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Plateau-Übergang im Quantendraht

Diploma Thesis

by

Matthias Sitte

Institute of Theoretical Physics, Department of Physics

Faculty of Mathematics and Natural Sciences

University of Cologne

June 2008





Abstract

In this thesis, we present a theoretical study of interacting spinless electrons in a

two-band quantum wire. While the lower band is described as a Luttinger liquid

with gapless density excitations, the upper band is modelled in terms of fermions at

the bottom of the band. In addition to the usual density-density interaction between

the two bands, we investigate the possibility of transferring of pairs of electrons from

one subband to the other.

We perform a renormalization group analysis around the strong coupling fixed

point, calculating the self-energy and vertex corrections. We then consider the

renormalization of the theory with complementary renormalization conditions. As

a main result, we find that the interactions between the two bands can lead to a

modification of the dispersion relation.

Finally, we focus on the thermodynamical properties of the model. A calculation

of the specific heat coefficient is presented in both the non-interacting and interact-

ing system. It is shown that in the presence of interactions the activation of the

second band, and the subsequent quantum phase transition, strongly influences the

thermodynamics.
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Chapter 1

Introduction

1.1 Motivation

Over the past decades, experiments have provided evidence that strong correlations

and dimensionality are a central ingredient to the understanding of the physical prop-

erties in certain classes of materials. Among them are the heavy fermion compounds,

the high-Tc superconductors, organic materials, semiconductor heterostructures, and

quantum wires.

In three dimensions, strongly correlated electrons are a well studied problem.

Their theoretical description by Fermi liquid theory is approximate but well under-

stood. It is based on the phenomenological picture of quasi-particles which evolve

out of the bare particles of a Fermi gas upon adiabatically switching on interactions

between the bare particles. These quasi-particles are in one-to-one correspondence

with the bare particles and carry the same quantum numbers. The electron-electron

interaction then renormalizes the kinematic parameters of the quasi-particles such

as the effective mass, and thermodynamic properties such as the specific heat. More-

over, the quasi-particles obtain a finite lifetime which diverges as the Fermi surface

is approached.

However, the picture of quasi-particles breaks down in one dimesion due to the

special topology of the Fermi surface which now is a set of two distinct Fermi points.

The elementary excitations are rather bosonic collective charge and spin fluctuta-

tions dispersing with different velocities. An incoming electron decays into a charge

and a spin excitation which then spatially separate in time. This spin-charge sep-

aration obviously violates the assumption of Fermi liquids that the quasi-particles

carry the same quantum numbers as the bare particles such as momentum and spin.

This makes it impossible to describe one-dimensional systems by Fermi liquid the-

ory. Finally, the correlations between these excitations are anomalous and show up

as interaction-dependent non-universal power laws whereas in normal metals these

correlations are characterized by universal power laws.
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Chapter 1. Introduction

1.2 Experimental Evidence for Luttinger Liquid Physics

In this section, we briefly list some systems which are good candidates for Luttinger

liquid physics: quantum wires, carbon nanotubes, and fractional quantum Hall edge

states. In all these cases, the electron motion is effectively one-dimensional. How-

ever, regarding Luttinger liquid physics, the interpretation of the experiments re-

mains controversial.

1.2.1 Quantum Wires

Natural candidates for one-dimensional electron systems are quantum wires. These

can be made, for example, by applying a gate voltage to a two-dimensional electron

gas formed at the inversion layers of heterostructures, such as the interface of GaAs

and AlGaAs. The gate voltage leads to discrete transverse modes, and the electron

motion is effectively one-dimensional. However, it is hard to fabricate quantum

wires which are sufficiently clean since backscattering from impurities destroys the

collective modes [1].

Typical quantum wire experiments measure the dc conductance. However, note

that in most of the cases, the conductance probes the physics of the Fermi-liquid

leads rather than the Luttinger liquid behavior of the quantum wire.

1.2.2 Carbon Nanotubes

Carbon nanotubes are relatively new systems and their low-temperature behavior is

predicted to be governed by Luttinger liquid theory.

A carbon nanotube is a graphene sheet rolled up in a cylindrical structure with

a diameter of only a few nanometers and a length up to several micrometers. The

remarkable electronic properties of carbon nanotubes emerge from the special band

structure of graphite. The electron wavelength around the circumference of a nan-

otube is quantized due to periodic boundary conditions, leading to discrete wave-

lengths. Because of the quantization of circumferential modes, the electronic states

split into one-dimensional bands which, for single-walled carbon nanotubes, are sep-

arated on the scale of 1 eV. In metallic carbon nanotubes only two subbands cross

the Fermi energy so that they can be regarded as one-dimensional quantum wires

even at room temperature [2].

1.2.3 Edge States in Fractional Quantum Hall Systems

Finally, the edge states in fractional quantum Hall systems are a good candidate for

Luttinger liquid physics.

In the classical Hall effect, electrons moving in a magnetic field generate a po-

tential difference V transverse to the current I. In the quantum Hall effect, the
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1.3. Outline

transverse resistance V/I exhibits plateaus upon varying the magnetic field. These

plateaus appear for particular filling factors ν at a resistance ~/(νe2). The filling

factor ν takes integer values for the integer quantum Hall effect and fractional values

for the fractional quantum Hall effect.

Edge states in the integer quantum Hall effect are described by one-dimensional

chiral Fermi liquids [3]. The chirality can be understood semi-classically in terms

of skipping Landau orbits at the boundaries, with opposite directions for oppo-

site edges. Due to the spatial separation between left and right moving excita-

tions, backscattering from impurities is supressed. In the case of fractional plateaus,

Wen [4, 5] has conjectured that the edge states are Luttinger liquids. However, this

prediction has not yet been confirmed unambigously.

1.3 Outline

In this thesis, we consider a model of spinless electrons in a quantum wire with two

subbands of transverse quantization. Here, we study the quantum phase transition

where the second subband becomes activated. It was shown by Meyer et al. [6]

that this conductance plateau transition is preempted by the formation of an inter-

band pairing state which, in the limit of infinitely strong density-density interaction

between the two bands, is supposed to be of Ising type. We perform a perturbative

analysis around this strong coupling limit using renormalization group methods. As

a result, we show that the critical Ising mode induces superconducting fluctuations

in the Luttinger liquid of the filled first band. This is reflected in a logarithmically

strong attractive interaction and a reduction of the corresponding velocity. Finally,

we discuss possible consequences like a fluctuation-induced first order transition

preempting Ising criticality.

Chapter 2 presents a brief overview of Landau’s theory of Fermi liquids and

discusses its breakdown in one dimension. An extensive introduction of the Abelian

bosonization technique and its applications to one-dimensional systems is also given.

Chapter 3 presents the Hamiltonian description of the model of interacting spin-

less electrons in a two-band quantum wire. In addition to the usual inter-band

density-density interaction, the transfer of pairs of electrons between the two bands

is discussed.

Chapter 4 presents the general ideas of renormalization group methods. In a

perturbative approach to the strong coupling limit, the leading-order self-energy

corrections as well as the vertex corrections are calculated. The renormalization of

the theory and solutions of the resulting β functions are discussed.

Chapter 5 presents a brief survey of quantum phase transitions and quantum

critical points. Regarding our model, the specific heat coefficient is calculated, and

the results are compared with predicitions from scaling theory.
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Chapter 2

Interacting Fermions in One

Dimension

Many elementary textbooks on condensed matter physics begin with a discussion of

the non-interacting electron gas, explaining the characteristics of conduction elec-

trons in metals. Although some oversimplified assumptions are made such as ne-

glecting interactions between electrons or the effect of ions in a solid, this picture of

free electrons explains many important phenomena like the conductivity of metals.

Moreover, the theory of free electrons is but the simplest of all theories in condensed

matter physics.

However, the naive picture of the non-interacting Fermi gas is far from being

complete. The most successful attempt to establish a more realistic theory was

introduced by Landau in a series of articles [7, 8, 9] aimed at explaining the properties

of liquid 3He. This theory, which is commonly referred to as Fermi liquid theory,

is motivated by phenomenology and is based on the assumption that characteristic

particle excitations of the real system carry the same quantum numbers as the

particles in the non-interacting Fermi gas. This a priori assumption has proven well

in a large number of systems, and Fermi liquid theory has thus been one of the most

influencing theories in condensed matter physics.

In this chapter, we present the central ideas of Landau’s theory of Fermi liquids

in Sec. 2.1, and the breakdown of Fermi liquid theory in one dimension in Sec. 2.2.

Readers familiar with Fermi liquid theory may safely skip this section since they will

not need it for the rest of the thesis. On the other hand, in one-dimensional systems,

the low-energy properties are generically described by Luttinger liquid theory in

terms of bosonic excitations. This theory, based on the Tomonaga-Luttinger model,

and the bosonization technique are summarized in Sec. 2.3. Finally, in Sec. 2.4, we

discuss a few models whose low-energy physics can be described by the Tomonaga-

Luttinger model.
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Chapter 2. Interacting Fermions in One Dimension

2.1 Fermi Liquid Theory

Fermi liquid theory begins with the observation that macroscopic properties of real

systems often involve only excitations of the system on energy scales that are small

compared to the Fermi energy. The state of the system can thus be described in

terms of its ground state and its low-lying elementary excitations, the so-called

quasi-particles. A normal Fermi liquid is defined as a system in which the non-

interacting ground state (the Fermi gas) evolves continuously, that means without

any symmetry-breaking process, into the interacting ground state, and there is a

one-to-one correspondence between the bare particles of the original system and

the quasi-particles of the interacting system. Note that the principle of adiabatic

continuity is an a priori hypothesis which has to be verified at the end of the day.

The theory of Fermi liquids essentially describes the physics of quasi-particles.

A quasi-particle with momentum |k| > kF is defined as the difference between an

interacting system with an added fermion with momentum k and a system without

such an addition, and similarly a quasi-hole is obtained by starting with hole state.

When a particle is added to an interacting system, its propagation is distorted

by the self-energy cloud which arises from interactions between the particle and

its surrounding neighbors. A quasi-particle, that is a bare particle and its self-

energy cloud, is an independent entity and constitutes an elementary excitation of

the interacting system. Since the quasi-particles evolve from the non-interacting

Fermi gas, they carry the same quantum numbers but their dynamical properties

are renormalized by interactions.

With the help of the one-to-one correspondence between the bare particles and

the quasi-particles we can describe the physics of the quasi-particles by mapping it

onto the physics of the bare ones. To this end, let us consider an eigenstate of the

interacting system, characterized by its momentum distribution function n0
k. Exci-

tations of the system are measured by the deviation in the momentum distribution

nk function from the ground state:

δnk = nk − n0
k (2.1)

At low temperatures only low-lying states in the vicinity of the Fermi surface are

excited. Under such conditions, the quasi-particle damping is usually negligible.

