replacing Ca2+ (1.0 Å) for Y3+ (0.9 Å), the variation of the subcell parameters

in the solid solution is 1%, 2%, and 0.1% for the a, b, and c axes, respectively,

as shown in Fig. 2.9. The increase along the b axis is due to the substitution

of the larger ion (Ca) for the smaller ion (Y), and the decrease in a and c axes

is because the effective hole doping decreasing the Cu-O-Cu bond length. The
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Figure 2.5: Structure of Ca2+xY2−xCu5O10−δ for x = 2
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Figure 2.6: Temperature dependence of magnetic susceptibility and resistance
of CaYCuO [39]

magnetic property of this system changes from long-range antiferromagnetic

order to short-range order with increasing x as shown in the left side of Fig.

2.6. The holes induced with increasing Ca2+ content normally occupy the

oxygen p orbital hybridized with the Cu d orbital. The spin from the hole in

the oxygen orbital couples antiferromagnetically with the spin of the Cu ion,

which makes the CuO4 plaquette nonmagnetic (Zhang-Rice singlet [120]).

For 0 < x < 1, the magnetic susceptibility data in Fig. 2.6 show a sharp

cusp, which is typical of long-range order. As x increases, the Néel temperature

decreases, with values of 28, 24, and 16 K for x = 0, 0.5, and 1, respectively.

For above x > 1.5, the data shows broad maxima and its temperature TMax

increases with x increased up to 32 K for x = 2. The magnetic feature is
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from the chain system with a high concentration of Zhang-Rice singlets, 4-5

of every ten CuO4 plaquettes. Chabot et al. have proposed doping-induced

magnetic dimensionality transitions based on these magnetic data [11]. That

is, with an increasing concentration of doped holes, the magnetic behavior

changes from 3D long-range order to 1D chain behavior and finally to clus-

ter behavior. Even though doped holes induce enormous changes in magnetic

ordering, the electric resistance doesn’t change much. All samples in these

system shows high resistivity and insulating features, that is, decreasing re-

sistance with increasing temperature. The fully doped compound Ca4Cu5O10

shows ∼ 40 Ωcm which is about five orders of magnitude larger than that of

metallic cuprates at similar doping levels. Long range antiferromagnetic order

was confirmed at low temperature for the parent compound of Ca2Y2Cu5O10

by neutron powder diffraction where ferromagnetic intrachain alignment was

revealed [29].

Figure 2.7 shows the NMR lineshape and relaxation times in the para-

magnetic phase ( T > 250 K ) [13]. Two or more large and broad peaks in

the lineshape are evident, which is unusual in this region where a sharper

and almost featureless resonance appears in many copper oxide compounds.

This may be a result of the incommensuate structure between Ca/Y and CuO2

chains. And the participation of Y ions in superexchange bridges between cop-

per ions was proposed from the large shift (∆H/H ≈ 0.7%) and appreciable

broadening (∆ν ≈ 90 kHz) of the shape with temperature. The spin-lattice

relaxation time (T1) shows the minimum at T = 275 K where the spin-spin
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Figure 2.7: NMR lineshape and relaxation times of 89Y in CaYCuO at various
temperatures. [13]
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relaxation time (T2) start to decrease abruptly. The 100 times more shallow T1

minimum than calculated for random Cu+2 dipolar fluctuations shows the ex-

istence of strong Cu2+ - Cu2+ spin correlations as well as proposed 89Y - Cu2+

nuclear - electronic coupling. It is interesting to notice that this strong spin

correlation exists far above the Néel temperature. The electronic correlation

time at the T1 minimum (275 K) is τe ≈ 1/ω0 = 9.5× 10−9 s. And τe ≈ 10−8 s

at 235 K from T2. High frequency ESR measurements of the parent compound

of CaYCuO were performed to confirm the long-range antiferromagnetic order

and to find g‖ = 2.31 and g⊥ = 2.03 above 60 K [81]. And ESR data follows

well antiferromagnetic resonance models of two-sublattices with an uniaxial

anisotropy. The anisotropic field HA is calculated to be 2.29 T and the ex-

change field HE is 32.1 T. And also the spin-flop transition was expected at

Hc = 10.5 T from Hc =
√

2HA ·HE/(g/2).

Thermal conductivity measurements for the parent compound of CaY-

CuO shows two peaks, one sharp peak at 20 K and another broad peak around

90 K, as shown in Fig.2.8 [14]. This two-peak feature has appeared in low di-

mensional cuprates with strong intra-chain exchange coupling over 1000 K

such as Sr2CuO3 (J ≈ 2650 K) [96], SrCuO2 (J ≈ 2500 K) [98], or Sr14Cu24O41

(J ≈ 1500 K) [40, 93], or with spin-Peierls compounds such as CuGeO3 (J ≈
150 K) [3]. Usually the low temperature peak is explained by ordinary phonon

transport and the high temperature one is from magnetic excitations in an

ordered ferromagnet, i.e., magnons [1]. Thus the observation of two peaks in-

dicates that our ferromagnetic intrachain-coupled compound shows evidence
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Figure 2.8: Thermal conductivity of CaYCuO

of magnon thermal transport. The high temperature peak is suppressed for

x = 1 and x = 2 compounds, which is explained due to the strong scattering

of magnons by induced holes. The enhanced thermal conductivity of the fully

doped compound is due to the larger grain size of the compound. However the

second peak is absent for a-axis data for a single crystal sample of the parent

compound (Fig.2.8 b), which could indicate that the dispersion of magnons is

in the the inter-chain direction, could be due to defect scattering of magnons

(single crystals often contain more oxygen and other defects than polycrystal).

This discrepancy is a good topic to study further.

After single crystals of CaYCuO were grown successfully by traveling-

solvent floating-zone method in 2001 [61, 78], magnetic susceptibility and spe-

cific heat were measured with different Ca-doped samples to study the mag-
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Figure 2.9: Lattice parameters of single crystal CaYCuO [61]. Open and closed
circles represent data of the single crystal and powder sample [39], respectively
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netic ground state in the edge-sharing CuO2 chain [61]. CaYCuO series termi-

nates in the fully Ca-doped compound Ca4Cu5O10, and the similar compound

Ca1−xCuO2 was proposed to show a coexistence of an antiferromagnetic order

and a spin-gap state for 0.164 ≤ x ≤ 0.190 [42]. This feature of Ca1−xCuO2

could be one example of an interesting spin state happening around the re-

gion where the Cu-O-Cu angle of the cuprate is between the ferromagnetic

coupling (less than 95o) and the antiferromagnetic coupling (more than 95o)

[75], because the angle of Ca1−xCuO2 (∼ 93.27 [49]) is on the border of two

different magnetic couplings. But the detailed scenario is not settled yet due

to the difficulty in making single crystals of this compound. Therefore a study

of CaYCuO is important because it enables us to test the coexistence of an-

tiferromagnetic and spin gap states for CaYCuO whose Cu-O-Cu coupling

angle is ∼ 91o for x = 0 and ∼ 93.4o for x = 2 [74]. And also due to the

success in single crystal growth, all data from powder samples can be tested

and confirmed.

As represented in Fig. 2.9, single crystal data shows the lattice pa-

rameter b is increasing with Ca doping, but a and c are slightly decreasing as

for polycrystalline samples [39]. Figure 2.10 shows that the antiferromagnetic

order CaYCuO has the b direction for its easy axis for 0 ≤ x ≤ 1.3 at low

temperature even though along the a and c axes, the magnetic susceptibility

stay constant below the Néel temperature (TN). For increasing Ca-doping,

TN decreases from 31, 29, 20, 15, and 12 K for x = 0, 0.5, 1.0, 1.2, and 1.3,

respectively. For x = 1.5 and 1.67, all axes show a small and broad shoulder

21



Figure 2.10: Magnetic susceptibility and specific heat of single crystal CaY-
CuO [61].
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which is not characteristic of antiferromagnetic order but instead of a spin-gap.

And also a hysteresis in magnetic susceptibility is shown for 1.3 ≤ x ≤ 1.67

indicating a possibility of a spin-glass state. The significantly small value of

magnetic susceptibility at x = 1.67 was explained with the decrease of free

spins per Cu to 1/3 from 1 by making spin-singlets out of two Cu2+ spins

located at the sides of the induced hole, which makes the next nearest cou-

pling (J2) antiferromagnetic, see Fig. 2.2. A λ-shaped peak is clear at x =

0, 0.5, 1.0, 1.2 and 1.3 which is characteristic of long-range antiferromagnetic

order. This peak is smeared and shifted to the low temperature region with

increasing hole doping. TN is found from the peak to be 29, 26, 18, 15, and

12 K for the respective x numbers given above. For x = 1.5 and 1.67, a broad

peak was observed instead of the sharp λ-shaped peak, which was attributed

to a short range-order similar to the spin-glass not from the spin gap state

because the broad peak of x = 1.67 should be higher than that of x = 1.5 for

spin gap, but it is not. The spin state for around x = 1.6 is considered a spin

gap from the lowest peak of its specific heat data giving the minimum entropy

consistent with the small number of free spins per Cu.

The left diagram of Fig. 2.11 shows the magnetic phase diagram of

CaYCuO at zero field, as deduced from single-crystal data in ref. [61]. At

low Ca-doping (0 ≤ x ≤ 1.4), CaYCuO is ordered in a long-range antiferro-

magnetic phase and the Néel temperature decreases with increasing x doping.

Around x = 1.5, a spin-glass phase appears but the transition temperature

is about 6 K regardless of the doping level. A spin gap shows up around
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Figure 2.11: Magnetic phase diagram of single crystal CaYCuO [61].

x = 1.6 where more than half of the Cu ions build spin-singlet pairs. And

at this spin-gap region, no evidence was found to explain the coexistence of

an antiferromagnetic phase and the spin-gap phase contrary to the case of

Ca1−xCuO2, even though the two compounds have similar hole concentrations

and Cu-O-Cu angle (∼ 93 K). The intense modulation and the randomness

of Ca/Y ions make holes move less and so they do not arrange suitably to

form the phase coexistence. The right diagram of Fig. 2.11 shows the mag-

netic phase diagram of CaYCuO with 0 ≤ x ≤ 1.3 as a function of magnetic

field and temperature. The magnetic field is applied along the b-axis, and the

typical spin arrangement along a is depicted, that is, along the CuO2 chain.

The spin-flop transition is observed below x = 1.0 along the easy axis (b), and

its transition field is defined as the maximum point of the field derivative of
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magnetization which is shown as a closed circle. And no spin-flop is found at

x = 1.2 and 1.3, and along the a and c axes.

Following a simple uniaxial mean-field model [118], the reason TN de-

creases with increasing Ca-doping (or with increasing inducing holes) is not

due to the decrease of J1 (see Fig. 2.2) related to the exchange field (HE) but

to the decrease of the magnetic anisotropy along the b axis corresponding to

the anisotropy field (HA). This is because with changing x, HE is constant as

∼ 35 K but HA is 1.6, 1.5, 1.0, 0.2, and 0.1 T for x = 0, 0.5, 1.0, 1.2, and 1.3,

respectively. Neutron-scattering experiments confirm the ferromagnetic intra-

chain coupling changes little with hole doping as well as temperature even

though the interchain and anisotropic coupling are decreased [71]. And also

the antiferromagnetic interchain interaction causes an anomalous broadening

of spin-wave excitations along the chain for the parent compound CaYCuO

[73]. These excitations were found to be softened and broadened with increas-

ing temperature and hole-doping, regardless of Q (momentum) direction in

the systematic neutron scattering experiments.

2.3 Oxygen deficiency in cuprates

Oxygen deficiency derives from vacant oxygen crystallographic lattice

sites. This is because oxygen atoms associated with these sites are easily re-

moved and reoccupied. Removal of oxygen changes the average copper valence

and decreases the number of adjacent bonds. After finding high-temperature

superconductivity in cuprates which are easily oxygen-deficient, the effects
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of oxygen deficiency on the superconductivity has been a main topic in the

physics of cuprates. The famous superconductor YBa2Cu3O7−δ (YBCO) has

been found to show superconductivity at 92 K for δ = 0 but no superconductiv-

ity for δ = 0.6. YBCO also makes a geometric transition from orthorhombic

to tetragonal at δ = 0.6 with increasing δ [86]. The critical dependence of

superconductivity on oxygen deficiency has attracted a lot of attention and

various high Tc cuprate compounds were fabricated to explore the effects of

oxygen on other ions, or on the CuO plane.

RBa2Cu3O7−δ (RBCO, R = rare earth) have two hole reservoirs; the

superconducting CuO2 plane and the metallic CuO chain. It is interesting

to see how these planes and chains contribute to the physical properties of

RBCO. Oxygen deficiency was used to separate these contributions [105]. The

appropriate rare earth was chosen to optimize the hole doping concentration

in the plane at the same for each experiment. In such optimal compounds,

δopt increases with the mole fraction of rare earth, decreases with increasing

rare-earth size, and is close to zero (≈ 0.02) at R = Nd [115]. The effects

of oxygen vacancy in the CuO chain layer on the rare-earth ions’ magnetic

ordering and crystal symmetry in RBCO show their magnetic order changes

from 3D long-range order to 2D short-range or other short range coupling [16].

Another famous superconducting cuprate, La2−xSrxCuO4−δ (LSCO)

was also studied to observe the effect of oxygen deficiency on superconduc-

tivity [109]. High pressure annealing at different temperatures was used to

obtain samples with different oxygen contents. From high frequency infrared
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Figure 2.12: Variation in resistivity of LSMO single crystals [93].

spectrum 689 cm−1 studies [31], no oxygen vacancy was found for low Sr doped

compounds because of the stability of the planar oxygen which is the vacant

site in LSCO [87]. The oxygen vacancy starts to increase with increasing Sr

content at x ≥ 0.2. The 689 cm−1 peak disappears at low (x ≤ 0.15) Sr-doping

which is due to the screened effect of charge carriers in the CuO2 plane. But

oxygen vacancy makes Cu2+ localized, which cause the 689 cm−1 peak to reap-

pear. Also the localized Cu2+ induced from oxygen deficiency was found to

suppress the superconductivity in resistivity measurements [31]. In summary,

the oxygen deficiency in LSCO causes an increase in resistivity, Curie constant,

and reappearance of all the infrared bands at higher Sr doped compound (

0.5 ≤ x ≤ 1.20 ) [99]. The similar compound La2−xSrxMnO4−δ (LSMO)
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also shows a strong relation between oxygen deficiency and geometrical and

electrical transitions [63, 89]. Around the metal-insulator transition range

x = 0.14 − 0.16, increasing δ reduces the resistivity dramatically as shown in

Fig. 2.12. A structural phase transition appears at δ < 0 (solid triangle in the

figure) and disappears at δ > 0. And even from Bi2Sr2CaCu2O8−δ (BSCCO)

[19], empirical expressions of the resistivity and thermoelectric power were sug-

gested and their parameters on oxygen deficiency were claimed to be effective

for other high Tc superconductors. That is, the resistivity ρ(T ) = ρ0T
ae∆/kT

and thermoelectric power S(T ) = A + BT where only A and ∆ are sensitive

to oxygen deficiency.