In a non-interacting system, the relation between the energy of a given state and

the corresponding distribution function is simply a linear relation,

E0 =
∑
k

n0
kεk (2.2)

with εk the single-particle energy. Upon switching on interactions, the relation be-

tween the state energy, E, and the quasi-particle distribution function, nk, becomes

much more complicated and in general cannot be specified explicitly. If, however,
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2.1. Fermi Liquid Theory

nk is sufficiently close to the ground state distribution function n0
k, i.e. for small

α = N−1
∑

k|δnk|, we can carry out a Taylor expansion of the free energy:

F = F0 +
∑
k

δnkξk +
1
2

∑
k,k′

δnkδnk′f(k,k′) +O(δn3) (2.3)

where ξk = εk − µ is the energy relative to the chemical potential. Eq. (2.3) is the

core of the phenomenological theory of Fermi liquids. The most important feature is

the quadratic term describing interactions between quasi-particles. The coefficient

f(k,k′) is the interaction energy between quasi-particles of momentum k and k′.

Let us now consider a state of the system with a certain distribution of excited

quasi-particles δnk′ . Adding an extra quasi-particle with momentum k, its free

energy is equal to

ξ̃k = ξk +
∑
k′

δnk′f(k,k′) (2.4)

If the momentum k is close enough to the Fermi surface, both terms have the same

order of magnitude. The free energy of a quasi-particle thus depends on the state of

the system through its interaction energy with other excited quasi-particles. This

inter-dependence arises from the quadratic interaction term in Eq. (2.3) and leads

to a modification of the quasi-particle’s transport properties.

So far, the core features of Fermi liquid theory have been presented only at zero

temperature. Of course these ideas can be generalized to finite temperatures. Ap-

plying Landau’s theory of Fermi liquids to a number of macroscopic properties such

as specific heat, compressibility, sound wave velocity, spin susceptibility, and so on,

one can characterize a system at equilibrium. For more details on thermodynamical

properties see e.g. [10, 11, 12].

Finally, let us consider the application of Fermi liquid theory to electrons in

metals. In a system of non-interacting electrons which move in a periodic potential of

a crystalline solid the single-particle eigenstates are Bloch waves. These eigenstates

are characterized by two quantum numbers, a band index n and a wave vector k,

the latter lying in the first Brillouin zone of the crystal. The ground state of an

N -electron system is obtained by filling up the N lowest Bloch states. The Fermi

surface which lies in the first Brillouin zone inherits the symmetry of the lattice

and will in general be anisotropic. By using the principle of adiabatic continuity

we can establish a one-to-one correspondence between the eigenstates of the real

system and those of the non-interacting system. In the same manner, we can define

quasi-particles by adding one particle with quantum numbers (n,k) to the non-

interacting system and then switch on interactions adiabatically. Due to momentum

conservation the resulting quasi-particle will have the same quantum numbers as the

original Bloch wave, namely a band index and a momentum k in the first Brillouin

zone. The quasi-particle thus has the same characteristics as a Bloch wave, and one

7



Chapter 2. Interacting Fermions in One Dimension

can define a Fermi surface for the interacting system. Because of the quasi-particle

damping due to particle interactions, the concept of quasi-particles is valid only in

the vicinity of the Fermi surface. This is a major difference from the non-interacting

system where Bloch waves are defined over the entire first Brilouin zone. However,

for most practical purposes this restriction is unimportant because TF � T . The

fraction of excited quasi-particles always remains very small, so that we can neglect

quasi-particle damping.

In the abscence of interactions, a Bloch wave has an energy εnk and a velocity

equal to vk = ∇kεnk. Let us now switch on interactions. In the interacting system,

the quasi-particles have an energy εnk equal to the first derivative of the energy func-

tional. We can define a quasi-particle velocity in the same way as before. However,

due to the influence of the periodic lattice and the Coulomb interaction between

electrons the velocity is renormalized compared to the bare single-particle velocity.

In the case of a nearly isotropic Fermi surface we can write

|vkF | =
~|kF |
m∗

(2.5)

where the effective mass m∗ contains the combined influence of the periodic lattice

field and electron interactions. However, since the Fermi surface of a metal is in

general not isotropic, the interaction between quasi-particles, f(k,k′), depends on

the direction of both k and k′. Having the anisotropy of the Fermi surface in mind,

it is obvious that a comparison between theory and experiment is not easy and can

be fruitful only in the case of nearly isotropic Fermi surfaces. Another complication

arises from the long-range character of Coulomb interaction between electrons. Here

we note that the above considerations work quite well provided one regards f(k,k′)
as the screened quasi-particle interaction. Finally, not only do the electrons interact

with each other, they interact as well with the lattice vibrations (phonons) of the

crystal. One must therefore consider to what extent the phenomena are influenced

by this further electron interaction.

To conclude, note that Landau’s theory of Fermi liquids has been described to

great extent in many articles and condensed matter textbooks. For some review of

Fermi liquid theory and related subjects see e.g. [10, 11, 12].

2.2 Breakdown of Fermi Liquid Theory in One

Dimension

The principle of adiabatic continuity is an a priori hypothesis in Fermi liquid the-

ory which requires some verification. Although it works for repulsive interactions

in three dimensions, it fails for attractive interactions where a phase transition to

superconductivity takes place. Moreover, it cannot be justified for repulsive inter-

actions in one dimension, the case of interest in this thesis. Here, we briefly discuss

8



2.2. Breakdown of Fermi Liquid Theory in One Dimension

the breakdown of Fermi liquid theory in one dimension. The first discussion is

rather handwaving, while the second one computes perturbative corrections in the

electron-hole susceptibility.

It is very easy to see that in one dimension interactions between electrons have

drastic effects compared to higher dimensions. In high dimension, the quasi-particles

are nearly free whereas the individual electrons themselves are strongly coupled. On

the other hand, in one dimension, an electron that tries to propagate has to “push”

its neighbors aside because of electron-electron interactions. Hence, no individual

motion is possible, and any individual excitation has to become a collective one.

This is obviously a major difference between one and higher dimensions and clearly

makes it impossible to have a Fermi liquid theory work in one dimension. The

situation gets even more complicated for fermions with spin. Because only collective

excitations can exist, it implies that a single fermionic excitation has to split into

a collective charge excitation and a collective spin excitation. These excitations

have in general different velocities, so the electron “breaks up” into two elementary

excitations. This interaction effect, known as spin-charge separation, is a hallmark

of interacting electrons in one dimension. To conclude, even on a qualitative level

the physical properties of the one-dimensional electron gas must be very different

from those of the free electron gas in higher dimensions.

On a more formal level, if one would attempt to treat the electron-electron

interaction perturbatively some correlation functions such as the density-density

correlation function would appear in the perturbation theory. In linear response

theory, such correlations measure the response of the electron gas to an applied

external potential:

Hext =
∫
ddx

∫
dt V (x, t)ρ(x, t) (2.6)

The susceptibility that measures the response is given by (see e.g. [12])

χ(q, ω) =
1
V

∑
k

nF (ξk)− nF (ξk+q)
ω + ξk − ξk+q + i0+

(2.7)

where V is the volume of the system and nF the Fermi occupation factor. Let us

focus on the static susceptibility χ(q, ω = 0). Normally, the static susceptibility

is well-behaved and goes to a constant in the dc-limit, ω → 0. One recovers then

that χ(q → 0, ω = 0) is proportional to the density of states at the Fermi level,

ν0 = ν(ξ = 0). Usually, the compressibility is defined with a potential V (x, t) = −µ,

so with the above conventions χ is negative. For finite q its behavior is controlled by

the momentum dependence of ξk. When k is on the Fermi surface one has ξk = 0,

and if one can find a wavevector Q sucht that both ξk and ξk+Q are zero, one gets

a singularity in the susceptibility. In high dimensions, this occurs in general only

for a very few points. Moreover, because of the integration over k the singularity is

smoothed out by the integration measure which is equal to ddk ∼ kd−1 dk dΩ. The

9



Chapter 2. Interacting Fermions in One Dimension

only way to have a stronger singularity is to have a nesting property for the Fermi

surface, that is, to find a wavevector Q such that for a finite domain of momenta k

the energy satisfies the relation ξk = −ξk+Q. In this domain, the real part of the

particle-hole susceptibility (2.7) becomes

Reχ(Q, ω = 0) = − 1
V

∑
k

tanh(βξk/2)
2ξk

(2.8)

where β = 1/(kBT ) is the inverse of the temperature. Assuming that the density

of states is approximately a constant close to the Fermi level, the real part of the

susceptibility χ is dominated by a logarithmic divergence. But in high dimension it

is in general impossible to satisfy this nesting property, except on isolated points.

Thus, the susceptibility χ itself cannot diverge, but its derivatives are in general

singular.

However, in one dimension the nesting property is always satisfied. Close to the

Fermi points, one can linearize the dispersion relation to obtain

ξk ' vF (k − kF ) for k ≈ kF
ξk ' vF (−k − kF ) for k ≈ −kF

(2.9)

It is thus easy to see that

ξk+Q = −ξk for Q = 2kF (2.10)

In one dimension, there is perfect nesting, regardless of the precise form of the

dispersion relation. Since the susceptibility diverges at the nesting vector Q =

2kF , one can expect that any perturbation in the theory will be divergent at this

wavevector. This usually indicates that the ground state of the interacting system is

quite different from the one started from, i.e. the non-interacting ground state. No

matter how weak the interactions are, they cannot be treated in perturbation theory.

Moreover, the properties of one-dimensional interacting fermions are fundamentally

different from the free electron ones. A theoretical description of interacting electrons

in one dimension has thus to be completely different from Landau’s theory of Fermi

liquids.

2.3 The Tomonaga-Luttinger Model

In the previous section, we have seen that Fermi liquids in one dimension are very

special in that there are no fermionic quasi-particles, and their elementary excita-

tions are rather bosonic collective charge and spin fluctuations with different veloc-

ities. An electron decays into such charge and spin excitations which then separate

with time.

10



2.3. The Tomonaga-Luttinger Model

The reason for this peculiar properties is the topology of the Fermi surface which

produces both singular particle-hole response and severe conservation laws. In a one-

dimensional system, the Fermi surface is simply a set of points ±kF , and one has

perfect nesting with a wavevector Q = 2kF . This produces a singular particle-

hole response at 2kF in the particle-hole susceptibility leading to the breakdown

of Fermi liquid theory in one dimension. On the other hand, the disjoint Fermi

surface gives a well-defined dispersion to the low-energy particle-hole excitations,

and these excitations can be taken as building blocks upon which a description of

the low-energy physics in one dimension is constructed.