Oxygen reduction is necessary to create superconductivity in R2−xCexCuO4

(R = Pr, Nd, Sm, Eu) where partially replacing the rare earth ions (R+3) with

Ce+4 induces electrons into the CuO2 planes [108]. Oxygen annealing in a

low pressure oxygen environment changes resistivity, the Hall effect and the

Néel temperature. The role of oxygen vacancies in n-doped superconductors

is explained in many different ways including decreasing impurity scattering,

suppression of the long-range antiferromagnetic order in the CuO2 plane, or

changing the number of mobile charge carriers [41]. But the real site of oxy-

gen vacancy is not clear among in the CuO2 plane, in the PrO layer, or in

the apical site located directly above the copper in the CuO2 plane. Recently

the oxygen deficiency has been clarified not to stimulate the electron carriers

such as Ce doping, but to cause hole-type mobility on the CuO2 plane, and

the reducing oxygen annealing creates a vacancy in the CuO2 plane [32] which
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means perhaps the same mechanism can be applied both to hole-doped and

electron-doped superconductors [56].

With changing oxygen content, the corner-shared spin chain system

Sr2CuO3+δ, which is not a typical 2D cuprate, shows superconductivity at

δ = 0.1 with high pressure synthesis [43]. And changing the apical oxygen

occupancy by using annealing under 1 atm N2 at low temperatures (150 K to

250 K), Tc could be increased from 70 K to 89 K up to 95 K [67].

However there has previously been no systematic research on the effects

of oxygen deficiency on the CuO2 plane of edge-sharing chains as far as we

know. The oxygen-effect studies discussed above are not directed towards

the oxygen in the CuO4 plane because there are several sites allocated to

oxygen in the previously-studied compounds, and it is not easy to figure it

out which oxygen site is vacant. Even finding out which site the removable

oxygen is from would be worthy of a Nature publication such as the case of

electron-doped superconductors [56]. Usually oxygen in a CuO2 plane, where

superconductivity is believed to appear, are the last one that could be removed

because of the stability of the site. So it is not easy to study the effects of

oxygen deficiency directly on the plane. But the CuO2 chain compound studied

here can be a good substitute, because 1D study can give good insights into

2D effects. And it is also attractive because it can give a playground to test

many theories of the spin dynamics, and it can be a good candidate to find

new superconductors with a simple geometry. The CaYCuO system is one

of most interesting spin chain systems. This system is hole-dopable by using
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either Ca-ion or oxygen deficiency, which makes a direct comparison available

between cation and oxygen effect on the Cu2 chain.
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Chapter 3

Experiments

3.1 Sample Preparation

All samples of Ca2+xY2xCu5O10−δ, where x = 0, 0.5, 0.75, 0.9, 1.0, 1.25,

and 1.5, were prepared in the form of a polycrystal with the conventional solid

state reaction method. Each of the three initial ingredients CaCO3, Y2O3,

and CuO was predried at 100 oC, 900 oC, and 450 oC,for over 12 hours. The

predried ingredients were measured precisely down to 10−4g according to the

chemical formula. They were mixed and ground in a deep-form agate mortar

with a pestle for over 1 hour. Acetone might be added to help samples mix

homogeneously. The mixed ingredients were put in an Al2O3 crucible and

baked at 900oC for more than 12 hours to take the CO2 out from CaCO3.

This is the calcination procedure. After cooling the ingredients in air, they

are mixed and ground again for 1 hour. And then the mixed ingredients are

baked at 1000oC so they can undergo solid-state reaction. We repeated the

mixing and baking procedure twice more to complete the reaction with good

homogeneity. We noticed that one may feel, from the pestle, grains becoming

less coarse after each mixing and grinding procedure.

Then each sample with the same cation doping up to x = 1.0 is divided
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Figure 3.1: Baking profiles in three different furnaces
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into three groups for different oxygen annealing procedures. The groups were

as followed : the first group, the no oxygen annealed sample group, the second

group, the 1 atm oxygen annealed group, and the last group, the 170 atm

oxygen annealed group. No further annealing procedure was done for the first

group. The samples in the second group, however, were put in a combustion

boat and annealed twice for over 24 hours at 1000oC with 1 atm O2 flow in

a Lindberg Mini Mite tube furnace (Model 55035). A high-pressure oxygen

furnace (Model HPS-3210P, Morris Research Co.) was utilized to make the

sample fully oxygenated for the third group. The third group samples were

annealed for 48 hours at 1000oC and 170 atm oxygen pressure. Careful atten-

tion is needed to check the increase of oxygen pressure. The oxygen pressure

at room temperature could be more than doubled at 1000oC. For example, 8

atm at room temperature goes to 11 atm at 1000oC, 50 atm at room temper-

ature goes to 101 atm at 1000oC, and 71 atm at room temperature goes to

152 atm 1000oC. For x = 1.25 and 1.5, several oxygen pressures were tested

because the first two groups failed to make a single phase. The baking profile

is summarized in Fig. 3.1.

3.2 Sample Analysis

The phase purity of each and every sample was investigated by x-ray

diffraction experiments. Oxygen deficiency was determined with iodometric

titration.
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3.2.1 X-ray Diffraction [103]

Most solid materials can be described as crystalline. When x-rays in-

teract with a crystalline substance, one gets a diffraction pattern. In 1919 A.

W. Hull [48] wrote a paper titled, ”A New Method of Chemical Analysis.”

Here he pointed out that ”every crystalline substance gives a pattern; the

same substance always gives the same pattern; and in a mixture of substances

each produces its pattern independently of the others.” The x-ray diffraction

pattern of a pure substance is, therefore, like a fingerprint of the substance.

The powder diffraction method is thus ideally suited for the identification and

the quantification of polycrystalline phases. Nowadays x-ray diffraction is uti-

lized to find crystallite size and its distribution for nanomaterials as well as to

determine the structure of single crystals.

Scattered x-ray beams from planes of regularly arranged atoms interfere

constructively when they satisfy a condition, called the Bragg law, which can

be written as 2dsinθ = nλ. Here d is the spacing of the planes, θ is the angle

between the incident beams and the scattering planes, n is an integer, and

λ is the wavelength of the x-rays. When such a beam is accumulated (over

103 or 105 planes), the Bragg-reflected beam becomes intensified and readily

detected. We may also express this law as k’− k = ∆k = G or 2k ·G = G2,

where d(hkl) = 2π/|G|, (e.g., d2 = a2/(h2 +k2 + l2) for a simple cubic lattice),

and where k and k’ are the wave vectors of the incoming and scattered beams,

respectively, and G = h b1+ k b2 + l b3 is a reciprocal lattice vector, and h, k,

and l are integers. This law results from the periodicity of the lattice. For an
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arbitrary crystal, we may need to consider the scattering amplitude for the case

of a crystal with a basis, that is, an arrangement of atoms, for each lattice atom.

For a crystal of N cells, it can be written as FG = NSG = N
∑

j fj ·exp[−iG·rj]

where SG is the structure factor and fj is the atomic form factor. Assuming

r = x + y + z, SG =
∑

j fj · exp[−i2π(h × xj + k × yj + l × zj)]. From the

structure factor, we may find from which set of (hkl) the bright peak comes.

All experiments were performed with a Phillips Powder Diffractometer

at a Texas Materials Institute facility which is located on 9th floor of the

ETC building. When electrons with around 30 - 45 kV are collided into Cu

metal, both continuous and characteristic radiations are emitted. To extract

Cu Kα (λ = 1.5418 Å),which is the x-ray source of our experiment, from all

radiation, a LiF single crystal is used as a monochrometer aligned with 22.5o

to the beam line and Ni foil is used to absorb Cu Kβ (λ = 1.3922 Å). 20 µm-Ni

foil can reduce the intensity of Cu Kβ up to 99%, but the intensity of Cu Kα is

reduced only 58 %. The scattered beams from the sample are monitored with

a scintillation detector made with a NaI crystal.

10 - 20 mg of powder samples were prepared on a sample slide coated

with a drop of amyl acetate. The data with the range of 10o ≤ 2θ ≤ 80o

were collected for 3 seconds with 0.05o step size. So it takes around 1 hour

10 minutes to complete 1 data set. Basically, intensity and 2θ are recorded as

a mdi file format, which is analyzed with the Jade 7.0 program. At first, we

subtract background, and identify peak index and angle of the peaks. By using

this information, we may identify samples or calculate the lattice parameters.
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A data base is used to identify samples collected by ”the International Center

for Diffraction Data”, which had over 300,000 single phase profiles by 2003.

3.2.2 Iodometric Titration

Oxygen deficiency can be found using various techniques including iodo-

metric titration [4, 37, 44, 77], thermogravimetric analysis [53], neutron diffrac-

tion [28, 35] and photoemission [95] spectroscopy etc. Among those, iodometric

titration is relatively simple, economical and accurate. For example, a typical

accuracy is 1/100 of an oxygen per formula unit of most compounds. For the

YBCO-123 system, the accuracy is better than 1/20 of that of thermogravimet-

ric analysis. However the oxygen deficiency determined from titration can’t

be applied for a system with defects or multiphases because this technique

assume the specimen is stoichiometric and single phased.

Basically, this technique consist of two titrations. See Appendix A for

the details of the procedures. In the first procedure, the sample is dissolved in

an HCl/KI solution under argon before titration,

2Cu1+∆x + 2∆xI− HCl−→ ∆xI2 + 2Cu+ (3.1)

The amount of free iodine evolved is measured by performing a titration using

sodium thiosulfate, Na2S2O3 and starch indicator, and determines the charge

in excess of +1 per copper ion, here called ∆x or (1+p).

∆xI2 + 2∆xS2O
2−
3 −→ 2∆xI− + ∆xS4O

2−
6 (3.2)
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Here ∆x is the mole number of the titrant per mole of copper and also is the

number of electrons to turn Cu1+∆x in Cu+. Therefore,

∆x =
mole number of the titrant

mole of copper
=

Ct1 · V1

n ·W1/Wm

(3.3)

where Ct1 is the molarity of the titrant, V1 is the volume of the titrant used

in the first titration, n is the number of coppers in a formula unit, and Wm is

the molar weight of the sample. This quantity ∆x is normalized by a second

titration on a separate specimen: the sample is dissolved in HCl and heated

in air to convert all copper to Cu2+.

Cu1+∆x + H2O + O2 −→ Cu2+ + · · · (3.4)

Then KI solution is added under argon before titration.

2Cu2+ + 2I− −→ 2Cu+ + I2 (3.5)

Here the mole number of the titrant is equal to that of copper ions, Ct2 ·V2 =

n ·W2/Wm. Therefore, this procedure gives the formula weight when there is

difficulty determining it due to the uncertainty of the oxygen content. Then,

∆x =
mole number of the titrant

mole of copper
=

Ct1 · V1

n ·W1/Wm

=
W2 · Ct1 · V1

W2 · Ct2 · V2

(3.6)

Moreover, if the same titrant solution is used for both titrations (Ct1 =

Ct2), the concentration of the titrant doesn’t need to be known exactly. For

Ca2+xY2−xCu5O10−δ, the oxygen deficiency is given by δ = 1/2 · (x− 5∆x+5)

from a charge balance, (2+x)·(+2)+(2−x)·(+3)+5·(1+∆x)+(10−δ)·(−2) =

0. And for Y123, δ = (4− 3 ·∆x)/2. Performing the two titrations precludes

any need to calibrate the various solutions which could be a tedious process,

and avoids many systematic errors.
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3.3 Magnetic Properties

Magnetic measurement were performed with a Quantum Design Mag-

netic Property Measurement System (MPMS). The principal components of

this system are a temperature control system (2 K ∼ 400 K), a magnetic

control system (-5 T ∼ 5 T), a Superconducting Quantum Interference Device

(SQUID) amplifier system (the heart of magnetic moment detection system), a

sample handling system (step samples up and down smoothly), and a computer

operating system (all operations are under automated computer control). Sev-

eral different superconducting components are included in the system such as

a superconducting magnet to generate large magnetic fields, a superconduct-

ing detection coil which couples inductively to the sample, a superconducting

magnetic shield surrounding the SQUID as well as a SQUID connected to the

detection coil.

Magnetic measurements are performed in the system by moving a sam-

ple through a superconducting detection coil, which induces an electric current

in the coils. The current makes a change in the persistent current in the closed

circuit consisting of a detection coil, the connecting wires, and the SQUID in-

put coil, which is proportional to the change in magnetic flux. As the SQUID,

a most sensitive device, functions like a highly linear current-to-voltage con-

verter, the current change produces a corresponding voltage change in the

SQUID output voltage which is proportional to the magnetic moment of the

sample. The detection coil is wound in a set of three coils configured as a

second-order (second-derivative) gradiometer, which is located outside of the
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sample space within the liquid helium bath. The configuration is adapted to

reduce noise in the detection circuit caused by fluctuations in the large mag-

netic field of the superconducting magnet, and to minimize background drifts

in the SQUID detection system caused by relaxation in the magnetic field of

the superconducting magnet.

For polycrystal powders, we usually hold a sample in a #4 gelatin

capsule with cotton and make holes on the top and bottom of the capsule to

prevent the deformation of the capsule upon pumping to vacuum. We may

use a polycarbonate capsule in the case that the gelatin capsule does not

work because it melts in water (nanoparticles are often mounted from solution

samples). The capsule with a sample is put into translucent plastic drinking

straws (DIXIE co.) with 0.22 in. diameter and 7 3/4 in. length, holes are

made on the straws more than 3 cm away from the sample, and one end of the

straws is blocked with a 3/4 inch wide polyimide tape ( kapton tape - 3M Tape

5413 ) to avoid sample loss. We move a sample through the superconducting

detection coil for 4 cm and perform a measurement at each of 32 position ( for

a given temperature and magnetic field ) to get a data point. The minimum

total moment limit of the system is around 10−7 emu, the moment signal from

the sample holder (capsule, cotton and straw) is around 10−6 emu at 1000

Oe applied field and the moment signal from the sample (20 mg ∼ 100 mg of

CYCO) is around 10−4 ∼ 10−3 emu at 1000 Oe applied. The typical values

for the core ionic diamagnetic behavior (in units of ×10−6 emu/mole) are

Ca2+ = −8, Y3+ = −12, Cu1+ = −11, Cu2+ = −12, O2− = −12. Then for an
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example of diamagnetism correction values, Ca3Y1Cu5O10−δ has −2.11× 10−4

emu/mole.

The molar susceptibility was calculated from the measured magnetic

moment M with the equation,

χM =
M ·mW

m · H (3.7)

For 34 mg of Ca3Y1Cu5O10−δ, we determined the molar magnetic susceptibility

to be

χM(per Cu mole) =
0.00160 emu · 680.96 g/mole

5 per Cu · 0.0340 g · 1000 Oe
= 0.00644 (emu/Oe/mole of Cu)

(3.8)

Therefore, the data (0.00644 × 5 = 0.0322 emu/mole) has a less than

1% diamagnetism correction.