The aforementioned properties are generic for any one-dimensional system but

particularly prominent in a one-dimensional model of interacting fermions proposed

by Luttinger [13] and Tomonaga [14] and solved exactly by Mattis and Lieb [15]. The

notion of a Luttinger liquid was coined by Haldane [16] to describe the universal low-

energy properties of gapless one-dimensional quantum systems, and to emphasize

that an asymptotic description, that means in the low-energy limit q → 0 and ω → 0,

can be based on the Luttinger model in the same way as the Fermi liquid theory in

higher dimension is based on the free Fermi gas.

Let us now start with a formal derivation of a way to describe the low-energy

properties of one-dimensional systems. The method we present here is known as

Abelian bosonization and is a very useful tools in one dimension. We introduce

this method in a two-step way: First, we present a model on which this method is

essentially exact and which allows us to derive exact formulas that can be used for

other models as well. Later, we present a physical interpretation of the bosonization

formulas that allows to make contact to other systems and to show the universality

of the model.

Of course, the technique of Abelian bosonization has been subject of many re-

views and textbooks. For some reviews of interacting fermions in one dimension see

e.g. [17, 18, 19].

2.3.1 Particle-Hole Excitations and Their Spectrum

Before turning to the mathematical formulation of the model, let us consider an

outstanding property of one-dimensional systems first. An important component of

the excitations of the electron gas are particle-hole excitations where an electron

is taken from below the Fermi level and promoted above. Since one annihilates

a particle with momentum k and creates another one with momentum k + q, the

momentum of the excitation is well fixed and equal to q. In contrast, the energy of

such an excitation depends in general on both k and q. Looking at the energy of the

particle-hole excitations as function of q, one finds in general a continuum of energies.

In high dimensions, for q < 2kF one can create particle-hole pairs with arbitrary

11



Chapter 2. Interacting Fermions in One Dimension
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Figure 2.1: (a) Particle-hole spectrum for two- and three-dimensional systems. (b)

Particle-hole spectrum for one-dimensional systems. (Figure taken from [17].)

low energy by destroying a particle just below the Fermi surface at one point and

creating a particle just above the Fermi surface at another point. The particle-hole

spectrum is thus a continuum extending to zero for all momentum vectors q smaller

than 2kF , as shown in Fig. 2.1 (a). However, in one dimension, the Fermi surface

is reduced to two points, and the only way to get a low-energy excitation is to

destroy and create pairs of particles close to the Fermi surface. The only places

where the particle-hole energy can be zero are for q = 0 and q = 2kF . The resulting

particle-hole spectrum is shown in Fig. 2.1 (b). In one dimension, contrary to higher

dimensions, the particle-hole excitations thus have both a well-defined momentum

and energy.

Let us focus on the particle-hole excitations with momentum q = 0 for the

moment. At small q the energy of a particle-hole excitation is given by

Ek(q) = ξk+q − ξk (2.11)

where ξk and ξk+q is the energy of an occupied (unoccupied) state relative to the

chemical potential, respectively. If we consider the standard quadratic dispersion

ξk =
k2

2m
− µ with µ =

k2
F

2m
(2.12)

with k ∈ [kF − q, kF ], the average value E(q) of Ek(q) and the dispersion δE(q) are

given by

E(q) =
kF q

m
= vF q (2.13)

δE(q) =
q2

m
=
E(q)2

mv2
F

(2.14)

One obtains the same results when expanding the energy ξ around kF to second

order. Regardless of the precise form of the dispersion relation ξk, these results

12



2.3. The Tomonaga-Luttinger Model

show that the average energy E(q) of a particle-hole excitation depends only on its

momentum q and that the dispersion in energy δE(q) ∼ E(q)2 vanishes much faster

than the average energy E(q), provided ξk has a finite slope at the Fermi level.

This means that in one dimension the particle-hole excitations are well-defined, i.e.

they are particles with well-defined momentum and energy whose lifetime becomes

longer and longer when the energy goes to zero. This is the same situation as for the

quasi-particles in a Fermi liquid. Because these excitations are made of fermionic

annihilation and creation operators they are of bosonic nature. These bosonic quasi-

particles are the key ingredient to solving one-dimensional interacting fermions.

2.3.2 Representation of Excitations in the Spinless Model

Let us start with spinless fermions. As mentioned above, the particle-hole excitations

of the system have a nearly linear spectrum, with a well-defined momentum and

energy. In order to make this relation perfect we replace the original model by a

model with a purely linear spectrum which is called the Tomonaga-Luttinger model,

as shown in Fig. 2.2. To get a total independence of the energy of the particle-

hole excitation Ek(q) on the initial momentum k for all values of q it is necessary

to extend the energy spectrum down to −∞. This forces us to introduce two new

species of fermions, namely left and right-moving fermions. The Hamiltonian of such

a one-dimensional system reads

H =
∑
r=R,L

∑
k

vF (rk − kF )c†rkcrk (2.15)

where r = +1 for right-moving fermions and r = −1 for left-moving fermions.

Eq. (2.15) is the one-dimensional equivalent of a Dirac Hamiltonian. Similarly,

the Fermi sea where all states below the chemical potential, i.e. all states with

momentum k and energy ξk < 0, are filled is replaced by a Dirac sea where the

infinite number of states with negative energy ξrk < 0 are filled.

The energy of particle-hole excitations of this model is now given by

Erk(q) = ξr,k+q − ξrk = vF (r(k + q)− kF )− vF (rk − kF ) = vF rq (2.16)

and is totally independent on k. The particle-hole excitations are thus well-defined

excitations with well-defined momentum q and energy Er(q) = vF rq. This leads to

the particle-hole spectrum as shown Fig. 2.3 (b).

Let us rewrite the Tomonaga-Luttinger liquid in terms of the particle-hole ex-

citations. Because we have introduced an infinite number of occupied states in

Eq. (2.15), we have to be careful in defining operators such as the density operator,

particle number operator, and so on, to avoid infinite quantities which are ill-defined.

For that purpose we define the normal ordering of a product of operators : AB · · · :
with respect to a specific vacuum |0〉. In a normal ordered product, the annihilation

13
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Figure 2.2: (a) The original model with band curvature. (b) A model of fermions

with a linear spectrum which is now extended to all values of k, leading to an infinite

number of negative energy states. (Figure taken from [17].)
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Figure 2.3: Particle-hole spectrum (a) for one-dimensional systems and (b) for the

Tomonaga-Luttinger model (2.15). (Figure taken from [17].)

operators with respect to a given vacuum state are put on the right and the creation

operators on the left. For two operators A and B which are linear combinations

of annihilation and creation operators, normal ordering the product of operators is

equivalent to subtracting the average value in the vacuum:

: AB := AB − 〈0|AB|0〉 (2.17)

This normal ordering recipe is all we need to know. The normal ordered density is

thus defined as

: ρr(x) :=: ψ†r(x)ψr(x) : (2.18)

where we introduced the notation ψr(x) and ψ†r(x) for annihilating and creating a

right-moving (r = R) or left-moving (r = L) fermion at point x, respectively. The

14



2.3. The Tomonaga-Luttinger Model

Fourier component ρr(p) of the density is defined by

: ρr(x) :=
1
L

∑
p

: ρr(p) : eipx (2.19)

This is leads to (p 6= 0)

: ρr(p) :=
∑
k

c†r,k−pcrk (2.20)

while for p = 0

Nr =: ρr(p = 0) :=
∑
k

(
c†rkcrk − 〈0|c†rkcrk|0〉

)
(2.21)

defines the particle number operator Nr for each species. As usual ρ†(p) = ρ(−p)
since the electron density ρ(x) is a real quantity. The subtraction of the average

value for p = 0 ensures that the matrix elements of the density operator are finite.

It is straightforward to calculate the commutator of the density operators. However,

because of the infinite number of occupied states the bare density operators contain

infinity and one has to take care when changing variables within the commutator.

For periodic boundary conditions, this leads to (see e.g. [17])

[ρr(p), ρ
†
r′(p

′)] = δrr′δpp′
rpL

2π
(2.22)

Eq. (2.22) shows that because of the infinite number of occupied states the density

operators have commutation relations similar to those of bosonic operators. One

thus recovers that density fluctuations behave as bosonic annihilation and creation

operators. Note that for the Tomonaga-Luttinger model (2.15) this is an exact

result. Since
ρL(p < 0)|0〉 = 0

ρR(p > 0)|0〉 = 0
(2.23)

these density operators can be identified with the destruction operators for bosons.

We thus define bosonic creation and annihilation operators as (p 6= 0)

b†p =
(

2π
L|p|

)1/2∑
r

Θ(rp)ρ†r(p) (2.24)

bp =
(

2π
L|p|

)1/2∑
r

Θ(rp)ρr(p) (2.25)

where Θ(x) is the Heaviside step function.

Let us now use these bosonic operators to express fermionic operators in the new

basis, especially the Hamiltonian (2.15). Using the commutation rules of the boson

operators, and assuming that the basis generated by the bosonic operators bp, b
†
p is

complete, it is easy to check from the commutation relations that the Hamiltonian

that would satisfy the same commutation rules is given by

H =
∑
p 6=0

vF |p|b†pbp +
πvF
L

∑
r

N2
r (2.26)
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Chapter 2. Interacting Fermions in One Dimension

Eq. (2.26) shows that the kinetic energy which is normally quadratic in fermionic

operators can also be rewritten in a quartic term of fermionic operators. This result

is crucial because it shows that the interaction between fermions which is usually

quartic in fermion operators can be easily incorporated into the model, keeping the

bosonic Hamiltonian quadratic and thus solvable in a simple way.

Rather than working in terms of the bosonic operators bp, b
†
p it is usually more

convenient to introduce two new fields φ(x) and θ(x) which are defined by

φ(x) = −(NR +NL)
πx

L
− iπ

L

∑
p 6=0

1
p
e−α|p|/2−ipx(ρ†R(p) + ρ†L(p)) (2.27)

θ(x) = (NR −NL)
πx

L
+
iπ

L

∑
p 6=0

1
p
e−α|p|/2−ipx(ρ†R(p)− ρ†L(p)) (2.28)

Using Eqs. (2.24) and (2.25) we can rewrite these fields:

φ(x) = −(NR +NL)
πx

L
− iπ

L

∑
p 6=0

(
L|p|
2π

)1/2 1
p
e−α|p|/2−ipx(b†p + b−p) (2.29)

θ(x) = (NR −NL)
πx

L
+
iπ

L

∑
p 6=0

(
L|p|
2π

)1/2 1
|p| e

−α|p|/2−ipx(b†p − b−p) (2.30)

Here, α introduces a momentum cutoff of the order of 1/α, and thus a finite band-

width to our model. In a strict sense, one should take the limit α → 0 only after

having calculated all observables one is interested in.

The fields φ and θ obey simple commutation rules. Using the bosonic commu-

tation rules for bp, b
†
p one easily obtains

[φ(x), θ(x′)] ≈ iπ
2

sign(x′ − x) (2.31)

which becomes valid in the limit L→∞ and then α→ 0 (see e.g. [17]). Similarly,

[φ(x), ∂xθ(x′)] = iπδ(x′ − x)

[∂xφ(x), θ(x′)] = iπδ(x′ − x)
(2.32)

Eq. (2.32) shows that the conjugate momentum πφ(x) to the field φ(x) is simply

given by

πφ(x) =
1
π
∂xθ(x) (2.33)

which gives using Eq. (2.30)

πφ(x) =
(NR −NL)

L
+

1
L

∑
p 6=0

(
L|p|
2π

)1/2

sign(p)e−α|p|/2−ipx(b†p − b−p) (2.34)

Using Eqs. (2.27) and (2.28) one obtains

∂xφ(x) = −π(ρR(x) + ρL(x)) (2.35)

∂xθ(x) = π(ρR(x)− ρL(x)) (2.36)
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2.3. The Tomonaga-Luttinger Model

∂xφ is thus the q = 0 part of the density fluctuations at point x. ∂xθ is simply the

current operator in a one-dimensional system. Finally, with the help of Eqs. (2.29)

and (2.30) the Hamiltonian (2.26) can be rewritten in terms of the fields φ and θ

H =
vF
2π

∫
dx
[
(∂xθ)2 + (∂xφ)2

]
(2.37)

where we used the convention ~ = 1. Since the particle number operators for each

species Nr are normal ordered and thus have finite matrix elements, the correspond-

ing terms vanish in the limit L→∞.

Single-particle creation and annihilation operators can be defined in a similar

way. To this end, let us consider operators ψr(x), ψ†r(x) for each species r = R,L

which destroy or create a particle at point x, respectively. From the commutation

rules with the bosonic operators we can guess an operator that would produce the

same commutation rules. In terms of the fields φ and θ this single-particle operator

is (see e.g. [17])

ψr(x) = ηr lim
α→0

1√
2πα

eir(kF−π/L)xei(θ(x)−rφ(x)) (2.38)

In the limit L→∞, the single-particle operator becomes

ψr(x) = ηr lim
α→0

1√
2πα

eirkF xei(θ(x)−rφ(x)) (2.39)

Introducing the operators ηr, the so-called Klein factors, allows us to make the

mapping between the fermion basis and the boson basis rigorous [16, 18]. The

construction of the operators ηr is tedious but one establishes an exact operator

identity. For a proof that the bosonic space plus operators η is a complete Hilbert

space see e.g. [18].

Finally, let us have a look at the physical interpretations of the formulas derived

above. First we notice from Eq. (2.35) that the field φ is obviously related to the

density of particles. Adding a particle at point x0 manifests itself as a kink in the φ

field because δρ(x) ∼ δ(x− x0). Since

1 =
∫ x>x0

−∞
dx′ ρ(x′) = − 1

π

[
φ(x)− φ(−∞)

]
(2.40)

one sees immediately that the step in the φ field is quantized and is a measure of

the total number of particles in the system. Conversely, any kink-link excitation of

the φ field can be interpreted as a particle in the system. This interpretation carries

over to the single-particle operator (2.39). Since πφ(x) = ∂xθ(x)/π is the canonically

conjugate momentum of the φ field, the operator creating a particle at point x, i.e.

a kink of amplitude π in φ, is given by

exp
{
− i

~

∫ x

−∞
dx′ πφ(x)

}
= exp

{
− i

~
[
θ(x)− θ(−∞)

]}
(2.41)

17



Chapter 2. Interacting Fermions in One Dimension

Note that the phase θ(−∞) can be safely dropped since in physical operators this

phase always appears multiplied by an integer number. Of course, one has to intro-

duce an operator that changes the global number of particles by one which actually

is the Klein factor η.

2.3.3 Interactions

After we have established a mapping between the system of non-interacting fermions

and the bosons, we can have a look at the effect of interactions between fermions.

For spinless fermions a typical interaction reads

Hint =
1
2

∫
dx dx′ V (x− x′)ρ(x)ρ(x′) =

1
2L

∑
k,k′,q

V (q)c†k+qc
†
k′−qck′ck (2.42)

The range of the interaction V (x−x′) is usually finite in one dimension due to screen-

ing provided by nearby gates or the surrounding medium. Since we are interested

in the properties in the long-range limit, we can approximate the finite interaction

range to a local one. This means that the most important interaction processes are

the ones that are close to the Fermi surface or, equivalently, all momenta have to

be close to the Fermi points ±kF . The fact that the Fermi surface is reduced to a

set of two disjoint points allows us to decompose the interaction into three different

sectors, as shown in Fig. 2.4. The first process g4 couples only fermions on the same

side of the Fermi surface. The second process g2 couples fermions from one side of

the Fermi surface with fermions on the other side. However, each species remains

on the same side after the interaction. This is commonly referred to as forward

scattering. Finally, the last process g1 corresponds to a 2kF scattering (backscatter-

ing) where fermions exchange sides. Note that for spinless fermions the g2 and g1

processes are identical because the outgoing particles are indistinguishable.

Since we now have two species of fermions, the left-moving and the right-moving

fermions, we first have to define the density operator. Starting from the single-

k, σ k + q, σ

k′ − q, σ′k′, σ′

g4 ∼ V (q = 0)

k, σ k + q, σ

k′, σ′ k′ − q, σ′

g2 ∼ V (q = 0)

k, σ k + q, σ

k′, σ′ k′ − q, σ′

g1 ∼ V (q = 2kF )

Figure 2.4: Decomposition of the interaction processes into three sectors. The solid

(dashed) line is for right (left) going fermions and a wavy line indicates the inter-

action V . For spinful fermions each interaction can take two values, either g‖ if the

spins σ and σ′ are equal or g⊥ if the spins are opposite. For a description of the

interaction processes see the main text. (Figure taken from [17].)
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particle operator,

ψ(x) =
1
L

∑
k

eikxck (2.43)

we can decompose the sum into momenta close to ±kF :

ψ(x) ' 1
L

[∑
|k|<Γ

eikF xeikxck +
∑
|k|<Γ

e−ikF xeikxck
]
≡ ψR(x) + ψL(x) (2.44)

where Γ is a momentum cutoff such that vFΓ is of the order of the bandwidth. The

density operator thus becomes

ρ(x) = ψ†(x)ψ(x) = ψ†R(x)ψR(x) + ψ†L(x)ψL(x) + [ψ†R(x)ψL(x) + h.c.] (2.45)

The first two terms correspond to the q = 0 part of the density, where particles are

excited on the same side of the Fermi surface. The last two terms are the q = 2kF
excitations where a fermion is transferred from one side of the Fermi surface to the

other.

For spinless fermions we only have to consider the g2 and g4 processes. The g4

process can be written in the boson language as

g4

2
ψ†r(x)ψr(x)ψ†r(x)ψr(x) =

g4

2
ρr(x)ρr(x) =

g4

2
1

(2π)2

[
∂xφ(x)− r∂xθ(x)

]2 (2.46)

The sum of the two processes leads to the g4 interaction Hamiltonian,

H4 =
g4

(2π)2

∫
dx
[
(∂xφ)2 + (∂xθ)2

]
(2.47)

In a similar way, the g2 process becomes

g2ψ
†
R(x)ψR(x)ψ†L(x)ψL(x) = g2ρR(x)ρL(x) =

g2

(2π)2

[
(∂xφ(x))2 − (∂xθ(x))2

]
(2.48)

and the g2 interaction Hamiltonian reads

H2 =
g2

(2π)2

∫
dx
[
(∂xφ)2 − (∂xθ)2

]
(2.49)

Obviously, the Hamiltonian remains quadratic in the presence of interactions,

and the net effect of interactions between fermions can be absorbed in two parame-

ters. We can rewrite the quadratic Hamiltonian as (~ = 1)

H =
uK

2π

∫
dx

[
(∂xθ)2 +

(∂xφ)2

K2

]
(2.50)

where u has the dimension of a velocity, and K is a dimensionless parameter, the

so-called Luttinger liquid parameter. We thus have

uK = vF

(
1 +

g4

2πvF
− g2

2πvF

)
(2.51)

u

K
= vF

(
1 +

g4

2πvF
+

g2

2πvF

)
(2.52)

19



Chapter 2. Interacting Fermions in One Dimension

or

u = vF

[(
1 +

g4

2πvF

)2

−
(

g2

2πvF

)2]1/2

(2.53)

K =
(

1 + g4/(2πvF )− g2/(2πvF )
1 + g4/(2πvF ) + g2/(2πvF )

)1/2

(2.54)

Note that quite generally K < 1 for repulsive interaction and K > 1 for attractive

interactions. The parameters u and K totally characterize the low-energy properties

of any massless one-dimensional system. Note that one can absorb the factor K in

the Hamiltonian (2.50) by rescaling the fields,

φ(x)→
√
Kφ(x), θ(x)→ 1√

K
θ(x) (2.55)

which preserves the commutation relations. The rescaled Hamiltonian is thus equal

to Eq. (2.37) but with renormalized velocity u instead of vF . In terms of the bosonic

Hamiltonian, the rescaling of the fields is equivalent to a Bogoliubov transformation

which diagonalizes the interaction of the bosons containing terms such as bb and

b†b†. The rescaling of fields is simply much easier to perform than the Bogoliubov

transformation of bosons.

2.3.4 Spinful Fermions and Spin-Charge Separation

Let us now turn to a model of fermions with spin. Similar to the fields φ and θ we

introduce two sets of fields (φ↑, θ↑) and (φ↓, θ↓) for each spin species separately. To

ensure proper anti-commutation relations between the fermion species, we have to

introduce corresponding Klein factors η↑ and η↓ for each spin species. The kinetic

part of the Tomonaga-Luttinger Hamiltonian is obviously equal to

Hkin = H0
↑ +H0

↓ (2.56)

with H0 the quadratic Hamiltonian (2.37).

The interactions between fermions are now given by all processes in Fig. 2.4.