3.4 Heat Capacity

3.4.1 Review of Measurement Techniques

As many other techniques have been introduced to measure specific

heat, I want to focus on three popular ones including adiabatic, AC tem-

perature, and relaxation methods [6, 96]. Input power and its temperature

response of each method are illustrated in Fig. 3.2. Adiabatic calorimetry

comes from the classical definition of the specific heat (per unit mass)

cp(T ) = lim
∆T→0

(∆Q/∆T )P /M (3.9)

40



∆Q is the heat energy input given by a pulse which increases temperature

by ∆T in a specimen of mass M . The specimen is contained in an addenda

consisting of the specimen support system, thermometer, resistive heater, and

wires. The assembly of specimen and addenda is isolated thermally from the

surroundings, which is why this technique is called adiabatic calorimetry. The

heat input is calculated by measuring current, voltage, and the duration of

the heat pulse. The temperature is monitored as a function of time, and ∆T

is the difference between the initial and final temperatures of the pulse after

extrapolating to correct any heat exchange with environment, which should be

small, typically around T/10. When using this technique, the specimen should

be at thermal equilibrium with its surroundings before and after each heat

pulse, which is different from continuous heating calorimeters. The adiabatic

method works well with a high accuracy for specimens with a mass greater than

about 20 mg and up to several tens of grams, in the temperature range from 0.3

K to 30 K. It is not suitable for temperatures below about 0.3 K because a heat

switch, commonly used to cool the calorimeter, injects a significant amount of

heat energy into the calorimeter at the lowest temperature. Thermal isolation

of the specimen may become difficult for a specimen mass below 20 mg, as

heat leaks may become large when compared to the experimental heat input.

And the heat capacity of the addenda may become the largest portion, 80% or

90% of the measured heat capacity for a small specimen; such large addenda

corrections limit the accuracy of the heat capacity determination.

AC-temperature calorimetry was introduced by Sullivan and Seidel[102]
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Figure 3.2: Three methods of low temperature calorimetry

in 1968 for smaller specimen whose mass is below a lower limit of the classi-

cal adiabatic calorimeter. Specimens with below around 200 mg can not be

used in the classical adiabatic calorimetry because of the difficulty in achiev-

ing excellent thermal isolation and the minimization of stray heat leaks. In

AC-calorimetry, ac-current of angular frequency ω/2 is applied through the

resistance heater to heat a specimen, and ac temperature response, Tac is mea-

sured by monitoring the voltage across a resistance thermometer at frequency

ω using a lock-in amplifier. Then the total heat capacity can be calculated

from

Tac =
Q̇0

2ωCP

[1 +
1

ω2τ 2
1

+ ω2τ 2
2 +

2Kb

3Ks

]−1/2 (3.10)

where Q̇0 is the amplitude of the sinusoidal heat flux, τ1 is the specimen to
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bath relaxation time, τ2 is the combined response time of the specimen, heater

and thermometer to the heat input, Kb is the thermal conductance of the

specimen to the bath, and Ks is the thermal conductance of the specimen.

With a choice of experimental conditions such as τ2 ¿ 1/ω, τ1 À 1/ω and

Ks À Kb, the expression for CP becomes simple,

CP ' Q̇0

2ωTac

(3.11)

Sullivan and Seidel measure a 9 g specimen of indium using 10 Hz ac temper-

ature modulation with a peak-to-peak value of 4 mK. Their relaxation time

corections were τ1 = 2.5 ± −.1 sec, τ2 = (0.7 ± 0.3) × 10−3 sec. Due to the

ability to detect small changes in heat capacity, from 10−8 to 10−12 J/K, the ac-

calorimetry has become known as microcalorimetry or nanocalorimetry. And

also it can be used up to the melting point of refractory metals, not just at low

temperature, which is the reason it is referred as ’Modulation Calorimetry’.

Another technique for small samples (1 mg to 100 mg) is thermal re-

laxation calorimetry, which can be used over a wide temperature range (below

1 K to 300 K). Physical Properties Measurement System (PPMS) of Quan-

tum Design has adapted this technique because of its simple cryostat design

and specimen mounting, and the availability of improving the signal to noise

ratio using signal averaging. In this method, the specimen is connected to a

constant temperature bath (T0) by a weak thermal link. The temperature of

the sample is raised by a small amount (∆T , typically ∆T/T ≈ 1%), and then

it is allowed to decay exponentially down to the the bath temperature. The
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temperature of the specimen, Ts, is described by

Ts = T0 + ∆T exp(−t/τ1) (3.12)

where t is time and τ1 is the specimen to bath time constant. The heat capacity,

CP , is determined from

CP = τ1K (3.13)

where K is the thermal conductance of the weak thermal link. We may use a

thermal link whose thermal conductance is already known, for example, pure

gold ( 25 mm long and 0.076 mm in diameter ) has 5 × 10−4 W/K, and gold

alloyed with 7 at.% copper with the same dimensions has 5× 10−6 W/K. And

also it can be determined using the heater power, P , from K = p/∆T . This

method becomes the adiabatic method for the limit where K is very small.

Sometimes we need to consider so called ’τ2 effects’ which occur when τ1 and

τ2 are comparable (normally τ1 À τ2). This effect makes the temperature of

the specimen different from that of the thermometer, which can be noticed by

an overshoot in the thermometer and a non-exponential shape in the decay

rate.

3.4.2 Semi-adiabatic calorimetry

The calorimeter in this work was constructed by Dr. Michelle Chabot

based on the adiabatic technique [12]. The sample is mounted to one side of

the addenda which is made of a 0.005 inch (.125 mm) thick by .25 inch (6.35

mm) diameter sapphire disk with 1 mg Apiezon N-grease. See Fig.3.3. The
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Figure 3.3: The base and addenda of the semi-adiabatic calorimeter.

average mass of samples is 25 mg. A heater and a thermometer are attached

to the other side of addenda through 4 copper solder pads. The heater is

a thin film chrome strip, 0.02 inch (0.5 mm) wide by .12 inch (3 mm) long,

which has 120 Ω of resistance at room temperature. And the thermometer is

a RuO2 nude thermometer whose resistance is 77.40 kΩ at room temperature.

The addenda is suspended at the center of the header, which is a copper ring

connected to the base mounted on the cryostat. The electric wires are used to

suspend the addenda as well as to connect electrically the thermometer and

the heater to the base. The wires are made of bare CuNi clad NbTi with

a diameter of 0.0032 inches. Three wires were used as heater leads instead

of two wires. This is because heat from the lead wires flows into the heater
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and into the addenda with the same amount for each. Two wire leads would

overestimate the power delivered by the heater because they would consider all

resistance from the leads, and four wire leads would underestimate it because

they would not consider the voltage drop in the leads.

The calorimeter is plugged into the experimental stage surrounded by

a copper radiation shield can in the cryogenic probe as in Fig. 3.4. Lakeshore

temperature controller (model 93CA) was used to control the base temperature

with a RuO2 thermometer (10 kΩ at room temperature) and a heater (6.2 Ω

at room temperature) made of a constantan wire (60% Copper and 40 %

Nickel alloy). The temperature of the calorimeter was measured with a Linear

Research AC LR-400 resistance bridge at 16 Hz whose full-scale output is 2

V DC. The LR-400 output is sent to Keithley model 199 digital multimeter

(DMM). A home-made current pulse generation box sends a pulse current to

the heater via a manual switch and shows the output of the current reading

and the time of the pulse on its LED panel. The voltage across the heater is

measured by another DMM 199 to find the total heat power. The box also

generates a trigger for two DMM’s to start to measure and to save data some

time (0.9 s) after it sends a pulse to the heater. All data are saved to files

through a LabView program.

Two cans are used for thermal and electric isolation. The inner can

is made of copper, and the outer can is made of stainless steel. One layer

of indium wire is used to seal the outer can, which makes it possible for the

sample area to get down to a vacuum of 10−6 torr. After flushing the dewar
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Figure 3.4: Schematic diagram and electronic setup for calorimetry.
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Figure 3.5: Raw data and exponential fitting to find temperature deviation

and probe three or four times by using He gas, the probe is put into the dewar.

Liquid nitrogen is first transferred into the outer jacket, and into the dewar.

With a 250 mtorr exchange nitrogen gas in the probe, it takes around 5 hours

to cool the probe down from room temperature to 77 K. The left over liquid

nitrogen is removed from the dewar with overpressure He gas. Right after

that, liquid He is transferred to the dewar to cool down to around 8 K, which

takes around 6 hours. It takes more time to lower the temperature if it is

below 10 K. After reaching around 8 K or the target temperature, the turbo

pump turns on and it should be kept on during experiments, which makes the

temperature rise by 1 − 3 K.
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3.4.3 Data Acquisition

Basically we measure a series of resistances from a 82 kΩ RuO2 ther-

mometer attached to an addenda during several seconds at a fixed base tem-

perature. Then, we convert them into temperatures to see their variation

during that time by this equation,

T = a1 + a2[ln(r/r0)]
0.4 + a3[ln(r/r0))] + · · ·+ an[ln(r/r0)]

n−2, (3.14)

where T is the temperature in K, r0 is the resistance at room temperature in

units of Ω, 77408 Ω for x = 0.5 samples, and a1 = 0.2700714, a2 = 0.07323249,

a3 = 1.0219809, a4 = −1.9558035, a5 = 3.4889894, a6 = −4.4175955, a7 =

3.6976856, a8 = −1.7871035, and a9 = 0.3821843. The resistance is measured

right before the heat pulse is fed in order to get the base temperature. After

subtracting the base temperature from the raw data, we make an exponential

or linear fit to find the temperature deviation from the heat pulse. Figure

3.5 shows the raw data and the temperature deviation. From the classical

definition of specific heat, Eqn. 3.9, we can find the specific heat of the sum

of addenda and sample. Figure 3.6 shows typical data of addenda and the

specific heat of the sum of addenda and samples.

Finally we need to think of the error sources of the data. The most

important one is the heat loss due to wiring and to the vacuum conditions.

The heat loss from wires, which are made of three 0.0032-inch diameter CuNi

clad NbTi, is given by [113]

Q̇wire = k · A · ∂T

∂x
(3.15)
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where k is the thermal conductivity of the wire approximately 100 W/mK, A

is the cross section of the wire, which is 25 ×10−9 m2 (5 wires ×5× 10−9), the

temperature increase of the sample due to the heat pulse is usually around 0.1

K, and the length of wire which makes the temperature gradient is about 1

cm. Then the heat loss is

Q̇wire ≈ 2.5× 10−5 W. (3.16)

The thermal conductivity of a gas at normal pressures is given by [113]

k =
1

3
· ρ · l · v̄ · Cv (3.17)

where ρ is the density, l is the mean free path, v̄ is the mean velocity, and Cv

is the specific heat. From l ∝ 1/p, the thermal conductivity looks independent
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from the pressure. It increases monotonically with increasing temperature as

T n where n is an experimental value which is in the range from 0.6 to 0.9

for hydrogen, helium, nitrogen, and oxygen. But at low temperature and at

low pressure where the mean free path is longer than the separation length

between the surfaces at two temperatures, the thermal conductivity becomes

a function of pressure and the heat loss is given by [113]

Q̇gas = constant · p · A · 4T W/m2, (3.18)

where the constant is 0.11 for a clean metallic (copper in our case) surface

exposed to helium gas, the pressure in the sample space is assumed to be at

most 10−5 torr which is 0.001333 N/m2, the area A is the inside surface of the

copper can which is 50 cm2, and a typical temperature deviation 4T = 20 K.

Then the heat loss through the He gas is also

Q̇gas ≈ 1.5× 10−5 W. (3.19)

Typical power used in this experiment is 3 × 10−4 W which is more than the

wiring power loss or the vacuum power loss by 10 times.
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Chapter 4

Fe magnetism in single-crystal LiFePO4 and in

Fe2O3 nanoparticles

4.1 Anisotropy in the magnetic properties of single crys-
tal LiFePO4

4.1.1 Background

From early research on Li-ion batteries [76], Sony Corporation intro-

duced the first commercial four-volt cells in 1990 where a lithiated-carbon

negative electrode and a LiCoO2 positive electrode were used. Ever since,

LiCoO2 has been used worldwide especially in laptop computers and cellular

telephones. However, this material is relatively expensive. In 1997, LiFePO4

was first reported as a candidate for a substitute by John Goodenough and

co-worker [82]. In addition to low cost, this compound was found to have sev-

eral merits as a Li-ion battery cathode material including high specific heat,

high cycle life, high thermal stability, and non-toxicity. But, this high specific

heat can not be transferred effectively due to its inherently low electronic con-

ductivity (10−10 to ∼ 10−5 S/m) [15, 102, 112]. Cation-doped LiFePO4 was

reported to enhance the electronic conductivity but its origin is still unclear

between the substitution of Li+3 by cations [15] and the grain-boundary im-

purity [92]. To understand this enhancement, a pure, single crystal is required
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Figure 4.1: Baking profile of LiFePO4 by using a flux method

whose size is large enough to measure its electronic and magnetic properties

(> 10 mm3). Single crystals of LiFePO4 were grown using a standard flux

method with high purity FeCl2 (99.999 % Aldrich) and Li3PO4 (99.999 %

Aldrich). LiCl was used as a flux in Ar gas following the reaction

FeCl2 + Li3PO4 + LiCl → LiFePO4 + 3LiCl.

The growth was performed in sealed plantinum crucibles with 50 µm diameter

holes to release the high pressure LiCl using the baking procedure shown in

Fig. 4.1. These single crystals displayed irregular shapes and dark green color

with volumes up to 300 mm3 and masses up to 1.0 g.

From single crystal x-ray diffraction experiments, the crystal is found
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Figure 4.2: Structure diagram of LiFePO4 (left) and magnetic interaction of
Fe2+ ions (right).

to have orthorhombic structrue with space group Pnma (No. 62) and lattice

parameters: a = 10.3172(11) Å, b = 6.0096(8) Å, and a = 4.6775(4) Å. Figure

4.2 shows the olivine structure of single crystal LiFePO4, the alignment of its

Fe2+ magnetic ions, and the primary coupling due to exchange interactions.

The cations are located in three different positions which are an octahedron

(Fe) site in orange, a tetrahedron (P) site in yellow and an octahedron (Li)

site. The Li ions are located at the inversion centers of the highly distorted

LiO6 octahedra, which makes an edge-sharing chain along the b-axis [0 1 0 ]

direction. Figure 4.3 shows the results of powder x-ray diffraction experiments

in the range of 15o ≤ 2θ ≤ 65o, which confirm the obtained structure and no

impurity.
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Figure 4.3: X-ray pattern of ground single crystal LiFePO4.