The g4 processes are of the form

H4 =
∑
r=R,L

∑
σ=↑,↓

∫
dx

[
g4‖
2
ρrσ(x)ρrσ(x) +

g4⊥
2
ρrσ(x)ρrσ̄(x)

]
(2.57)

where the g4‖ process couples fermions with equal spins on each side of the Fermi

surface and the g4⊥ process couples fermions with opposite spins. Note that σ̄ =↓
for σ =↑ and vice versa. On the other hand, the g2 processes coupling fermions on

both sides of the Fermi surface are equal to

H2 =
∑
σ=↑,↓

∫
dx
[
g2‖ρRσ(x)ρLσ(x) + g2⊥ρRσ(x)ρLσ̄(x)

]
(2.58)
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These interactions translated into the boson language introduce terms such as (∂xφ↑)2

and ∂xφ↑∂xφ↓ and similar terms with θ↑ and θ↓. In the abscence of g1 processes the

Hamiltonian remains quadratic in the fields φ and θ but is not diagonal any more

in the spin index due to the coupling of different spin species. A convenient way

to diagonalize the Hamiltonian is to introduce charge and spin degrees of freedom

defined by

ρ(x) =
1√
2

[
ρ↑(x) + ρ↓(x)

]
(2.59)

σ(x) =
1√
2

[
ρ↑(x)− ρ↓(x)

]
(2.60)

This is a unitary transformation for the bosons and allows us to define new fields

φρ(x) =
1√
2

[
φ↑(x) + φ↓(x)

]
(2.61)

θρ(x) =
1√
2

[
θ↑(x) + θ↓(x)

]
(2.62)

φσ(x) =
1√
2

[
φ↑(x)− φ↓(x)

]
(2.63)

θσ(x) =
1√
2

[
θ↑(x)− θ↓(x)

]
(2.64)

The charge (ρ) and spin (σ) fields commute whereas the fields (φν , ρν) with ν = ρ, σ

obey the standard commutation rules. All operators such as the single-particle

operator can be expressed in terms of these fields.

Substituting the fields (2.61)–(2.64) into the kinetic part Hkin we obtain

Hkin = H0
ρ +H0

σ (2.65)

with H0 the quadratic Hamiltonian (2.37). The Hamiltonian of the g4 interaction

processes now reads

H4 = H4‖ +H4⊥

H4‖ =
g4‖ + g4⊥

(2π)2

∫
dx
[
(∂xφρ)2 + (∂xθρ)2

]
H4⊥ =

g4‖ − g4⊥
(2π)2

∫
dx
[
(∂xφσ)2 + (∂xθσ)2

] (2.66)

while the g2 interaction processes lead to

H2 = H2‖ +H2⊥

H2‖ =
g2‖ + g2⊥

(2π)2

∫
dx
[
(∂xφρ)2 − (∂xθρ)2

]
H2⊥ =

g2‖ − g2⊥
(2π)2

∫
dx
[
(∂xφσ)2 − (∂xθσ)2

] (2.67)

In order to bosonize the g1 processes one has to take a little bit more care. In the

fermion language using the standard anti-commutation relations for the fermions,
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Chapter 2. Interacting Fermions in One Dimension

one recovers that the g1‖ process is identical to the g2‖ process but with an additional

minus sign due to a permutation of operators. The g1‖ process can thus be easily

incorporated into the interaction Hamiltonian by setting g2‖ → g2‖ − g1‖. On the

other hand, the g1⊥ process can be bosonized as (see e.g. [17])

H1⊥ =
2g1⊥

(2πα)2

∫
dx cos(

√
8φσ(x)) (2.68)

where α is the cutoff introduced in Eq. (2.38) for the single-particle operator.

Putting together all the interactions we obtain an important result. The Hamil-

tonian of a generic interacting system in one dimension separates into two parts, a

charge and a spin Hamiltonian:

H = Hρ +Hσ with [Hρ,Hσ] = 0 (2.69)

The charge part is quadratic of the form (~ = 1)

Hρ =
uρKρ

2π

∫
dx

[
(∂xθρ)2 +

(∂xφρ)2

K2
ρ

]
(2.70)

with coefficients uρ and Kρ defined by

uρ = vF

[(
1 +

g4ρ

2πvF

)2

−
(

g2ρ

2πvF

)2]1/2

(2.71)

Kρ =
(

1 + g4ρ/(2πvF )− g2ρ/(2πvF )
1 + g4ρ/(2πvF ) + g2ρ/(2πvF )

)1/2

(2.72)

where we have introduced effective coupling constants for the charge part:

g4ρ = g4‖ + g4⊥ and g2ρ = g2‖ + g2⊥ − g1‖ (2.73)

In a similar way, the spin part is of the form (~ = 1)

Hσ =
uσKσ

2π

∫
dx

[
(∂xθσ(x))2 +

(∂xφσ(x))2

K2
σ

]
+

2g1⊥
(2πα)2

∫
dx cos(

√
8φσ(x)) (2.74)

but with coefficients uσ and Kσ given by

uσ = vF

[(
1 +

g4σ

2πvF

)2

−
(
g2σ

2πvF

)2]1/2

(2.75)

Kσ =
(

1 + g4σ/(2πvF )− g2σ/(2πvF )
1 + g4σ/(2πvF ) + g2σ/(2πvF )

)1/2

(2.76)

Here, the effective coupling constants for the spin part are defined as

g4σ = g4‖ − g4⊥ and g2σ = g2‖ − g2⊥ − g1‖ (2.77)

Note that the bare coupling constants g4⊥ and g2⊥ enter with different signs in

Eqs. (2.73) and (2.77).
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2.3. The Tomonaga-Luttinger Model

The result (2.69) for spinful interacting fermions shows that there is a complete

separation of spin and charge degrees of freedom in one dimension. This is known

as spin-charge separation. Thus, any kind of single-particle excitation which would

carry both charge and spin quantum numbers is impossible. This resembles the

previous statement that in one dimension a single fermionic excitation breaks up

into two elementary excitations, i.e. into a collective charge excitation with velocity

uρ and a collective spin excitation with velocity uσ. The velocities are in general

different.

2.3.5 Symmetries and Conservation Laws

Finally, let us discuss the symmetries and conservation laws of the one-dimensional

Tomonaga-Luttinger model in the abscence of backscattering, g1 = 0. As we have

seen in the previous sections, we can rewrite the Hamiltonian of a generic interacting

system in one dimension as the sum of a charge and a spin Hamiltonian,

H = Hρ +Hσ (2.78)

The physical origin of the conservation laws below can be traced back to the restric-

tion of interactions to the Fermi surface which in one dimension consists of only two

disjoint points. Due to small momentum transfer interaction processes scattering

electrons from one Fermi point to the other are excluded from the model.

Charge and Spin Conservation

The Hamiltonian not only conserves the total charge (ρ) and spin (σ) of the system,

[Nρ,H] = 0, [Nσ,H] = 0 (2.79)

but it does so on each branch r = R,L,

[Nr,ρ,H] = 0, [Nr,σ,H] = 0 (2.80)

This clearly implies that the charge and spin currents are conserved,

[Jρ,H] = 0, [Jσ,H] = 0 (2.81)

From the conservation of charge and spin on each branch it follows that the Hamil-

tonian is invariant under the gauge transformations

ψrσ(x)→ eiαrψrσ(x) (2.82)

for each branch separately. In other words, the Hamiltonian of the Tomonaga-

Luttinger model posseses in addition to the usual gauge symmetry

ψrσ(x)→ eiαψrσ(x) (2.83)

a chiral symmetry

ψrσ(x)→ eirαψrσ(x) (2.84)
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Chapter 2. Interacting Fermions in One Dimension

Spin Rotation

In addition, for specific values of the interaction constants, i.e.

g2‖ = g2⊥, g4‖ = g4⊥ (2.85)

the Hamiltonian is invariant under a spin rotation,

ψrσ(x)→
∑
σ′

Uσσ′ψrσ′(x) (2.86)

where U = exp(iΩ ·σ) is a SU(2)-matrix. Note that in this case also the correlation

functions are invariant under spin rotation.

Charge Conjugation

Finally, the linear dispersion of the Tomonaga-Luttinger model and the normal

ordering of operators involved in the density operators make the model charge-

conjugation symmetric,

ψrσ(x)→ ψ†rσ(x) (2.87)

2.4 The Tomonaga-Luttinger Model as Effective Model

Finally, we present a few specific systems that can be mapped onto the Tomonaga-

Luttinger Hamiltonian. Starting with a brief summary of the sine-Gordon Hamilto-

nian, we discuss the two-dimensional Coulomb gas and the XY model as important

examples of the well-known Berezinski-Kosterlitz-Thouless transition. Another class

of systems covers spin 1/2 systems which turn out to be simple realizations of Lut-

tinger liquid physics.

2.4.1 The sine-Gordon Hamiltonian

We have seen in Sec. 2.3.4 that the Hamiltonian (2.69) of interacting spinful fermions

contains a cosine term, known as the sine-Gordon Hamiltonian

HSG =
2g1⊥

(2πα)2

∫
dx cos(

√
8φσ(x)) (2.88)

The fact that non-quadratic terms are generated, for example by interactions, occurs

quite often in one-dimensional systems. On a physical level, the effect of the sine-

Gordon Hamiltonian is obvious. The cosine term would like to lock the φ field into

one of its minima, in contrast to the quadratic term which promotes fluctuations

of the φ field. There will thus be a competition between the kinetic part and the

cosine term. In the following, we briefly disucss the low-energy properties of the sine-

Gordon Hamiltonian. In order to obtain these properties one uses a renormalization

procedure (see e.g. [17]).
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1||
y

0

y _1 |

Figure 2.5: The renormalization group flow diagram of the sine-Gordon model. The

trajectories shown are hyperbolas. The diagonal line in the right half is separatrix

between a regime where y1⊥ is irrelevant and a regime where y1⊥ flows to strong

coupling. (Figure taken from [17].)

Introducing the dimensionless variables y = g/(πvF ), the relevant beta functions

are given by (see e.g. [17])

∂y1‖
∂ ln b

= −y2
1⊥ (2.89)

∂y1⊥
∂ ln b

= −y1‖y1⊥ (2.90)

Although these beta functions are perturbative in y they are exact in the interaction

K. These equations are identical to the ones derived for the XY model discussed

in the next section. The corresponding flow diagram is shown in Fig. 2.5. On

the y1‖ = y1⊥ line which is a separatrix between two different regimes the cosine

operator is marginally irrelevant. If one starts with a spin rotation invariant system

(y1‖ = y1⊥) then the rotation invariance is preserved. The fixed point corresponds

to y∗1‖ = y∗1⊥ = 0 and thus K∗ = 1. When y1⊥ < y1‖ the cosine operator is irrelevant,

and the fixed point corresponds to y∗1⊥ = 0 and finite y∗1‖. However, close to the fixed

point the trajectory is nearly vertical, thus the resulting K∗ is different from unity.