4.1.2 Results and Discussion

After confirming a high-purity single crystal, magnetic properties were

measured along each direction; these results are shown in Fig. 4.4. The average

χ(T ) is defined as χavg = 1
3
(χ// + χ⊥,a + χ⊥,b). From this graph, LiFePO4

shows antiferromagnetic long-range order with Néel temperatures (TN), from

the peak susceptibility, of 55 K when the magnetic field is along the easy axis

(b-axis) and 51 K when the magnetic field is along either the a-axis or c-axis.

The enlarged figure around the transition temperature is shown in Inset (a)

in Fig. 4.4. As an alternative way to quantify the transition point, we may

use the peak point of d(χT )/dT versus temperature as shown in Inset (b) in

Fig 4.4. With this technique, we found Néel temperatures along all axes of 47
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K which is denoted by T ∗
N in Table 4.1 to distinguish between the TN of inset

(a).

The susceptibility curve along each axis in Fig. 4.4 shows a large anisotropy

both below TN (antiferromagnetic order) and above TN (paramagnetic re-

gion) [65]. Below TN , the susceptibility along b-axis decreases to almost zero

with decreasing temperature which shows that the b-axis is an easy axis. How-

ever, the susceptibilities along a- and c-axes remain almost constant with de-

creasing temperature below 30 K. The big difference between the susceptibility

along and perpendicular to the easy axis is normal, and can be explained with

the standard two-sublattice mean field theory with uniaxial anisotropy [60].

But, the difference in susceptibilities between the two perpendicular axes to

the easy axis shows another anisotropy between these two axes which cannot

be explained by the simplest theory. Moreover, the anisotropy among all axes

is found to persist above TN as evidenced by the difference between the suscep-

tibilities in the axes, which contradicts the theory. The three different curves

in χ(T ) in the paramagnetic regime show an anisotropy in the Curie constant,

which means again an anisotropy in the Lande g-factor (g), effective magnetic

moment and Curie temperature (θ).

Now we suggest a model Hamiltonian to explain these anisotropies

based on the theoretical approach for single crystal FeF2 by Homma [45] and

Lines [66] and on the neutron scattering measurement by Li [64]

H = H0 + Hf =
∑

i

Hi. (4.1)
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Figure 4.4: Magnetic susceptibilities of single crystal LiFePO4 along each axis
with average susceptibility. Inset (a) shows the enlarged transition tempera-
ture region. Inset (b) shows d(χT)/dT versus temperature noting the exact
Néel temperature.
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Here,

H0 = −J1

∑

i,δ

(Si·Si+δ)−J2

∑

i,ξ

(Si·Si+ξ)−J⊥
∑
i,η

(Si·Si+η)+D
∑

i

(Siz)
2, (4.2)

where J1 is the intralayer nearest-neighbor (NN) superexchange (SE) parame-

ter, J2 is the intralayer next-nearest-neighbor (NNN) super-super exchange

(SSE), J⊥ is the interlayer NNN SSE parameter, and D is the single-ion

anisotropy parameter [64] shown in the right part in Fig. 4.2. From neu-

tron scattering experiments, all exchange parameters are determined after

fitting the spin wave dispersion relation: J1 = −0.662 meV, J2 = −0.27

meV, J⊥ = −0.021 meV, and D = −0.37 meV. The number of Fe2+ (S=2)

spin neighbors, zi, corresponding to the same spin exchange parameter Ji, are

z1 = 4 for J1, z2 = 4 (2 along b-axis and 2 along c-axis ) for J2, and z⊥ = 2

for J⊥.

Hf =
∑

i

[−µB(g⊥,aSixHx+g⊥,cSiyHy+g//SizHz)−µ2
B(Λ⊥,aH

2
x+Λ⊥,cH

2
y+Λ//H

2
z )]

(4.3)

where

gα = 2(1− λΛα) (4.4)

Λα =

′∑
n

| < 0|Lα|n > |2
En − E0

. (4.5)

Here, λ is the spin-orbit coupling constant, Lα (α = 1, 2, 3) are the orbital

angular momentum component operators, and |n > refers to orbital states

with energy En. For LiFePO4, gα > 2 because λ is negative when a transition

metal ion has more than five d electrons [55].
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Now we can use these equations to obtain the magnetic susceptibility.

For T > TN , that is in the paramagnetic phase state, the molecular-field

Hamiltonian for the ith spin is given, for the case with a magnetic field applied

parallel to the easy axis, or b-axis (z-axis) that is H = Hz,

Hi = −(z1J1 + z2J2 + z⊥J⊥)S̄Siz + DS2
iz − g//µBSizH − µ2

BΛ//H
2. (4.6)

For the case of a weak magnetic field applied perpendicular to the a-axis (x-

direction), considering S̄y = 0 and S̄z = 0, the Hamiltonian is

Hi = −(z1J1 + z2J2 + z⊥J⊥)S̄xSix + DS2
iz − g⊥µBSixHx − µ2

BΛ⊥H2
x. (4.7)

Following Lines [66] and Honma [45], we can get the susceptibilities in the form

of the Curie-Weiss law (see the appendix for the details). With the magnetic

field applied parallel to the easy axis,

χ//(T ) = χb0 +
C//

T − θ//

, (4.8)

where χb0 = 2Nµ2
BΛ//. The Curie constant (C) and Curie-Weiss temperature

(θ) are given by

C// = S(S + 1)Ng2
//µ

2
B/3k, (4.9)

θ// = −1.4D

kB

+
S(S + 1)

3kB

∑
i

ziJi, (4.10)

where S = 2 for Fe2+. For the magnetic field applied perpendicular to the

easy axis

χ⊥,a(T ) = χa0 +
C⊥,a

T − θ⊥,a

, (4.11)

χ⊥,c(T ) = χc0 +
C⊥,c

T − θ⊥,c

, (4.12)
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where χa0 = 2Nµ2
BΛ⊥,a and χc0 = 2Nµ2

BΛ⊥,c. The Curie constants and Curie-

Weiss temperatures are given by

C⊥,a = S(S + 1)Ng2
⊥,aµ

2
B/3k, (4.13)

C⊥,c = S(S + 1)Ng2
⊥,cµ

2
B/3k, (4.14)

and,

θ⊥ = θ⊥,a = θ⊥,c =
0.7D

kB

+
S(S + 1)

3kB

∑
i

ziJi. (4.15)

It is interesting to see that the average value of these three θ’s is

θavg =
1

3

3∑
α=1

θa =
S(S + 1)

3kB

∑
i

ziJi. (4.16)

For T < TN , that is the antiferromagnetic state, as T → 0

χ//(0) = 2Nµ2
BΛ//. (4.17)

We may connect the magnetic susceptibility of a polycrystal to a single

crystal if we consider a polycrystal sample composed of many small single

crystals. Then χpoly is

χpoly =
1

3
(χ// + χ⊥,a + χ⊥,c) = χavg (4.18)

= χ0 +
Cpoly

T − θpoly

, (4.19)

where

χ0 =
1

3
(χbo + χa0 + χc0) = χavg,0 (4.20)

Cpoly =
1

3
(C// + C⊥,a + C⊥,c) = Cavg (4.21)

θpoly = (1− C//

3Cavg

)θ⊥ + (1− C⊥,a + C⊥,c

3Cavg

)θ//, (4.22)
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Figure 4.5: The inverse susceptibility (χ−1) versus temperature along fitted to
Curie-Weiss law. The inset shows the average of the magnetic susceptibilities
of all axes with the polycrystal data [90].

where θpoly = θavg only when θ⊥ 6= θ//. Also, we have

Cavg = S(S + 1)Ng2
avgµ

2
B/3kB, (4.23)

g2
avg = (g2

// + g2
⊥,a + g2

⊥,c)/3, (4.24)

and the effective magnetic moment is given by

µeff,avg = (8Cavg)
1/2. (4.25)

The anisotropy in the g-factor and the Curie-Weiss temperature, θ, was
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Table 4.1: Néel temperature and fitting parameters from the Curie-Weiss law
for LiFePO4. Here the Curie constant C has units (emu K/mole).
Axis TN(K) T ∗

N(K) C θ(K) g Λ(cm) µeff (µB)
b(//) 55 47 3.685 −59.7 ± 1.7 2.22 0.00138 5.43 ±0.02
a(⊥, a) 51 47 3.412 −80.9 ± 1.3 2.13 0.00085 5.22 ±0.02
c(⊥, c) 51 48 3.058 −105.7 ± 1.5 2.02 0.00012 4.95 ±0.01
Aver. 51 47 3.371 −78.0 ± 1.5 2.12 0.00076 5.19 ±0.01

examined by comparing the measured magnetic susceptibility with a theoret-

ical calculation. Figure 4.5 shows the temperature dependence of the inverse

susceptibilities of all axes and their fittings with the modified Curie law given

by Eqn. 4.8 and Eqn. 4.11. The fitting was done for each axis in the temper-

ature range of 70 K ≤ T ≤ 300 K, shown as the solid lines in Fig. 4.5. The

values of the g’s and Λ’s from the fitting were used to confirm the calculated

numbers from Eqn. 4.5 and Eqn. 4.17. The value of χ//(0) is obtained from

fitting the χ//(T ) data to χ//(T ) = a + bT 2 in the range of 5 K ≤ T ≤ 20 K

because the spin-wave theory of antiferromagnetism predict a T 2 dependence

of χ//(T ) at low temperature[61]. We use S = 2 to calculate the g-factor from

the Hund’s rule ground state (5D4) of free Fe2+(d6) ions. The fitting results

are summarized in Tab. 4.1.2. From these results, the g-factor and the Curie

temperature, θ, are expected to show a strong anisotropy.

The results of the magnetic anisotropy of single crystal LiFePO4 can be

compared with those from Creer etal. [18]. The effective magnetic moments

are within 7% deviation, and their θ// = −68 K is about 10% lower than ours

(−80.9 K). But θ⊥,a = −129 K and θ⊥,c = −155 K are substantially lower (∼
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40 - 50%) than ours (θ⊥,a = −80.9 K and θ⊥,c = −105.7 K). The polycrystal

data from Santoro [90] can be compared with our average data of all three axes

as shown in the above calculations. The inset of Fig. 4.5 indicates the perfect

match of those demonstrating the relationship χavg(T ) = χpoly(T ). The fitting

parameters of the average data with Eqn. 4.18 are also listed in Table 4.1.

The fitting value of θpoly = −78.6 ± 1.5 K is almost the same as the value

(−81.1 K) calculated from Eqn. 4.18 using the fitting results of each axis. The

effective moment (5.19 µB) from the fitting is closer to the spin-only value

(4.90 µB) for the Fe2+ (d6) ion, S = 2, than the value from the total angular

momentum J = L + S (6.71 µB) [60], which indicates that the Fe ions in

the crystal are divalent and their orbital moments are strongly quenched by

crystal field. This effective moment is in excellent agreement with those of Fe

ion in other compounds including FeO (5.33 µB), FeF2 (5.59 µB), FeCl2 (5.38

µB), FeS (5.24 µB), KFeCl3 (5.50 µB), and BaLa2FeS5 (5.41 µB) [25, 36, 47,

58, 107].

We can test the exchange coupling constants J1, J2, J⊥ and the anisotropy

parameter D if we use the estimated values from the neutron scattering exper-

iments [64]. That is, J1 = −0.662 meV, J2 = −0.27 meV, J⊥ = −0.021 meV,

and D = −0.37 meV, and using Eqns. 4.10, 4.15, and 4.16 give θ// = −79.5 K

and θ⊥ = (θ⊥,a + θ⊥,a)/2 = −88.5 K, and θavg = −85.5 K, respectively. Here

θ// is more negative by 19.8 K than the fitting’s value (−59.7 K). But the θ⊥

and θavg calculated using these values of Js and D are well matched with the

values (θ⊥ = −93.3 and θavg = -82.1 K ) from the fitting.
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Figure 4.6: Field dependence of magnetization of each axis for different tem-
peratures (a)-(c), and hysteresis of each axis at 5 K and 35 K (d)
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Figure 4.6 (a) to (c) show the field dependence of magnetization for

each axis for different temperatures below TN from 0 to 50 kOe. We found

from their linear dependence on the field that spin-flip or spin-flop does not

appear in the antiferromagnetic phase in fields up to 50 kOe. Figure 4.6 (d)

represents the hysteresis test of the magnetization for all axes at 5 K and 35

K. The measurement was performed varying the field from 0 Oe to 50 kOe

to −50 kOe to 50 kOe. We found no hysteresis, which is consistent with the

observed linearity in M(H) curves of the other graph in the figure.

In conclusion, we have built a mean-field theory on the anisotropy in

magnetic susceptibilities to analyze the strong anisotropy in g-factor, param-

agnetic Curie temperature, and effective moment of a LiFePO4 single crystal.

The calculated values from this theory are found to match well with the values

calculated from parameter obtained in neutron scattering experiments.

4.2 Effects of Au/Silica double coating on the proper-
ties of Fe2O3 magnetic nanoparticles

4.2.1 Background

Superparamagnetic iron oxide (SPIO) particles have been used in mag-

netic resonance imaging (MRI) more than gadolinium chelates, the previous

MRI contrast agent, and in other biomedical applications including drug de-

livery. This is because they provide the most change in signal per unit of

metal, especially on transverse relaxivity (T ∗
2 ), their biodegradable iron is bio-

compatible so it can be reused and recycled by the cell, they are easy to link
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with functional groups and ligands from their surface coating, usually dex-

tran, they are easily detectable by light and electron microscopy, and their

magnetic properties change according to size [8]. However SPIO nanoparticles

(NP) disperse stably in aqueous solutions only in highly acidic or basic media.

So, SPIO NPs are coated with silica to get an excellent biocompatibility and a

homogenous dispersion in aqueous solutions with a wide range of pH [100, 103,

115]. Silica coated SPIO NPs are used in the MRI diagnosis of cells or tissues

suffering from defects due to diseases such as cancers. However, the nanopar-

ticles need further coating in order to be used in curing diseases. Here, gold is

an attractive material because its nanoshells have strong wavelength tunable

absorbance in the near-infrared region. That means it can be used in localized

photothermal therapy because it can mediate strong plasmon-induced heat

flux upon absorption of the near-infrared radiation. Moreover, its NPs are

easy fabricate and link with other ligands and they have good biocompatibil-

ity. So, Au/SiO2 double coated γ-Fe2O3 NPs could be made a bi-functional,

that is, diagnostic and therapeutic, if Au NPs can be coated on the surface

of silica coated NPs. It was synthesized successfully [51] and its magnetic

properties are reported here.

Figure 4.7 shows the fabricated Au/SiO2 doubly coated γ-Fe2O3 NPs

(a) and its enlarged image (b). The average size of silica spheres, which are the

large spherical particles, is measured around Dsilica = 81.5 nm. The average

diameter of Au particles is DAu = 6.0 nm, which are shown as the smaller

dark particles distributed on the silica spheres. The coated Au are found to
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Figure 4.7: (a) Typical TEM image of Au/SiO2 doubly coated γ-Fe2O3

nanoparticles. (b) Enlarged image of the rectangular area in the upper sil-
ica sphere shown by the white dashed loop.
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form only particles on the silica surface not a continuous Au layer, as shown

in Fig. 4.7 (b). Fe2O3 particles are embedded inside of the silica sphere and

their average size is 12 nm, which is larger than the Au particles.