For y1⊥ > y1‖ the trajectories tend to y1‖ → −∞ and y1⊥ →∞, that means the flow

goes to strong coupling. The line y1‖ = −y1⊥ corresponds also to a spin rotation

invariant system but the flow goes to strong coupling. In the strong coupling regime

the φ field becomes locked in one of the minima of the cosine. In other words, the

excitation spectrum develops a gap.

2.4.2 The 2D Coulomb Gas and the XY model

Let us consider a two-dimensional classical XY model with a classical spin

Si = (cos(φi), sin(φi)) (2.91)
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Chapter 2. Interacting Fermions in One Dimension

on each site i. The Hamiltonian of 2D XY model reads

H = −J
2

∑
i,a

cos(φi+a − φi) (2.92)

where a is a set of nearest neighbor vectors. Based on the observation that terms such

as eiφ are proportional to the density of the system, the density-density correlations

for the Luttinger liquid correspond to the spin-spin correlations of the XY model,

provided that we interpret one of the classical dimensions as imaginary time for the

quantum problem. Assuming that φ is a smooth field we can expand the difference

φi+a − φi and the XY Hamiltonian becomes in the continuous limit

HXY =
J

2

∫
dx dy

[
(∂xφ)2 + (∂yφ)2

]
(2.93)

Note that this expansion is valid only for small temperatures. At higher tempera-

tures the XY model undergoes a phase transition towards a disordered phase, the

so-called Berezinskii-Kosterlitz-Thouless transition. For low enough temperatures

we thus have an equivalence between the XY model and the Tomonaga-Luttinger

model.

At higher temperatures vortex configurations where the field φ is singular become

important. For the quantum problem, the operator ei2θ(x) is the corresponding

vortex creation operator for the φ field. Similarly, the operator ei2φ(x) creates vortices

in the θ field. A reasonable Hamiltonian is thus

H =
uK

2π

∫
dx

[
(∂xθ)2 +

(∂xφ)2

K2

]
+ gφ

∫
dx cos(

√
8φ) + gθ

∫
dx cos(

√
8θ) (2.94)

The partition function of this Hamiltonian turns out to be exactly the same as the

one of a gas of classical particles with fugacity gφ. The classical system can be

described as a gas of classical charges with unit charge at temperature T = 1/(2K)

and interaction V (ri − rj) ∼ log(ri − rj). This problem is the well-known Coulomb

gas problem in two dimensions. The sine-Gordon model thus maps exactly to the

Coulomb gas in 2D which in turn is equivalent to the 2D XY model. This is but

one example of the correspondence between different models.

2.4.3 The Spin 1/2 Chain

Finally, let us consider a chain of spin 1/2. On each site i there is a spin Si = σi/2

where σi is the vector of Pauli matrices. The three components of the spin, Si =

(Sxi , S
y
i , S

z
i ), obey the commutation relations

[Sαi , S
β
j ] = iδijεαβγS

γ
i (2.95)

with εαβγ the totally antisymmetric tensor. The Hamiltonian of a one-dimensional

spin 1/2 chain with nearest neighbor interaction is equal to

H = J
∑
i

(
Sxi S

x
i+1 + Syi S

y
i+1 + ∆Szi S

z
i+1

)
(2.96)
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Figure 2.6: The different regimes and models for a spin 1/2 chain as a function of

the anisotropy ∆. (Figure taken from [17].)

This model is known as XXZ Hamiltonian if the couplings in the xy plane and

the z direction are different. For ∆ = 1 the interaction between spins is totally

invariant by rotation, and this is the well-known Heisenberg Hamiltonian. In the

case J > 0 antiferromagnetic order of the spins is favored, while J < 0 obviously

favors ferromagnetic order. Note that ∆ = −1 is the ferromagnetic isotropic point

and ∆ = 1 is the antiferromagnetic isotropic point. ∆ = 0 is the XY point.

If there are only nearest neighbor interactions present as in Eq. (2.96), some

simplifications are possible. If we perform the canonical transformation

Sxi → (−1)iSxi , Syi → (−1)iSyi , Szi → Szi (2.97)

it changes the coupling constants as J → −J and ∆ → −∆. It is thus enough to

consider the antiferromagnetic system J > 0.

In order to map the spin 1/2 system to a bosonic problem we first replace the

spin operators by their corresponding raising and lowering operators. Using the

identity S±i = Sxi ± iSyi the XXZ Hamiltonian (2.96) becomes

H =
J

2

∑
i

(
S+
i S
−
i+1 + S−i S

+
i+1

)
+ ∆J

∑
i

Szi S
z
i+1 (2.98)

In a second step, we apply a Jordan-Wigner transformation which maps the spin

1/2 operators onto spinless fermions:

S+
i → c†i exp

(
iπ
∑
j<i

c†jcj
)
, S−i → exp

(
−iπ

∑
j<i

c†jcj
)
ci, Szi → c†ici −

1
2

(2.99)

Note that the Jordan-Wigner string ensures proper anti-commutation relations. At

first sight, the non-local character of the exponentials makes it appear infeasible to

work with the string. But many operators have quite simple representations in the

fermion language because the string simplifies. The XXZ Hamiltonian (2.96) thus

becomes after the transformation

H =
J

2

∑
i

(
c†ici+1 + c†i+1ci

)
+ ∆J

∑
i

(
c†ici −

1
2

)(
c†i+1ci+1 − 1

2

)
(2.100)
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Chapter 2. Interacting Fermions in One Dimension

To obtain a more conventional form one makes the canonical transformation (2.97)

which is equivalent to

ci → (−1)ici (2.101)

By applying this transformation we shift the momentum of the fermions by π. The

transformation (2.101) leads to the Hamiltonian

H = −t
∑
i

(
c†ici+1 + c†i+1ci

)
+ V

∑
i

(
c†ici −

1
2

)(
c†i+1ci+1 − 1

2

)
(2.102)

with t = J/2 and V = ∆J . The spin 1/2 chain is thus equivalent to a chain of

spinless fermions. The fermions can hop between neighboring sites with a hopping

amplitude t and experience a nearest neighbor interaction V . A local interaction

is precluded for spinless fermions by the Pauli principle. Note that an additional

magnetic field along the z direction for the spin chain is simple a chemical potential

for the fermions:

−h
∑
i

Szi = −h
∑
i

(
c†ici −

1
2

)
(2.103)

Since 〈Szi 〉 = 0 the fermion density is 〈c†ici〉 = 1/2, that means the fermionic band

is half-filled. Thus, the Fermi momentum is kF = π/(2a).

The Hamiltonian (2.102) is written in a way to obey particle-hole symmetry

which can be easily seen by making the canonical transformation ci → (−1)ic†i .
This particle-hole symmetry reflects the spin reversal symmetry in the XXZ Hamil-

tonian (2.96).

Let us now use the technique of bosonization to solve the interacting spin chain

problem. We take the continuum limit and define operators in real space as

Sα(xi) ≡ a−1/2Sαi (2.104)

where xi = ia and a is the lattice spacing. We can use the bosonization representa-

tion of the fermion operators to rewrite the Hamiltonian (2.102). The kinetic energy

can be diagonalized by going to Fourier space:

Hkin =
∑
k

εkc
†
kck (2.105)

where the dispersion is the standard tight-binding energy,

εk = −J cos(ka) ≈ vFk with vF = Ja sin(kFa) (2.106)

with the last line valid close to the Fermi level. One has to take more care upon

bosonizing the interaction Hamiltonian since one can take the continuous limit

rj+1 ∼ rj → r for the fields only. Using the boson mapping carefully, the inter-

action part becomes

Hint =
a∆J
π2

∫
dx (1− cos(2kFa))(∂xφ)2 − 2

(2πα)2

∫
dx cos(4φ(x)) (2.107)
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The spin chain Hamiltonian can thus be written as

H =
uK

2π

∫
dx

[
(∂xθ)2 +

(∂xφ)2

K2

]
− 2g3

(2πα)2

∫
dx cos(4φ(x)) (2.108)

with the parameters

uK = vF = Ja sin(kFa) (2.109)

u

K
= vF

[
1 +

2∆Ja
πvF

(1− cos(2kFa))
]

(2.110)

g3 = a∆J (2.111)

Note that at half-filling kF = π/(2a).

Finally, one should note that these expressions are obtained in the perturba-

tive limit around the XY point where ∆ is small. The phase diagram of Hamil-

tonian (2.108) can be obtained from the sine-Gordon phase diagram. The cosine

termin is irrelevant for K > 1/2 and the system flows to a regime which is Luttinger

liquid like, i.e. to a quadratic Hamiltonian. Since K = 1 is the non-interacting point

which corresponds to the XY limit, the Luttinger phase is thus an XY like phase.

For K < 1/2 the cosine terms is relevant. The excitations of the spin chain develop

a gap, and this phase is dominated by Ising-like interactions along the z direction.

2.5 Summary

Thanks to the Abelian bosonization method we have determined the low-energy

properties of the Tomonaga-Luttinger model. Although this model has a strictly

linear spectrum, most of its properties hold quite generally for a large spectrum

of one-dimensional gapless systems with short range interactions. It has also been

shown that the mapping of two-dimensional classical systems onto one-dimensional

quantum systems can be very useful when one is interested in the low-energy prop-

erties of such classical systems.

29





Chapter 3

Two-Band Quantum Wire

In this chapter, we present a model of interacting electrons in a quantum wire. Due

to the low dimensionality of the model, the conductance is expected to be quantized

in units of the conductance quantum G0 = 2e2/~ where e is the elementary charge

and the factor of 2 accounts for spin degeneracy. This property is expected to remain

when one includes interactions into the model. Upon tuning the chemical potential

the second band becomes activated which results in a jump of the zero temperature

conductance.

For simplicity we restrict ourselves here to spinless fermions which are usually

studied as a model for the more interesting but also more difficult case of spin 1/2

electrons. Physically, spinless fermions can be considered as completely polarized

spin 1/2 electrons in a (high) magnetic field.

First, in Sec. 3.1, we briefly summarize the effect of interactions in a one-

dimensional systems with two subbands. An estimate of the gap between the two

subbands is given. Section 3.2 introduces the Hamiltonian describing the two-band

quantum wire. The first filled subband is treated as a Luttinger liquid exchanging

pairs of electrons with the second subband, in addition to the usual density-density

interaction. In Sec. 3.3, we discuss the relevance of the pair-transfer operator when

one performs perturbation theory in the inter-band interaction. It is shown that the

Hamiltonian can be simplified by applying a unitary transformation removing either

the density-density coupling or the pair-transfer operator. Finally, in Sec. 3.4, the

Lagrangian action of the two-band quantum wire is given.