Magnetic susceptibilities of pure and coated NPs, in the form of dried

powders, were measured with a Quantum Design MPMS SQUID magnetome-

ter. Pure Fe2O3 particles were put in a size-#4 gelatin capsule purchased

from Capsuline.com with a small amount of cotton to fix the particles. The

amount of nanoparticles coated with Au and Si was too small and the powder

was too brittle to be transferred, so they were dissolved in the original con-

tainer with 500-µliter distilled water and transferred with a micropipette to a

polycarbonate capsule (instead of a gelatin capsule which is dissolvable with

water). A size-#4 polycarbonate capsule was used, which was purchased at

Unipec Inc. from Rockville, MD. Transferred liquid-type particles were left

to be evaporated in air with a Kimwipe tissue covered for over 4 days in the

capsule and were confirmed to be dry enough to see a separable powder form.

Magnetic measurements were performed after finding the mass of particles in

the same capsule and adding a small amount of cotton to hold them fixed.

The mass of particles were measured carefully down to 0.1 mg to be 3.0 mg

for pure particles and 0.6 mg for the coated ones.

A typical background signal is shown at the top of Fig. 4.8. Both the

polycarbonate capsule and Au/SiO2 show magnetic moment below 3×10−5

emu. Above 60 K, both magnetic susceptibilities represent diamagnetic behav-

ior independent of temperature. The bump around 50 K is from the residual
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oxygen which can be reduced by many purging procedures. With temperature

going down to 5 K from 40 K, the magnetic susceptibility increases due to

the paramagnetic impurity of the capsule, which is seizably different for every

capsule. The two middle figures show the field dependence of the background

signal, which is also a typical behavior of diamagnetism except at 5 K in the

case of the polycarbonate capsule alone. The nonlinear behavior comes from

the combination of the diamagnetic signal and the paramagnetic background

signal, but for Au/SiO2 the diamagnetic behavior is dominant even at 5 K.

The bottom graph of Fig. 4.8 shows the raw data from the Au/SiO2 coated

γ-Fe2O3. The signal is almost 100 times bigger than the background, and the

pure γ-Fe2O3 NP signal is even bigger than the coated ones. Therefore, we

consider the background for the coated one only.

4.2.2 Results and Discussion

Figure 4.9 shows zero-field-cooling (ZFC) and field-cooling (FC) mag-

netization for pure, SiO2 coated, and Au/SiO2 doubly coated γ−Fe2O3 NPs

with temperatures varying from 5 K to 300 K and and applied magnetic field

of 10 Oe for pure γ−Fe2O3 NPs and 500 Oe for all other NPs [85]. All data

shows irreversibility between ZFC and FC below the irreversible temperature

Tirr where two data from ZFC and FC at the same temperature start to be

different. Tirr is above 300 K for 10 Oe applied field but is around 300 K for the

pure NPs with 500 Oe applied field and 150 K for both coated NPs with 500

Oe fields. From the 500 Oe data, the overall magnetization per gram decreases
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with coating, which means that the average amount of magnetic moment of

each NP becomes smaller as the diamagnetic coated mass is added. Except for

the 10 Oe data, all ZFC magnetizations with 500 Oe show a broad peak, called

the blocking temperature, with varying temperature. The blocking tempera-

ture of pure γ−Fe2O3 NPs is 160 K, but for the SiO2 coated γ−Fe2O3 NPs is

around 75 K, and for Au/SiO2 doubly coated γ−Fe2O3 NPs is around 85 K.

With increasing applied field from 10 Oe to 500 Oe, both Tirr and TB

decrease for the pure NPs (see the first two figures in Fig. 4.9). Similar

behavior is observed in other γ−Fe2O3 NPs with almost same particle size

NPs [5] and with other size NPs [20, 76]. The relation between the blocking

temperature and the applied field is explained [26, 27] by

TB = TB0(1− CH2

TB0

), (4.26)

where TB0 is the blocking temperature at zero field and C is a field-independent

parameter.

The blocking temperature (160 K) of pure NPs is different from other

data (120 K) of Jeong [50] because the average diameter of our NPs is 12 nm

compared to their smaller size of 5 − 8 nm. The dependence of the blocking

temperature (TB) on NP size is given [5, 50] as

TB =
KV

25kB

, (4.27)

where V (= 1
6
πD3

avg) is the average volume of the NPs, K is the uniaxial

anisotropic constant and kB is the Boltzmann constant. This equation shows
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the proportional relation between the blocking temperature and the average

volume, and is effective for both Jeong’s and our NPs. The proportional

constant (∆TB/∆Davg) is normally between 15 K/nm and 80 K/nm [50, 69].

Our case with Jeong’s (40 K /4 nm = 10 K/nm) is below this range.

The decrease of TB from 160 K to 80 K with the diamagnetic material

coating is shown in Fig. 4.9. This decrease due to the coating is attributed to

the following two factors. First, the reduction of the average effective volume

of the γ−Fe2O3 core, and second, the decrease in strength of the dipole-dipole

interactions between the γ−Fe2O3 cores. From the above TEM data, the SiO2

nanoshells with the 35 nm thickness coated on γ−Fe2O3 spheres and the Au

NPs (Davg ≈ 6 nm) are dispersed in a thin layer near the outer surface of the

SiO2 nanoshells. This means the Fe ions at the outer core can interact only

with SiO2 ions not with Au. Therefore, there is no big change in the mag-

netic behaviors between SiO2 coated γ−Fe2O3 and Au/SiO2 doubly couated

γ−Fe2O3. The interaction of the outer Fe ions with SiO2 induces a thin layer

of misaligned or disordered Fe spins near the surface of γ−Fe2O3 core. This

layer cannot give an effective contribution to the total magnetization, M , and

therefore it should be excluded in calculating the effective volume, V , in Eqn.

4.27. That is, if the average thickness of the disordered layer is t, the effective

volume for the γ−Fe2O3 core in the Au/SiO2 coated NPs is defined as

Veff =
π(Davg − 2t)3

6
. (4.28)
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Then, Eqn. 4.27 should be changed to

TB =
KVeff

25kB

= TB(0)(1− 2t

Davg

)3, (4.29)

where TB(0) is the blocking temperature without the disordered layer. The

value of t for the γ−Fe2O3 NPs embedded in an amorphous SiO2 matrix was

measured to be 1.25±0.07 nm using a Faraday rotation technique [89]. More-

over, this value is not changed significantly for all γ−Fe2O3 NPs with the

average diameter in the range 6.2 nm ≤ Davg ≤ 21.8 nm where our NPs’ di-

ameter (12.4 nm) falls. Applying Eqn. 4.29 with TB(0) = 160 K, Davg = 12.4

nm, and t = 1.25 nm, the blocking temperature of Au/SiO2 doubly coated

γ−Fe2O3 NPs is 81 K, which is in excellent agreement with the experimental

data 85 K. The second reason for the decrease in TB with coating is the reduc-

tion of the strength of the magnetic dipole-dipole interaction. From a Monte

Carlo simulation, it was found that the TB is proportional to the strength of

the dipole-dipole interaction. This dipole-dipole interaction is proportional to

the magnitude of dipole moments and inversely proportional to the distance

between the related dipoles. The decrease of dipole moments for the coated

NPs is easy to understand because the coating induces the disordered layer at

the surface of the γ−Fe2O3 core. The Au/SiO2 coating also makes the distance

between magnetic cores farther. Thus, the dipole-dipole interaction becomes

weaker with the diamagnetic coating, and it causes the blocking temperature

to decrease.

The field dependence of magnetization of pure γ−Fe2O3 and Au/SiO2

coated NPs is shown in Fig. 4.10. The field changed from 0 T to 5 T to
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Figure 4.10: Field dependence of magnetization of pure and Au/SiO2 coated
γ−Fe2O3 at various temperatures.

−5 T and to 5 T again. The coated one is obtained after background sub-

traction from the raw data. The raw data and the corresponding background

data can be found in Fig. 4.8. Overall, magnetization of pure NPs is bigger

than coated ones for each temperature, and the saturation field of pure NPs

decreases monotonically with increasing temperature as expected. The sat-

uration magnetic moment at 5 K is 73 emu/g with 5 T applied field which

corresponds to 2.07 µB per formula unit (f.u.) or 1.04 µB/Fe3+. This value is

about 83% of the resultant moment (1.25 µB/Fe3+) of the bulk γ−Fe2O3 [9].

The apparent (high-field) saturation magnetization decreases from 73 emu/g

to 61 emu/g with decreasing temperature from 5 K to 300 K. For the coated

one, the Msat is about 5.6 emu/g at 300 K and 5 T, which is about 7.7% of

pure one. This decrease is obviously from the increase in mass due to dia-
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Figure 4.11: Field dependence of magnetization of pure and Au/SiO2 coated
γ−Fe2O3 at various temperatures.
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magnetic coating materials, Au and SiO2. However, this saturation moment

does not change monotonically with temperature, because the measurements

were not performed at the same time. That is, the measurements at 5 K, 35

K and 300 K were done first and the others followed next after a few other

measurements, which made the SQUID parameter different for the two sets

of measurements. However, if we see each set of data, the saturation mag-

netization decreases with increasing temperature, and even after background

subtraction the magnetic moment at 5 K decreases with increasing applied

field, which shows diamagnetic behavior. This could be from the difficulty

in finding the exact background signal due to the paramagnetic defect of the

capsule which is different for each capsule.

To see the hysteresis more clearly, Fig. 4.10 is enlarged in Fig. 4.11

with the applied field in the range between −2000 Oe to 2000 Oe. The irre-

versibility was not found above 2000 Oe or below −2000 Oe. From Fig. 4.11,

the magnetization of pure NPs is found to be totally reversible and superpara-

magnetic only for the temperature range above 100 K, but the coated one has

a very small hysteresis even at 300 K whose magnitude is around ± 50 Oe.

The source of this hysteresis could be from the SQUID magnet or from the

diamagnetic coating, but we need more data at the range to make a clear de-

termination. Another effect of coating is the decrease in Hirr, which is defined

as the magnetic field where the irreversibility starts. For example, Hirr at 5

K is about 2000 Oe for the pure one but it reduced to 1000 Oe for the coated

one.
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The coercivity is known to be proportional to the square root of tem-

perature as [50, 103]

HC

HC0

= 1− (
T

TB

)1/2, (4.30)

where HC0 is the coercivity at 0 K. Figure 4.12 shows the plot of the coercivity

of pure and coated NPs versus the square root of temperature where the coer-

civity was found from the hysteresis graph of Fig. 4.11. Fits were done using

Eqn. 4.30 and added to the figure. The data looks slightly off the fitting line

but it is clear that the slope of coated one is steeper than the pure one, and

such a deviation from linearity has been observed for SiO2 coated γ−Fe2O3

NPs [107]. We found HC0 = 239 Oe and TB = 139 K for the pure NPs and

HC0 = 263 Oe and TB = 113 K for the coated ones. The fitting shows the
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blocking temperature decrease with coating which is consistent with the result

of ZFC magnetization curve in Fig. 4.9. It is interesting to note that HC is

increased by the coating only below 50 K but above 50 K, HC of the coated

NPs is slightly smaller than that of the pure ones.

In summary, the coating of γ-Fe2O3 NPs with Au/SiO2 decreases the

blocking temperature from 160 K to 80 K. This is explained well with the

reduction of the effective volume of the γ-Fe2O3 core. From the hysteresis

graph, the uncoated NPs are found to be superparamagnetic and the coated

NPs are found to be almost superparamagnetic above 100 K. The coercivities

of the pure and the coated γ-Fe2O3 decrease linearly with the square root of

temperature, and HC for the pure NPs is found to go down faster than for

the coated ones, which confirms the blocking temperature for the pure NPs is

larger than for the coated ones.
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Chapter 5

Results and Discussion of Ca2+xY2−xCu5O10−δ

5.1 Sample analysis

5.1.1 x-ray diffraction

The phase of all samples was identified by a powder x-ray diffraction

method with Cu Kα radiation. The first graph of Fig. 5.1 shows the x-ray

patterns of the parent compounds for different oxygen annealing procedures.

The samples with no oxygen annealing and with 1 atm oxygen anneal show a

good single phase of Ca2Y2Cu5O10−δ, but a small (less than 5%) multi-phase

signal from Cu2Y2O5 appears for the 170 atm O2 anneal (circles). A similar

impurity was found during a previous experiment with high pressure (215

atm) oxygen annealing [39]. The impurity causes a lower-temperature peak

in a magnetic susceptibility data which will be discussed in the next section.

Ca-doped samples with x = 0.5, 0.75, 0.9, and 1.0 show a single phase even

though they were annealed under different oxygen pressures up to 170 atm. X-

ray patterns of the samples with x = 0.75 and 1.0 are illustrated in the second

and the third graph of Fig. 5.1, respectively. From the figure, we can not see

a big difference in these peaks for the different Ca-doping values and oxygen

pressures, which mean Ca-doping and oxygen deficiency induce no structural

transition.
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Figure 5.1: X-ray diffraction patterns of Ca2+xY2−xCu5O10−δ for x = 0, 0.75
and 1.0, for different oxygen annealing procedures. The raw data for x = 0
and 0.75, and the data after a smooth background subtraction for x = 1.0.
The impurity signal from Cu2Y2O5 is marked with circles.
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For higher doped samples of x = 1.25 and 1.5 we failed to make a

single phase without oxygen annealing nor with 1 atm oxygen annealing in

the tube furnace. Also a single phase was not obtained for those samples

under the oxygen pressure more than 217 atm. Signals due to defects can be

seen in Fig. 5.2 for the samples annealed at oxygen pressures below 1 atm

and above 217 atm. These results are contrary to those of Hayashi et al [39]

where a single phase was reported under 215 bar oxygen pressure. This may

be because our sample, which was not wrapped with Au foil, interacts with

the Al2O3 boat at high oxygen pressures and at high temperatures. However,

the oxygen pressure in the annealing procedures is confirmed to be critical in

making single phases of this system from both results, specifically for samples

with x ≥ 1.25.

From the x-ray data, the lattice parameters were calculated using Jade

7.0 software. Figure 5.3 summarizes the lattice parameters for the different Ca-

dopings and the oxygen deficiencies. The oxygen deficiencies are determined

from iodometric titration (detailed procedures are explained in Appendix A),

the results are summarized in Table 5.1. All lattice parameters were indexed

on the basis of an orthorhombic Fmmm subcell. The averages of lattice pa-

rameters were found to be a ∼ 2.82 Å, b ∼ 6.22 Å, and c ∼ 10.58 Å, which

are similar to the results from the previous experiments [39, 61].