3.1 Interactions Between Electrons

A principal question that we have to address first is under what conditions the in-

teractions are “weak” in comparison to the kinetic energy, i.e. when a perturbative

approach in the interacting electron system makes sense. If the electrons in the

quantum wire are confined to one dimension, for example by a steep external poten-
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tial, their physics is controlled by the one-dimensional density ne ∼ 1/r0 where r0

is the mean distance between electrons. Using the Heisenberg uncertainty principle

we can estimate the minimum kinetic energy and interaction energy. In terms of the

density ne the kinetic energy per electron is of order

Ekin ∼ ~2

m

1
r2

0

(3.1)

On the other hand, assuming that the electrons interact predominantly with its

nearest neighbors only, the Coulomb energy is of order

Eint ∼ e2

r0
(3.2)

The ratio of the two energy scales defines a dimesionless density parameter

r =
Eint

Ekin
=
e2

r0

mr2
0

~2
=

r0

aB
(3.3)

where aB = ~2/(me2) is the Bohr radius. At low densities, ne → 0, the kinetic

energy scales to zero faster than the interaction energy, and thus r � 1. In this limit

the repulsive Coulomb interaction dominates and the electrons behave classically. In

order to minimize their mutual interaction they are expected to form a periodic one-

dimensional structure, the so-called Wigner crystal. At small but finite density this

quasi-long-range order is smeared out by quantum fluctuations [20], but the short-

range order remains as long as r > 1, i.e. as long as the distance between electrons

r0 is larger than the Bohr radius aB. In the opposite limit of high density, r � 1, or

weak interactions, the electrons occupy subbands of transverse quantization. In this

regime, weak interactions lead to a coupling between the subbands, and electron

wavefunctions can thus be represented in terms of products of eigenstates of the

subbands.

Another question related to interactions is whether or not an electron system can

be viewed as one-dimensional. In quantum wires a change in the effective dimension-

ality can be observed when the chemical potential, µ, is tuned by applying a gate

voltage. At low densities or strong interactions, the electrons form a Wigner crystal

and the system remains one-dimensional until the interaction energy overcomes the

confining potential. The Wigner crystal eventually splits into two chains forming a

zigzag structure [21]. Due to interactions the two chains are locked and only one

gapless mode, the plasmon mode, remains which corresponds to the transition of the

Wigner crystal along the quantum wire. Near the quantum phase transition when

the second subband becomes activated, Meyer et al. [6] estimate a linear behavior

for the gap in excitation spectrum,

∆ ∼ |µ− µc| (3.4)
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3.2. Hamiltonian

where µc is the critical chemical potential at which the quantum phase transition

takes place. On the other hand, at weak interactions electrons occupy subbands

of transverse quantization, and the system is one-dimensional until the chemical

potential reaches the bottom of the second subband. Although the density-density

coupling between the two subband renormalizes the velocities of the low-energy

excitations, a spectral gap does not emerge. However, the transfer of pairs of elec-

trons between both subbands can, in principle, lead to a BCS-like gap in the spec-

trum of transverse quantization. In the vicinity of the quantum phase transition,

Meyer et al. [6] estimate the gap as

∆ ∼ |µ− µc|α (3.5)

with a non-universal exponent α� 1. Thus the spectral gap does not only exist for

strong interactions, but also when interaction are weak.

3.2 Hamiltonian

In order to understand the evolution of the transition between the two limiting cases

of strong and weak interactions, Meyer et al. propose an effective Hamiltonian for a

system of interacting electrons in a one-dimensional quantum wire at intermediate

interactions [6]. In a grand canonical setup, the Hamiltonian consists of three parts,

H = Hpl +Hel +Hel−pl (3.6)

3.2.1 First Subband: Luttinger Liquid

The low-energy properties of the first (lower) subband are described in terms of

a Luttinger liquid since only the low-energy properties near the Fermi level are

important, as shown in Fig. 3.1. The density-density interactions within the first

ε

k

µ

µ c

ε

k

(a) (b)

Figure 3.1: (a) Spectrum of a one-dimensional quantum wire with two subbands.

(b) Scattering processes transferring pairs of electrons between the subbands.
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subband are described by the g4 and g2 interaction processes. Note that for spinless

fermions the g2 and g1 processes are indistinguishable (cf. Sec. 2.3.3). For simplicity

let us consider the case of identical interaction constants, g2 = g4 = γ1. Chapter 2

the low-energy charge excitations of the first subband, i.e. the density fluctuations,

can be described in terms of phonons, Using the bosonization approach presented

in Chapter 2, the low-energy charge excitations of the first subband, i.e. the density

fluctuations, can be described in terms of plasmons with acoustic spectrum,

Hpl =
vF1

2π

∫
dx

[
(∂xθ)2 +

(∂xφ)2

K2

]
(3.7)

Here, vF1 is the Fermi velocity in the first subband, and the bosonic fields φ and θ

describe the density fluctuations in the first subband. Using Eq. (2.54) the Luttinger

liquid parameter K is equal to

K =
(

1
1 + γ1/(πvF1)

)1/2

(3.8)

3.2.2 Second Subband: Fermions at the Bottom of a Band

Near the quantum phase transition the density of electrons in the second subband

is low and thus the average distance between electrons large. When the distance

between electrons is large, the interactions between them become effectively local.

As a consequence of the Pauli principle, spinless fermions never occupy the same

place, and thus the electrons effectively do not interact with each other. Under these

conditions the second subband can be described in terms of one-dimensional spinless

fermions at the bottom of the upper band,

Hel =
∫
dxψ†

(
− 1

2m
∂2
x − µ

)
ψ (3.9)

Here, ψ and ψ† are the electron annihilation and creation operators, respectively, and

the chemical potential µ tunes the distance to quantum criticality at µc. Note that

the curvature of the electron spectrum is important in the regime of intermediate

interactions since kinetic energy and interactions between electrons are of the same

order.

3.2.3 Inter-Subband Interactions

Finally, the interactions between the two subbands consists of two parts,

Hel−pl = γx

∫
dx (∂xφ)ψ†ψ + γt

∫
dx
{

[(∂xψ)ψ − ψ∂xψ]ei2θ + h.c.
}

(3.10)

The first term describes the density-density interactions between the two subbands,

while the second term accounts for the possibility of transferring pairs of electrons

from one subband to the other, as shown in Fig. 3.1 (b). Note that all Klein factors

have been omitted in Eq. (3.10) to yield the simplest form of the interaction.

34



3.3. Pair Transfer Operator

3.3 Pair Transfer Operator

It is now tempting to proceed by perturbation theory in the inter-band interac-

tions Hel−pl. However, a perturbative approach is not feasible since the inter-band

interaction consists of two parts, the density-density interactions and the pair trans-

fer of electrons between the two subbands, the latter one favoring superconducting

fluctuations between the subbands.

Rather than treating either the density-density interaction or the pair transfer

of electrons as a perturbation we can apply to the Hamiltonian a unitary transfor-

mation, H → U †HU , and eliminate the density-density coupling between the two

subbands. Since the θ field is the conjugate momentum of ∂xφ (cf. Eq. (2.32)) a

reasonable choice to remove the density-density coupling is the non-local unitary

operator

U(x) = exp
(
ia

∫ x

−∞
dx′ θ(x′)ψ†(x′)ψ(x′)

)
(3.11)

Using the Baker-Hausdorff theorem,

e−BAeB =
∞∑
n=0

1
n!

[A,B]n = A+ [A,B] +
1
2

[[A,B], B] + . . . (3.12)

where [A,B]n = [[A,B]n−1, B] and [A,B]0 = A, we immediately see that the appli-

cation of the unitary operator U(x) shifts the φ field,

∂x(x)φ→ U †(x)∂xφ(x)U(x) = ∂xφ(x) + aπψ†(x)ψ(x) (3.13)

while the fermion fields ψ and ψ† acquire a phase:

ψ(x)→ U †(x)ψ(x)U(x) = ψ(x)eiaθ(x) (3.14)

ψ†(x)→ U †(x)ψ†(x)U(x) = ψ†(x)e−iaθ(x) (3.15)

We can thus remove the density-density coupling between the two subbands by

applying to H a unitary transformation with a = −K2γx/vF1. The remaining

interaction between the subbands reads

Hel−pl = γt

∫
dx
{

[(∂xψ)ψ − ψ∂xψ]ei2κθ + h.c.
}

+Hirr (3.16)

with a phase factor

κ = 1− K2γx
vF1

(3.17)

The residual interaction term

Hirr =
∫
dx

1
2m
[
ia∂2

xθ − a2(∂xθ)2
]
ψ†ψ (3.18)

which stems from the spatial gradients acting on the unitary operator U turns out

to be irrelevant in the renormalization group sense. This is due to the fact that its
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Chapter 3. Two-Band Quantum Wire

scaling dimension is smaller than the scaling dimension of the original interaction

term which is a marginal term with respect to free fermionic Hamiltonian.

The irrelevance of the couplings (3.18) suggests that at long time and distances

the transformed fermion and plasmon correlation functions asymptotically factorize,

and eventually the electron-plasmon interaction itself will be irrelevant. The possible

irrelevance of the interaction can be understood in the following picture. For large

κ, i.e. in the weak coupling limit, the phase factor ei2κθ oscillates rapidly which

suppresses the transfer of pairs of electrons between the two subbands. Thus, the

electron pair transfer is but a perturbation to the fermions. On the other hand, for

small κ, i.e. in the strong coupling limit, one can carry out a Taylor expansion of

the exponential, and using simple scaling arguments one can easily show that the

remainder of the inter-band interaction is indeed a relevant perturbation. However,

this naive picture is oversimplified in that one has to seriously take care of the

exponential of the field θ.