The parameter b increases with increasing Ca-doping, which was also

seen in the previous data [39, 61]. This increase is due to the larger Ca2+ (ionic

radius = 0.99 Å compared to Y3+, which has a radius of 0.92 Å) increasing the
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Figure 5.2: X-ray diffraction patterns of x = 1.25 and 1.5 for different oxygen
annealing procedures.
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Figure 5.3: Dependence of lattice parameters on Ca-doping and oxygen defi-
ciency.

distance between the planes where the CuO2 chains are embedded. However,

the parameter a, interestingly, increases with increasing oxygen deficiency be-

cause the vacancy induced with oxygen deficiency makes Cu-O-Cu bond angle

wider and adds electrons to bonds.

5.1.2 Iodometric titration

Iodometric titration was utilized to find the oxygen content of each

sample, and the results are summarized in Table 5.1. First, we can see that

increasing the oxygen pressure during the annealing procedure reduces the

oxygen deficiency for each Ca-doped sample, as anticipated. It is interesting

to note that the oxygen deficiency increased for the Ca doped samples from x

= 0 to x = 1.0 with no oxygen annealing procedure, that is, from δ= 0 for x

= 0 to δ = 0.37 for x = 1.0. This is because the Ca ion doped hole loosens one
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Table 5.1: Titration results for Ca2+xY2−xCu5O10−δ.
air 1 atm O2 1 atm O2 170 atm

δ p δ p δ p
x = 0 0 0 ×1 ×1

x = 0.5 0.17 0.16 0.09 0.32 -0.022 0.54
x = 0.75 0.24 0.27 0.14 0.47 0.01 0.73
x = 0.9 0.29 0.32 0.19 0.52 0.05 0.80
x = 1.0 0.37 0.26 0.19 0.62 0.04 0.92
x = 1.25 ×1 ×1 0.08 1.09
x = 1.5 ×1 ×1 0.062 1.13
1 Failed to make a single phase
2 Annealed at 176 atm

of the oxygen-copper bonds, thus the oxygen ion can be removed more easily

from the chain. The increase in oxygen deficiency with increasing hole doping

was also found in other hole-dopable compounds such as La2−xSrxCuO4−δ [31,

95] and La1−xSrxMnO3−δ [93]. The pattern of oxygen deficiency in the samples

with no annealing procedure could be applied to the oxygen annealed samples

with 1 atm O2 and 170 atm O2 pressures, respectively. That is, the more the

Ca-doping the more the oxygen deficiency, as shown in Table 5.1. [83]

5.2 Magnetic susceptibility

The temperature dependence of magnetic susceptibility for all Ca2+x

Y2−xCu5O10−δ (CaYCuO) is shown in Fig. 5.4. For the parent compounds (x

= 0) with different oxygen deficiencies, a two-peak feature in the magnetic

susceptibility becomes clear, as the oxygen pressure increases. The lower peak

is found, with the help of x-ray diffraction data, to come from the magnetic
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Figure 5.4: Temperature dependence of magnetic susceptibility for all samples
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defect Cu2Y2O5. Even though this peak is small (less than 5%) at 170 atm,

the highly magnetic defect can have a large effect on the magnetic signal. An

analogous signal was reported for the same compound; it was only a 1% mag-

netic defect [39]. So, the parent compounds are found to be over-oxygenated

and, from the magnetic susceptibility data, begin to fail to make a single phase

at 1 atm oxygen pressure.

The samples with x = 0.5 through x = 1.0 show a typical 3D long-

range antiferromagnetic phase transition. For the fully oxygenated samples

with different x, Néel temperatures shift lower and the height of the peaks

generally decreases with increasing the Ca-doping level (x). For a fixed x,

the Néel temperature and the overall magnitude of the magnetic susceptibil-

ity decreases with decreasing oxygen deficiency. The Néel temperatures are

summarized in Table 5.2. The low temperature downturn of magnetic suscep-

tibility disappears for the sample with x = 1.25 and the susceptibility shows

an upturn for the sample with x = 1.5, which shows that these systems are

not 3D long-range antiferromagnets any more.

Figure 5.5 shows the magnetic susceptibilities of x = 1.25 and 1.50

samples with various oxygen pressures. The multiphase samples of both x =

1.25 and 1.50 have a relatively small magnitude of magnetic susceptibility and

show a downturn at around 20 K. From the enlarged figure of the single phase,

x = 1.25 sample, the magnetic susceptibility shows a downturn around 8 K,

for the sample with 45 atm of oxygen pressure, and this downturn disappears

above 145 atm of oxygen pressure. All single phase data for x = 1.50 samples,
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Figure 5.5: Magnetic susceptibilities and their enlargements of x = 1.25 and
1.5 samples with different oxygen annealing pressures.
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Table 5.2: Magnetic parameters of Ca2+xY2−xCu5O10−δ including Néel tem-
perature, effective magnetic moment, and the Curie-Weiss temperature.

T ∗
N(K)1 TN (K)2 µeff (µB) |Θ| (K)

x = 0 p = 0 29.5 28.9 2.29 39.8
p = 0.16 27 24.8 2.26 43.9

x = 0.5 p = 0.32 26 24.5 2.21 41.9
p = 0.54 25.5 23.4 2.18 45.6
p = 0.27 23.5 21.9 2.09 41.2

x = 0.75 p = 0.47 23 21.5 2.07 39.0
p = 0.73 21.5 20.5 2.15 47.2
p = 0.32 21.5 20.1 2.08 39.4

x = 0.9 p = 0.52 20.5 19.4 2.01 39.6
p = 0.80 19 17.7 2.07 48.7
p = 0.26 21 19.8 2.01 42.2

x = 1.0 p = 0.62 19.5 18.3 2.09 43.9
p = 0.92 17 16 2.05 49.8

x = 1.25 × 10.5 13 1.96 46.4
p = 1.09 × 10 2.00 53.6

x = 1.5 × × × 1.87 51.4
p = 1.13 × × 1.85 55.4

1 From the downturn the magnetic susceptibility data
2 From the downturn the heat capacity data

which were annealed under 12 atm through 170 atm pressure, show an upturn

around 13 K.

Therefore, we find that the long-range antiferromagnetic transition dis-

appears between x = 1.0 and x = 1.25, but we need to know the temperature

dependence of specific heat to understand the details of the transition.

The Curie-Weiss temperatures and effective magnetic moments can be
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found from fitting to the Curie-Weiss law,

χ = χ0 +
NAµ2

eff

3kB(T −Θ)
, (5.1)

where NA is Avogadro’s number, kB is Boltzmann’s constant, Θ is the Curie-

Weiss temperature, and the effective magnetic moment is µeff = g
√

S(S + 1)µB.

Figure 5.6 shows the temperature dependence of the inverse of magnetic

susceptibility for the fully oxygenated samples. The straight lines represent the

fit with Eqn. 5.1 for the data above 75 K. From this graph, we find that CaY-

CuO follows the Curie-Weiss law well for the temperature range, even though

holes are induced into the CuO2 chain by substituting Ca2+ for Y3+. Figure 5.7

shows the fitting results with the data sets in the temperature ranges starting
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from 50 K, 75 K, 100 K, 125 K and 150 K to 300 K. The Curie-Weiss law

explains the magnetic behavior in the paramagnetic phase and thus it should

be applied for temperatures higher than the Néel temperature. However, the

small amount of data at high temperatures can distort the magnetic behavior

so we need to consider a good amount of data to get a reasonable fit and the

data should be from temperatures high enough to be in paramagnetic region.

Effective magnetic moments of fully oxygenated samples generally de-

crease with increasing hole doping (see the data connected with solid lines in

Fig. 5.7). Ca2+ ions that have displaced Y3+ ions induce holes onto O2− ions

where the spin of the hole is coupled to the spin of the electron of Cu2+ anti-

ferromagnetically. This coupling, which is called Zhang-Rice singlet, reduces

the average effective magnetic moment of the system. The oxygen deficiency

(δ) for a given cation doping (x) is often assumed to reduce the hole doping

(p) according to p = x− 2δ, and so it reduces the effective magnetic moment.

However, the dependence of effective magnetic moment on oxygen deficiency

is not clear from Fig. 5.7. It is interesting to note that for a given hole doping

(p), the more Ca-doped samples show less effective magnetic moment. That

is, the induced hole from Ca-doping reduces the average magnetic moment

more effectively than from oxygen deficiency. The Curie-Weiss temperature

(|Θ|) shows negative numbers for all samples regardless of oxygen deficiency.

For the fully oxygenated samples, |Θ| generally increases with increasing hole

doping level. As oxygen deficiency is increased, |Θ| shows a decreasing trend

for a given x.
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The effective magnetic moment and the Curie-Weiss temperature of the

parent compound (x = 0) were obtained in previous work using both single

crystal and polycrystal samples at high temperature data (T ≥ 150K): µeff

= 1.95, |Θ| = 4.5 [39], µeff,a = 2.00, µeff,b = 2.19, µeff,c = 2.02, |Θa| = 13.7,

|Θb| = 13.7, |Θc| = 16.2 (µeff,avg = 2.07, |Θavg| = 14.5) [117], µeff,a = 1.84,

µeff,b = 2.07, µeff,c = 1.82 (µeff,avg = 1.91 and |Θavg| = 8) [61](the effective

moment (µeff ) in units of µB, and the Curie-Weiss temperature (|Θ|) in K).

The values are smaller than our fitting results even for the 150 K temperature

data set (see the last graph of Fig. 5.1). For reference, the calculated magnetic

moments of Cu2+ ion, whose configuration is 3d9 and basic level is 2D5/2, are

3.55 using g
√

J(J + 1) and 1.73 using g
√

S(S + 1) [60].

5.3 Specific heat

The temperature dependence of specific heat is shown in Fig. 5.8 for

the samples of CaYCuO. To clarify the effects of oxygen deficiency, the sam-

ples with different oxygen deficiencies were displayed on the same graph for

the same Ca-doping. A λ-shaped peak is clear for all the samples with x = 0

through 1.0 that were annealed in air, which indicates the 3D long range an-

tiferromagnetic order. The peak is smeared and shifted to lower temperatures

with increased Ca-doping as in the previous data [61]. For fully oxygenated

samples with different Ca-doping’s, the overall magnitude of specific heat is

smaller than the oxygen deficient samples. The peak is also shifted to the left

and it changes to a broad bump at x = 1.0 and finally disappears at x = 1.25.

93



60

50

40

30

20

10H
ea

t C
ap

ac
ity

 (J
/m

ol
 K

)

3025201510
Temperature(K)

  Ca2Y2, δ  = 0, p = 0
 δ = 0.17,  p = 0.16
 δ = 0.09,  p = 0.32
 δ = -0.02, p = 0.54

Ca2.5Y1.5Cu5O10-δ

Ca2Y2Cu5O10-δ

50

40

30

20

10H
ea

t C
ap

ac
ity

 (J
/m

ol
 K

)

3025201510

Temperature(K)

δ = 0.24, p = 0.27
δ = 0.14, p = 0.47
δ = 0.01, p = 0.73

Ca2.75Y1.25Cu5O10-δ

50

40

30

20

10H
ea

t C
ap

ac
ity

 (J
/m

ol
 K

)

3025201510
Temperature(K)

δ = 0.29, p = 0.32
δ = 0.19, p = 0.52
δ = 0.05, p = 0.80

Ca2.9Y1.1Cu5O10-δ

50

40

30

20

10H
ea

t C
ap

ac
ity

 (J
/m

ol
 K

)

3025201510
Temperature(K)

δ = 0.37, p = 0.26
δ = 0.19, p = 0.62
δ = 0.04, p = 0.92

Ca3.25Y0.75, δ = 0.27, p = 0.71

Ca3.0Y1.0Cu5O10-δ

Ca3.25Y0.75Cu5O10-δ

50

40

30

20

10H
ea

t C
ap

ac
ity

 (J
/m

ol
 K

)

3025201510

Temperature(K)

Ca3.25Y0.75Cu5O10-δ

δ = 0.27, p = 0.71
δ = 0.08, p = 1.09

1.4

1.2

1.0

0.8

0.6

C/
T 

(J
/m

ol
e 

K2 )

1000800600400200

T2(K2)

  Ca2.9,   p=0.32,  Ca2.9,   p=0.80
  Ca3.0,   p=0.26,  Ca3.0,   p=0.92
  Ca3.25, p=0.71,   Ca3.25, p=1.09

Figure 5.8: Temperature dependence of the specific heat of CaYCuO for dif-
ferent oxygen deficiencies. The last figure shows C/T versus T2 of x = 0.9,
1.0 and 1.25.
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Also, the peaks for the samples with the same Ca-doping (the same x

value) show the same feature with decreasing oxygen deficiency as expected

from the often-assumed relation p = x− 2δ. Therefore, the oxygen deficiency

is also found to change the magnetic interaction in the same way as Ca-ion

doping. This kind of feature is typical in systems where a long range 3D

interaction changes to a lower-dimensional and short-range interaction [91].

The peak temperatures are summarized in Table 5.2. The last graph of Fig.

5.8 shows C/T vs. T2 to illustrate the relationship between the peak shape

and the hole doping. The suppression of the peak is clear for hole-doping using

either Ca-doping or oxygen deficiency.

To find the contribution of magnetic excitations to the specific heat,

we subtract the phonon contribution from the measured data assuming the

phonon contribution follows Cphonon = βT 3 where β = 0.001 J/mol/K4 [11],

shown in Fig. 5.9. We try to fit the spin contribution to the specific heat with

the dimer, Ising, and Heisenberg chain models to find the exchange coupling

constant. We used the following equations for each fitting: dimer [10]

C(T/J) = A ∗ 12R(J/kBT )2 ∗ exp(J/kBT )

(1 + 3 ∗ exp(J/tp))2
, (5.2)

Ising [10]

C(T/J) = A ∗ (−J/T )2

(cosh(−J/T ))2
, (5.3)

Heisenberg chain [54]

C(T/J) = 0.75 ∗ (
3

16(T/J)2
P

(6)
(9) (T )− F (T )), (5.4)
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where

P
(6)
(9) (T/J) =

1 + [
∑6

n=1 Nn/(T/J)n]

1 + [
∑6

n=1 Dn/(T/J)n]

F (T/J) = a1(T/J)sin(
2π

a2 + a3(T/J)
)ea4(T/J) + a5(T/J)ea6(T/J)

Here the fitted parameters used are: N1 = −0.018891, N2 = 0.024710, N3 =

−0.003709, N4 = 0.003016, N5 = −0.000379, N6 = 0.000043, D1 = −0.518891, D2 =

0.596576, D3 = −0.151173, D4 = 0.074445, D5 = −0.002480, D6 = −0.000536, D7 =

0.000820, D8 = −0.000108, D9 = 0.000012, a1 = −0.000016, a2 = 0.013021, a3 =

0.004328, a4 = 49.422168, a5 = 0.000402, a6 = 325.22706.

We found J = 21 K from the Ising model, 40 K from the dimer model,

and 34 K from the Heisenberg chain model for the x = 1.25 sample annealed

under 13 atm oxygen pressure. Neutron scattering experiments [71] claimed

J = 80 K for all x, with other exchange coupling constants in addition to the

nearest neighbor’s exchange coupling J . These explain the 3D behavior of the

samples with low x. This 3D behavior changes to 2D or 1D with hole doping,

and the specific heat behavior of the 3D to 2D coupling transition is illustrated

by using a Quantum Monte Carlo simulation as shown in Fig. 5.9 [91].

5.4 Discussion

From the results of magnetic susceptibility and of heat capacity mea-

surements, a magnetic phase diagram was created in Fig. 5.10, where the

hole doping includes both Ca-doping and oxygen deficiency effects. The upper

97



40

30

20

10

0

T
(K

)

2.01.51.00.50.0
Hole doping (p)

 x = 0         x = 0.5
 x = 0.75   x = 0.9
 x = 1.0     x = 1.25
 Single Crystal
 our proposal

Ca2+xY2-xCu5O10-δ

Figure 5.10: Magnetic phase diagram where hole doping dependence considers
both Ca-doping and oxygen deficiency. Single crystal data from prior experi-
ment [61].

(right) solid line shows a previous phase diagram from single crystals measure-

ments [61], and the lower (left) solid line is proposed from our experimental

results. Apparently, single crystal data was obtained from oxygen deficient

samples where hole doping was overestimated. Therefore, the phase diagram

of CaYCuO should be shifted to the left for the fully oxygenated samples (red

line), and the antiferromagnetic transition is fully suppressed around p = 1.0

(not around p = 1.4, as previously proposed).

Each colored line on the graph shows the dependence of Néel temper-

ature on oxygen deficiency for a given Ca-doping level (x). The Néel tem-
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perature changes even for samples with the same amount of Ca-doping due

to the effects of oxygen deficiency. This is expected, because the hole doping

(p) is related by two factors, Ca-doping (x) and oxygen deficiency (δ), often

assumed to simply obey the change-counting relation p = x − 2δ. However,

the Néel temperature (TN) is not the same for the same hole doping (p). For

example, for p = 0.5, TN = 24.1, 21.6, 19.8, and 19.2 for each sample x = 0.5,

0.75, 0.9, and 1.0, respectively. That is, the Néel temperature decreases with

increasing oxygen deficiency even for the same hole doping. Therefore, oxygen

deficiency reduces the Néel temperature more than Ca-doping.

The decrease of Néel temperature may be due to the decrease in the

magnetic moments, the decrease in the magnetic coupling or the changes in

magnetic ordering from 3D long-range order to short-range order or all of

these. The classical mean field theory [60] predicts that the Néel temperature

follows

TN =
2JzS(S + 1)

3kB

∼ Jzµ2
eff , (5.5)

where J is the exchange coupling, z is the number of the nearest neighbors,

and S is the spin (here, 1/2).

Figure 5.11 shows the Néel temperature, the Curie-Weiss temperature,

and the effective magnetic moment of CaYCuO samples for x = 0 through 1.0

with different oxygen deficiencies. The solid marks describe the data from the

fully oxygenated samples. From the first and the fourth graphs, TN and TN/|Θ|
are proportional to µ2

eff and p for the fully oxygenated samples, respectively.

The second and the third graphs show that TN/µ2
eff and TN decrease with
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increasing p and |Θ|, respectively. Also, from the last graph TN was found to

decrease linearly with oxygen deficiency regardless of the hole doing.

Based on Eqn. 5.5, the main difference between Ca-doping and oxygen

deficiency is from the number of the nearest neighbors for the same total hole

doping. If the hole doping is fixed, the effective magnetic moment should be

the same for both Ca-doping and oxygen deficiency. The exchange coupling

constant is given

J ∼ b2/U ∼ l−7/U2 (5.6)

where b is the exchange integral, U is the coulomb energy, and l is the distance

between Cu2+ and O2−. Because the change in l is less than 2% from the

oxygen deficiency from Fig. 5.3, the exchange coupling constant J can be

assumed not to change very much with both Ca-doping and oxygen deficiency.

However, the number of the nearest neighbors is directly connected with the

oxygen deficiency (δ) because the oxygen ions are mediated by two copper ions.

We can set z ∼ (N − δ) where N is an unknown constant and it is confirmed

from the last graph of Fig. 5.11. Therefore, the oxygen deficiency decreases

the Néel temperature more than Ca-hole doping by reducing the number of

nearest neighbors as well as decreasing the average effective magnetic moment.

Oxygen is commonly thought to affect magnetic ordering in cuprate

samples by hope doping through the relation p = x − 2δ and this relation

is perfectly matched for La2−xSrxCuO4−δ(LaSrCuO)[77] where δ has negative

numbers because this material normally has excess oxygen. If this relation
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could be applied for CaYCuO too, oxygen deficient sample’s Néel tempera-

ture should be the same as that of fully oxygenated sample for a given hole

number. However, this is not the case as seen in Fig. 5.12. The main differ-

ence between LaSrCuO and CaYCuO is where the excess/deficient oxygen is

located. CaYCuO has oxygen site only on the CuO4 square but LaSrCuO has

several candidate sites. The oxygen on the square is most stable and believed

to be hardest one to be removed. CaYCuO become oxygen deficient only

when oxygen ion bonding is weak enough due to holes from cation doping. To

understand this behavior, we need another equation describing the relation

among hole, Ca doping, and oxygen deficiency. Fig. 5.12 shows phase diagram

with different equations for effective hole doping (peff ). peff = x − aδ where

a = 2/3(x − δ) − 1/4 shows a perfect matching of Néel temperatures of oxy-

gen deficient samples to those of fully oxygenated sample. However due to its

nonlinear property, it has a difficulty in explaining its meaning. After careful

fitting procedures, we found simpler equation for this relation which is shown

in Fig. 5.13. peff = x− (2/3)δ = x−2δ +(4/3)δ. Therefore, We found oxygen

content decreases Néel temperature three times less than cation doping or we

may say oxygen deficiency on the spin chain induces holes (4/3)δ more than

cation effectively.

To explain the differences in cation doping and changing oxygen con-

tent, we need to make a model. Here is the ingredients for the effective hole

doping for the two cases. For cation doping (x), doped holes are located at O2−

site to make Zhang-rice singlet, which reduces the average effective magnetic
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Figure 5.13: Phase diagram with different relations for hole doping, cation
doping and oxygen deficiency

moment. The lattice parameters do not change in CuO4 squares which makes

no change in exchange coupling constant J . Oxygen deficiency makes electron

doping effectively. For CaYCuO, oxygen deficiency on the chain is induced

only after holes are doped from cation, and increases with increasing doped

holes. The superexchange coupling (J) between copper ions is made by oxy-

gen ion, therefore removing the oxygen ion cuts the coupling itself to reduce

the number of nearest neighbor (z). Also the parameter a along the chain di-

rection increases with oxygen deficiency to make Cu-O-Cu angle wider, which

results in the decrease in the exchange coupling constant (J). The change

in the number of the nearest neighbor and in the exchange coupling constant

makes the difference between cation ion doping and oxygen deficiency in the

chain.
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Chapter 6

Summary and Future work

Oxygen deficiency effects on the magnetic interaction in the spin chain

system Ca2+xY2−xCu5O10−δ (CaYCuO) were studied. Samples were made us-

ing the conventional solid state reaction method. Annealing under different

oxygen pressure was utilized to produce samples with various oxygen deficien-

cies. X-ray diffraction and iodometric titration were used to characterize the

samples. As expected, oxygen deficiency was reduced with increasing environ-

mental oxygen pressure. For increasing Ca-ion doping (x), the oxygen defi-

ciency increased even though the fabrication conditions were the same, and a

single phase could not be produced in air when x ≥ 1.25. On the contrary,

the parent compound (x = 0) could be made single phased only in air.

Magnetic susceptibility and specific heat were measured to determine

the magnetic properties. A λ-shaped peak at 29 K in the specific heat mea-

surement was observed in the parent compound, and the peak was shifted

to lower temperatures with increasing Ca-doping as well as decreasing oxy-

gen deficiency. Finally, the peak was totally suppressed for fully oxygenated

x=1.00 samples and even for somewhat oxygen deficient sample with x = 1.25.

This change in the peak shows a magnetic transition from 3D long range an-
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tiferromagnetic ordering to a short-range ordering. The noticeable difference

between Ca-doping and reduced oxygen deficiency was observed in the Néel

temperature data. Oxygen deficiency (δ) was previously considered as an-

other method to dope holes (p) in the CuO2 chain like Ca-doping (x); thus

the popular equation p = x − 2δ. But, at the same hole doping level (same

p), oxygen deficiency decreases the Néel temperature more than Ca-doping.

The reason, suggested by mean field theory, is that oxygen deficiency reduces

the number of the nearest neighbors as well as the average effective magnetic

moment. A new relation for the effective hole doping was proposed to explain

both contributions from Ca-doping and from oxygen deficiency: p = x − aδ

where a = 2/3(x− δ)− 1/4, or the simple version p = x− (2/3)δ.

Fe magnetism was studied in single crystal LiFePO4 (LFPO) and in

Fe2O3 nanoparticles (NPs). Anisotropies in an LFPO single crystal sample,

fabricated by a flux method, were found in the Lande g-factor, the Curie-

Weiss temperature, and the effective magnetic moment, and were explained

by a mean field theory. Effects of Au/Silica double coating on the properties

of Fe2O3 magnetic NPs were studied. Increase in the blocking temperature

and the irreversible temperature was observed for the coated NPs

Oxygen deficiency/excess on the cuprate was studied and compared

with Ca-doping. Ca-doping makes two change in the compound: lattice pa-

rameter and hole doping. For an accurate understanding, we need to separate

the two effects on cuprates. Ca2M2Cu5O10 where M = Y, Nd, Gd, La, Lu

[21, 22] is one option to study the oxygen deficiency effects on cuprates as a
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function of lattice parameter. It is an interesting topic to study the oxygen

effects on the fabrication and physical properties of these compounds.

The parent compound of CaYCuO shows a double peak feature from

a thermal conductivity measurement [14]. The higher temperature peak is

thought to be a possible candidate of magnon heat transport, which is the first

observed in Cu-O-Cu edge shared compounds. However, there is a disagree-

ment between single crystal and polycrystal data. We are building thermal

conductivity probe with a 2D rotation stage to study this feature in magnetic

fields.

Another interesting research topic is the hysteresis of Au/SiO2 coated

γ-Fe2O3. This hysteresis appeared up to 300 K contrary to the pure γ-Fe2O3

whose hysteresis disappeared above 100 K. Its source is not clear, but may

be due to the surface effects of the coating. The surface effects of Au/SiO2

coating of magnetic nanoparticles is worthwhile for future study.
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Appendix A

High Pressure Oxygen Furnace

The high pressure oxygen furnace model HPS-3210 by Morris Research

Inc. was used to make fully oxygenated samples. Because the safety and

operational details can be found in the manual provided by the company, I

want to inform you of what is important to start to use the furnace.

The most important part in the furnace is the oxygen pressure vessel.

The Morris Research Inc. provides thres types of vessel depending on their

inner and outer diameters, which are 1) 15 mm (ID) × 32 mm (OD), 2) 10 mm

(ID) × 32 mm (OD) and 3) 15 mm (ID) × 50 mm (OD). Vessel 1) is installed

now even though all parameters for the manual is for the vessel 2). However

I found Don Morris does not recommend using over 100 bar at 1000oC while

200 bar is OK at 970oC degree or below for the vessel 2), which is a much

lower pressure (460 bar at 1000oC) than stated in the manual. A reduction

of 50oC at a given pressure increases the vessel life about 10x. For vessel

1), the pressure rating at a given temperature is reduced by 35% from the

above value. Morris recommends less than 30 bar at 1000oC for vessel 2) but

even this pressure seriously reduces the life-time of the vessel (down to ∼ 103

hours) according to him. Vessel 1) and 2) are interchanged within about 10
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minutes by changing 2 bolts, removing and replacing the thermocouple, and

reconnecting the pressure tubing connection.

Samples, which should be not combustible (no metals except noble

metals: Au, Ag and Pt etc. See the manual), are mounted on a combustion

boat by a special tool provided by the company. The combustion boats are

made by Al2O3 which is also available at the company. For vessel 2), Alfa

Aesar’s Al-23 boat was used (stock number : 33171). This boat interacts with

CaYCuO samples at high temperatures, so Au foil (0.05 mm (0.002 in)) is

recommended to prevent their contact. Samples should be placed within 40

mm from the far end of the bore in the pressure vessel where the temperature

is uniform during the procedure.

After inserting the samples, oxygen gas fills the bore up to the designed

pressure after a couple of purging procedures. Note that the pressure can

increase more than twice as fast as the temperature. The pressure rise with

heating chart can be found in the manual, and keep in mind the chart is

for the vessel 2) not for the installed vessel 1) whose pressure should be 75

% of the chart. Temperature control can be done with the Eurotherm 818P

temperature controller and with temperature profiles whose example for the

heating procedure was shown in the chapter of experiment. Care should be

taken to avoid overshoot which could melt the gold(1064oC). At the condition

where gas pressure is greater than about 10 bar and the furnace temperature is

above about 500oC, the housing lock is blocked and cannot be released which

is indicated by the UNLOCK ENABLED light on. The sample should be
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removed after the pressure shows one bar and the temperature shows room

temperature.
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Appendix B

Iodometric Titration[69]

The following solutions should be ready for use before beginning. You

will also need about 50 mg of the sample in powder form. It is wise to repeat

the entire process at least twice per sample.

1a. 2.0 M KI

1b. 2.0M HCl

2. 1.0 M HCl

3. 0.7 M KI

4. Starch indicator solution

5. 0.01 N Na2S2O3·5H2O

The starch indicator solution (#4) can spoil and should be prepared

fresh when needed. The HCl/KI solution (#1a / #1b) must be prepared

in separate components; if mixed before actual use, the solution evolves free

iodine and can no longer be trusted. The other solutions appear to be stable

for extended periods, although if either of the iodine solutions begin to yellow

(indicating free iodine), discard it and make a fresh solution. Be sure to use the

same batch of sodium thiosulfate solution (#5) for both titrations, since the
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comparison requires that the concentration of this solution does not change.

B.1 Preparation of the solutions

Note : Only solution # 5 needs to be prepared with great accuracy.

Make solution # 5 first because heating and cooling the water is very time

consuming and you can make the other solutions while you wait

1a. 2.0 M KI

1. Weigh out 32.2 g KI. Pour it into a 100 ml volumetric flask. Add some

distilled H2O and swirl to dissolve.

2. Top off gradually to 100 ml line, swirling throughout.

1b. 2.0M HCl

1. Put about 250 ml of distilled H2O into a 1000 ml volumetric flask

2. Pour 165 ml of full-strength HCl (12.1 N) into the same flask. Swirl

3. Top off gradually to 1000 ml with distilled H2O, swirling throughout

2. 1.0 M HCl

1. Put about 25 ml of distilled H2O into a 100 ml volumetric flask

2. Pipette 8.3 ml of full-strength HCl into the same flask. Swirl.

3. Top off gradually to 100 ml with distilled H2O, swirling throughout
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4. Alternately, one can dilute 50 ml 2.0 M HCl above with 50 ml distilled

H2O

3. 0.7 M KI

1. Weigh out about 11.6g of KI. Pour it into a 100 ml volumetric flask.

2. Add distilled H2O gradually, swirling to mix. Top off to 100 ml

4. Starch indicator solution

1. Weigh or estimate ∼ 1 g of soluble starch. Add a few drops of distilled

H2O and rub mixture into a paste.

2. Prepare 100 ml of boiling distilled H2O; add starch paste and stir well.

3. Boil this suspension for about 1 minute, then let it cool.

4. Allow it to settle, then decant the fine suspension into a covered flask

or vial; one can filter if somewhat if desired. One may want to keep

refrigerated.

5. 0.01 N Na2S2O3·5H2O

1. Boil a liter of distilled H2O briefly to get rid of the excess CO2; let it

cool.

2. Weigh exactly 2.4818 g 0.01 N Na2S2O3·5H2O; place it in a 1000 ml

volumetric flask.
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3. Add distilled H2O gradually to dissolve sodium thiosulfate, swirling

throughout. Top off to exactly 1000 ml. Be sure that the distilled water

has cooled to room temperature in order to get the exact concentration.

4. Write the exact concentration of the solution on the flask together with

the date it was prepared. Solutions keep their strength a few months

when kept well sealed. Concentration should be verified by titration of

standard (e. g., CuO) if desired.

B.2 Experimental Procedures

First: Check that all clean glassware is ready. Clean all glassware after

use. Check that the argon tank is ready; establish slow argon flow.

1. Sample : Powder > 50 mg of the sample; about 25 mg is required for

each of the two parts of the measurement.

2. Experiment 1.

(a) Check the argon flow from the needle; it may be clogged.

(b) Carefully weigh 20-25 mg of the sample (± 0.1 mg) into the special

beakers provied for titrations. Record mass (W1)

(c) Add stirring magnet and seal tube with the special red rubber seal.

Allow a gentle argon flow for 2 min to remove oxygen. Keep a gentle

argon flow throughout the experiment.
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(d) Cover the magnet with the 2.0 M KI (#1a) and add a similar

amount of 2.0 M HCl (#1b) with the syringes through the seal

(about 4 ml each). Do not add the solutions in reversed order!

The yellow color is the free iodine ( in form of I−3 ) from the reac-

tion. Some light-colored precipitate may form. Stir the solution

throughout the rest of the experiment.

(e) Add ∼ 1 ml of starch indicator solution (#4). Expect a dark blue

color or perhaps a little greenish, too.

(f) Titrate with Na2S2O3 solution (#5), dropwise, until the blue color

discharges; be sure to record initial and final titrant volumes. Stir

vigorously. When approaching the endpoint, the greenish tint will

disappear, leaving only dark blue. When the blue color discharges,

a slight pinkish color may remain; if titration is continued, the

solution will be white, almost clear. Choose the endpoint consis-

tently; since a ratio will be taken, differences in endpoint choice will

roughly cancel. Record the volume of titrant used (V1). Patience

pays when you approach the endpoint!

3. Experiment 2.

(a) Again carefully weigh 20 - 25 mg of the sample (±0.1 mg) and put

it in a beaker and record the mass (W2).

(b) Add ∼ 7 ml of 1.0 M HCl(#2) and swirl gently to dissolve the

sample.
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(c) Boil gently for 10 min in air while bubbling air or oxygen through

the solution.

(d) Add the magnet. Cool and hook up the gentle argon flow for the

rest of Experiment 2. Let the argon flow for 2 min.

(e) Under argon, add 5 ml of 0.7 M KI(#3) and gently stir.

(f) Add ∼ 1 ml starch indicator solution (#4). Titrate as in Experi-

ment 1. Record the volume of the titrant used (V2).

B.2.1 Calculations, etc.

Calculate the average [Cu-O] valence in excess of +1 according to:

4x = [(V1/W1)/(V2/W2)] (B.1)

Then calculate the oxygen content by using charge balance;

E.g.,for Ca2Y2(Cu1+4x
5 Oy, we have,

2(+3)+2(+2)+5(1+4x)+ y(−2) = 0 =⇒ y = (1/2)[5(1+4x)+10] (B.2)

This technique can be used for the 1-2-3, 2-1-4 and Bi compounds; it cannot be

used for the Tl compounds. Note that this technique measures p+1=1 +4x,

and thus measures deviations of the average copper valence from +1. This

feature can improve accuracy over thermogravimetric techniques when some

secondary phases are present (e.g., other oxides, see examples below).

If you have used a thiosulfate solution of known concentration, you may

calculate the molecular weight of your sample from experiment 2.

M ·W(per Cu) = w2/(Ct · V2) (B.3)
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For 123 and hole doped 214 compounds, the molecular weight should be within

∼ 1 % of the theoretical value if your sample has the stoiciometry you think

it has. Electron doped 214’s may cause problems due to a very low solubility.

Boil the solution, kept safely under an Ar flow, under experiment 1 to avoid

this problem. Finally, the determination of the oxygen content by titration

relies on the following assumptions.

1. That you know the valences of the ions in question, once they get into

solution. Note that you do not know anything about the valences in the

solid. Special ions are PR, which is always 3+ in acidic solution, and Ce

which is only slowly reduced to the 3+ state under the conditions of the

experiment. Boiling under argon may speed up the process.

2. You may check that the sample has the stoichiometry that you think

it has as mentioned above, but in the calculation of the oxygen content

you assume that it is single phase. As a rule of thumb, the calculated

oxygen content will always be too low if you have correct stoichiometry,

but two phases. If you do not have correct stoichiometry, you have to

go through the chemical reactions to find out how too much or too little

copper affects the experiments.

Real samples may contain impurity phases from imperfect synthesis or

excessive Cu oxides. When we consider a sample is not single phase but the

has correct stoichiometry, E.g.,

(1− α)Ca2Y2(Cu1+∆x)5O10−∆ + 5αCu2+ · X + · · · (B.4)
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We always measure the average copper valence in excess of +1, ∆x regardless

of the composition of the sample. For this case, the average copper valence in

excess of +1 equals,

∆x =
∆xexp − α

1− α
(B.5)

which is from 5(1 + xexp) = 5(1 − α)(1 + ∆x) + 10α where ∆xexp is the

number of Cu ions measured. Therefore the inferred, incorrect value of δ is

δincorr = 5−5∆xexp

2
and the real, correct value of δ is δcorr = 5−5∆x

2
= 5−5·∆exp

2(1−α)
. If

we use xexp = 0.9 and α = 0.1 (10 wt% impurities), then while δincorr = 0.25,

δcorr = 0.278 which is around 10% difference. Now let’s think about the non-

stoichiometric multi-phase case (excessive Cu oxides), which gives a wrong

molecular weight in the second titrations. E.g.,

Ca2Y2(Cu1+∆x)5O10−∆ + 5αCu2+ · X + · · · (B.6)

In this case, we should use this equation for copper, 5(1+α)(1+∆xexp) = 5(1+

∆x)+10α, and ∆x = ∆xexp(1+α)−α. Then we get the incorrect and correct

values for δ ’s such as δuncorr = 5−5∆xexp

2
and δcorr = 5−5∆x

2
= 5(1+α)(1−∆xexp)

2
. If

we use xexp = 0.9 and α = 0.1 (10 wt% impurities) again, then δincorr = 0.25,

δcorr = 0.275 which is about 9.5% difference.
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Appendix C

Derivation of the Magnetic Susceptibilities in

anisotropic systems

C.1 Magnetic field applied parallel to the z-axis

Let’s start with the Hamiltonian given in the Chap. 4.

Hi = −(z1J1 + z2J2 + z⊥J⊥)S̄Siz + DS2
iz − g//µBSizH − µ2

BΛ//H
2. (C.1)

The eigenvalue of this Hamiltonian is

Ei = −(z1J1 + z2J2 + z⊥J⊥)S̄m + Dm2 − g//µBmH − µ2
BΛ//H

2 (C.2)

where the azimuthal magnetic number m’s are 0, ±1 and ±2. We may use

the general equation to get magnetization(M) and magnetic susceptibility(χ)

as follows:

M =

∑
(−∂Em

∂H
) · exp(− Em

kBT
)∑

exp(− Em

kBT
)

(C.3)

χ =
∂M

∂H
= NAkBT (

∂2lnZ

∂H2
) (C.4)

where Z is the partition function given by

Z =
∑
m

exp(− Em

kBT
). (C.5)
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Now we may think in the paramagnetic state −(z1J1 + z2J2 + z⊥J⊥)S̄ and

g//µBH are so small compared with kBT that these terms can be treated as a

perturbation. Then, the energy can be written as

Em = m2D − µ2
BΛ//H

2 + αm, (C.6)

where α = −(z1J1 + z2J2 + z⊥J⊥)S̄ + g//µBH. From Eqn. C.3,

M = 2µ2
BΛ//H +

A

2exp(−4D/kBT ) + 2exp(−D/kBT ) + 1
(C.7)

where the numerator of the second term A is

A = −2
∂α

∂H
exp(−4D/kBT )exp(2α/kBT ) + 2

∂α

∂H
exp(−4D/kBT )exp(−2α/kBT )

− ∂α

∂H
exp(−D/kBT )exp(α/kBT ) +

∂α

∂H
exp(−D/kBT )exp(−α/kBT )

= −2
∂α

∂H
· 4α

kBT
exp(−4D/kBT )− ∂α

∂H
· 2α

kBT
exp(−D/kBT )

=
2α

kBT
· ∂α

∂H
(4exp(−4D/kBT ) + exp(−D/kBT ) + 0exp(0/kBT ))

=
2α

kBT
· ∂α

∂H
(
∑
m

m2exp(−m2D/kBT ))

, where we use exp(2α/kBT ) ≈ 1 + 2α/kBT . Then the magnetization is

M = 2µ2
BΛ//H +

D · (α ∂α
∂H

) ·∑m m2exp(−m2D/kBT )

D · kBT
∑

m exp(−m2D/kBT )
(C.8)

= 2µ2
BΛ//H +

α

D
· ∂α

∂H
· F// (C.9)

≈ 2µ2
BΛ//H +

α

D
· g//µB · F// (C.10)

= M0 + M ′, (C.11)

where we use ∂α
∂H

≈ g//µB and,

F =

∑
m−Dm2exp(−Dm2)

kBT
∑

m exp(−Dm2/kBT )
=

−1

0.7 + kBT/2D
. (C.12)
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Now we can obtain the susceptibility by taking a derivative of M to H, then

χ = χ0 + χ′ (C.13)

= 2µ2
BΛ// +

∂α

∂H
· g//µB

D
· F// (C.14)

where we think more term for the derivative of α to H,

∂α

∂H
= g//µB − (z1J1 + z2J2 + z⊥J⊥)

∂S̄

∂H

= g//µB − (z1J1 + z2J2 + z⊥J⊥)
χ′

g//µB

.

Then we can find χ′ from

χ′ =
∂α

∂H
· g//µB

D
· F//

= (g//µB − (z1J1 + z2J2 + z⊥J⊥)
χ′

g//µB

) · g//µB

D
· F//.

Therefore the magnetic susceptibility is

χ = 2Nµ2
BΛ// −

NAg2
//µ

2
BF//

D + (z1J1 + z2J2 + z⊥J⊥)F//

(C.15)

= 2Nµ2
BΛ// +

2NAg2
//µ

2
B

kBT + 1.4D − 2(z1J1 + z2J2 + z⊥J⊥)
, (C.16)

which was used in fitting the experimental data in Chap. 4.

C.2 Magnetic field applied perpendicular to the z-axis

We may also start with the Hamiltonian with a field applied along

x-axis, as given in the Chap. 4,

Hi = −(z1J1 + z2J2 + z⊥J⊥)S̄xSix + DS2
iz − g⊥µBSixHx − µ2

BΛ⊥H2
x. (C.17)
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And this Hamiltonian can be written again as

Hi = H0 + H1 (C.18)

= DS2
iz − µ2

BΛ⊥H2
x − αSix, (C.19)

where

α = −(z1J1 + z2J2 + z⊥J⊥)S̄xSix − g⊥µBSixHx. (C.20)

Since the applied external field is small, the effect on the x-component of the

spin (H1)can be treated as a second-order perturbation term. Then unper-

turbed energy (zeroth order) is given as

< 2, 0|H0|2, 0 > = −µ2
BΛ⊥H2

x (C.21)

< 2,±1|H0|2,±1 > = D − µ2
BΛ⊥H2

x (C.22)

< 2,±2|H0|2,±2 > = 4D − µ2
BΛ⊥H2

x. (C.23)

The 1st perturbed energy is zero for all states since < 2,m|H1|2,m± 1 >= 0

considering

Sx =
1

2
(S+ + S−) (C.24)

S± = Sx ± iSy (C.25)

S±|S,m > =
√

S(S + 1)−m(m± 1))|S, m± 1 >, (C.26)

where we set ~ = 1 for the convenience. However the 2nd perturbed energy is

not zero but given as, for example m = 0,

∑

m6=0

< m|H1|0 >2

E0
0 − E0

m

=
< 1|αSx|0 >2

E0
0 − E0

1

+
< −1|αSx|0 >2

E0
0 − E0

−1

(C.27)

=
6α2

−4D
+

6α2

−4D
= −3α2

D
. (C.28)
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In the same way, we can get the energies as follows:

E0 = −µ2
BΛ⊥H2

x −
3α2

D
(C.29)

E±1 = D − µ2
BΛ⊥H2

x +
7α2

6D
(C.30)

E±2 = 4D − µ2
BΛ⊥H2

x +
α2

3D
. (C.31)

Now we can find the magnetization in the same way as in the parallel case

given in the previous section,

M⊥ = 2µ2
BΛ//H +

α

D
· g⊥µB · F⊥ (C.32)

= M⊥,0 + M ′
⊥, (C.33)

where

F⊥ =
4
3
exp(−4D/kBT ) + 14

3
exp(−D/kBT )− 6

2exp(−4D/kBT ) + 2exp(−D/kBT ) + 1
=

1

0.35− kBT/2D
. (C.34)

In the same way as the previous section we can also find the magnetic suscep-

tibilities as

χ⊥ = χ⊥,0 + χ′⊥ (C.35)

= 2Nµ2
BΛ⊥ +

NAg2
⊥µ2

BF⊥
−D + (z1J1 + z2J2 + z⊥J⊥)F⊥

(C.36)

= 2Nµ2
BΛ⊥ +

2NAg2
⊥µ2

B

kBT − 0.7D − 2(z1J1 + z2J2 + z⊥J⊥)
. (C.37)

The perpendicular axes have the same expression for the susceptibility so the

anisotropy comes from the differences in each parameter Λ⊥,a and Λ⊥,c, and

g⊥,a and g⊥,a. There equations were also used in analyzing the experimental

data.
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