Let us be more formal. In order to calculate the scaling dimension of the inter-

action we consider the operator which transfers pairs of electrons from one subband

to the other,

O(x, τ) =
{

[(∂xψ)ψ − ψ∂xψ]ei2κθ + h.c.
}

(3.19)

and compute the correlation function

GOO(x, τ ;x′, τ ′) = 〈O(x, τ)O(x′, τ ′)〉 (3.20)

Note that this correlation function would naturally appear when calculating the

self-energy corrections in a perturbation theory in γt. Without loss of generality we

can set x′ = 0 and τ ′ = 0 since the model is translational invariant in space and

imaginary time. The correlaction function can thus be rewritten as

GOO(x, τ) ∼ {[∂xGψψ†(x, τ)
]2 −Gψψ†(x, τ)∂2

xGψψ†(x, τ)
}〈ei2κ[θ(x,τ)−θ(0,0)]〉 (3.21)

whereGψψ†(x, τ) = 〈ψ(x, τ)ψ†(0, 0)〉 is the usual fermion propagator for free fermions,

and prefactors have been omitted for simplicity. One thus has to compute corre-

lation functions of exponentials of the field θ. However, such correlations are easy

to compute. Using the functional field integral one can prove the quite general

Debye-Waller relation (see e.g. [17])〈
Tτ exp

{∑
j

i[Ajφ(rj) +Bjθ(rj)]
}〉

= exp
{
−1

2

〈
Tτ

(∑
j

[Ajφ(rj) +Bjθ(rj)]
)2〉}
(3.22)

where the imaginary time ordering operator Tτ emphasizes that this relation is

indeed valid for operators. This leads to

〈ei2κ[θ(x,τ)−θ(0,0)]〉 = e−2κ2〈[θ(x,τ)−θ(0,0)]2〉 (3.23)
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3.3. Pair Transfer Operator

where the correlation function of θ is given by (see e.g. [17])

Gθθ(x, τ) = 〈[θ(x, τ)− θ(0, 0)]2〉 =
1

2K
log
[
x2 + (vF1τ + α)2

α2

]
(3.24)

Here, α is a cutoff which mimics a finite bandwidth since the integrals over momen-

tum would diverge at large k. Thus, the correlation function of O is given by

GOO(x, τ) ∼ 1
τ2

exp
{
ix2

τ

}
1

[x2 + (vF1τ + α)2]κ2/K
(3.25)

The exponential factor suggests the scaling x2 ∼ τ which corresponds to a quadratic

dispersion for the fermions. Upon performing a renormalization group transforma-

tion the unit length is rescaled by a factor of b−1, i.e. an interval in space ∆x is

scaled down to ∆x′ = b−1∆x. Denoting the scaling dimension of spatial coordinates

by dim[x] = −1, imaginary time has the scaling dimension dim[τ ] = −2. This leads

to the result that

dim[GOO] = 4
(

1 +
κ2

K

)
(3.26)

and thus the scaling dimension of the pair transfer operator O is given by

dim[O] = 2
(

1 +
κ2

K

)
(3.27)

On the other hand, the kinetic energy of the fermions is given by the usual quadratic

dispersion. Using the scaling dimension of the fermion fields, dim[ψ] = 1/2, we get

dim[ψ†∂2
xψ] = 3 (3.28)

Comparing the scaling dimensions of the pair transfer operator O, cf. Eq. (3.27),

and the kinetic energy ψ†∂2
xψ, cf. Eq. (3.28), we can now give an estimate for the

relevance or irrelevance of the pair transfer term with respect to the kinetic term in

the Hamiltonian:
κ2 <

K

2
: O relevant

κ2 >
K

2
: O irrelevant

(3.29)

In the strong coupling limit, κ → 0, the transfer of pairs of electrons is a relevant

interaction process and has to be taken into account. On the other hand, in the

weak coupling limit, κ→ 1, the pair transfer operator becomes less relevant and we

are left with the usual density-density interaction between the two subbands, see

Fig. 3.2.

In order to better understand the quantum phase transition at µ = µc and the

emerging gap between the two bands, we follow a perturbative approach starting

from the strong coupling limit κ → 0. As we have seen in the previous section,

the pair transfer of electrons is a relevant interaction process in the strong coupling

limit which we thus have to take into account in the following analysis. In order to
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µ

0
κ
cr

κ=1

Figure 3.2: Parameters of our model. The points κ = 0 and κ = 1 correspond to

the strong and weak coupling limits, respectively. For κ < κcr the pair transfer of

electrons between the subbands is a more relevant term in the Hamiltonian than the

kinetic energy. The chemical potential µ tunes the distance to quantum criticality

at µ = 0. The shaded area depicts the strong coupling regime we are interested in.

make calculations as simple as possible we perform a unitary transformation which

removes the phase factor ei2θ. This leads to the effective interaction

Hel−pl = λ

∫
dx (∂xφ)ψ†ψ (3.30)

where the renormalized coupling constant is given by

λ = γx − vF1

K2
= −vF1κ

K2
(3.31)

Note that the strong coupling limit corresponds to small values of λ. Thus, the

Hamiltonian describing the fermions at the bottom of the upper band reads

Hel =
∫
dxψ†

(
− 1

2m
∂2
x − µ

)
ψ + γt

∫
dx
{

[(∂xψ)ψ − ψ∂xψ] + h.c.
}

(3.32)

Note that in the vicinity of the quantum critical point µc, i.e. for small µ, we can

neglect the quadratic dispersion of the upper subband because it is less relevant than

the pair transfer term. In other words, the kinetic energy scales like k2
F2 ∼ µ and

thus faster to zero than the pair transfer term which scales like kF2 ∼ √µ. Hence,

we are left with a Hamiltonian of critical Ising fermions,

Hel = −µ
∫
dxψ†ψ + γt

∫
dx
{

[(∂xψ)ψ − ψ∂xψ] + h.c.
}

(3.33)

3.4 Action of the Two-Band Quantum Wire

To sum up, let us consider the action of a model of interacting spin-polarized

fermions. The action of a quantum wire is given by S =
∫ β

0 dτL where the La-

grangian consists of three parts, L = Lpl +Lel +Lel−pl. The first part describes the

low-energy excitations of the lower subband in terms of plasmons,

Lpl =
1
2

∫
dx

1
πKv

[
(∂τφ)2 + v2(∂xφ)2

]
(3.34)

where v = vF1/K is the plasmon velocity, vF1 is the Fermi velocity in the first

subband, and K is the Luttinger liquid parameter. The Lagrangian Sel describes
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3.4. Action of the Two-Band Quantum Wire

the excitations of the second subband in terms of Ising fermions,

Lel =
∫
dxψ†(∂τ − µ)ψ + γt

∫
dx
{

[(∂xψ)ψ − ψ∂xψ] + h.c.
}

(3.35)

where the chemical potential µ tunes the distance to quantum criticality at µc.

Finally, the interaction between electrons and plasmons is given by

Lel−pl = λ

∫
dx (∂xφ)ψ†ψ (3.36)

For the following calculations we will need the action in Fourier space. Using the

Fourier transformation identity

f(x, τ) =
1
βL

∑
k,ωn

ei(kx−ωnτ)fk,ωn

fk,ωn =
∫ β

0
dτ

∫
dx e−i(kx−ωnτ)f(x, τ)

(3.37)

where L is the one-dimensional volumen of our model and β = 1/(kBT ) is the inverse

of temperature, our model S = Spl + Sel + Sel−pl is given by

Spl =
1
2

1
βL

∑
q,Ωn

φ∗q,ΩnD−1
0 (q,Ωn)φq,Ωn (3.38)

Sel =
1
2

1
βL

∑
k,ωn

Ψ†k,ωnG−1
0 (k, ωn)Ψk,ωn (3.39)

Sel−pl =
1
2

1
(βL)2

∑
q,Ωn

∑
k,ωn

Γ0(q,Ωn; k, ωn)iqφq,ΩnΨ†k+q,ωn+Ωn
σ3Ψk,ωn (3.40)

where we introduced a Nambu spinor notation for the Ising fermions:

Ψ†k,ωn = (ψ†k,ωn , ψ−k,−ωn), Ψk,ωn =

(
ψk,ωn

ψ†−k,−ωn

)
(3.41)

The plasmon and fermion propagators and the interaction vertex are defined by

D0(q,Ωn) =
−πKv

(iΩn)2 − (vq)2
(3.42)

G0(k, ωn) =
1

(iωn)2 − ω2
k

[−iωn11 + µσ3 − ukσ2] (3.43)

Γ0(q,Ωn; k, ωn) = λ (3.44)

where u ≡ 4γt is the fermion velocity, and the eigenenergies of the Ising fermions

are given by ωk =
√
µ2 + (uk)2. Finally, σi are the usual Pauli matrices defined by

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(3.45)
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Chapter 4

Perturbative Renormalization

Group Analysis

In this chapter, we use renormalization group methods to study our model of a

two-band quantum wire. In order to become acquainted with the renormalization

group, we start with a brief description of the general idea of renormalization group

methods in Sec. 4.1. In Sec. 4.2, we perform a perturbative approach to the strong

coupling limit of the model and calculate the leading-order self-energy corrections

for the plasmons and fermions as well as the vertex correction. In Sec. 4.3, we then

renormalize our theoretical model. With different conditions we obtain complemen-

tary but equivalent sets of β functions which describe the flow of coupling constants

under subsequent renormalization group transformation. Finally, in Sec. 4.4, we

discuss the solutions of these sets of β functions. It turns out that our model is

described most easily when we allow for a generic dynamical exponent z.

4.1 Renormalization Group: General Idea

Let us consider a cubic lattice in d dimensions with a real scalar field φ(rn) at each

site labeled by the vector rn. The classical statistical mechanics of this system is

described by the partition function Z =
∫ D(φ(rn)) e−S(φ(rn)) where D(φ(rn)) ≡∏

rn
dφ(rn) is the integration measure, and S is the action of the system. For a

finite number of sites S is a regular function and Z a multiple integral. However, in

the limit of infinite sites, the action becomes a functional and the partition function

a functional integral. Note that one can also describe quantum-mechanical problems

in d spatial dimensions as a functional integral of classical configurations in d + 1

dimensions where dimension d+ 1 is then imaginary time.

In condensed matter physics we are often interested only in the physics at long

distances compared to the lattice spacing. A typical quantity one is interested in is

the two-point correlation function or propagator G(r) = G(r1 − r2) = 〈φ(r1)φ(r2)〉.
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Chapter 4. Perturbative Renormalization Group Analysis

For large spatial separations the two-point correlation function typically falls off

exponentially as

G(r1 − r2) ∼ e−|r1−r2|/ξ (4.1)

where ξ is the so-called correlation length. However, the leading behavior of the

correlation function changes drastically in the vicinity of a critical point. Here, it

falls off as a power law,

G(r1 − r2) ∼ 1
|r1 − r2|x (4.2)

where x is a critical exponent. Likewise, other critical exponents may characterize

other power laws of different correlation functions at the critical point.

Since we are interested in the large-distance behavior of such correlation func-

tions let us define two sets of variables for modes with small and large momentum,

respectively:

φ<(k) = φ(k) for k ∈ [0,Λ/b] (slow modes)

φ>(k) = φ(k) for k ∈ [Λ/b,Λ] (fast modes)
(4.3)

Here, Λ is a momentum cutoff and 0 < ln b � 1 is the control parameter of the

renormalization group. The first step in the renormalization group scheme is to

integrate out the fast modes and obtain an effective action for the slow modes. In a

formal way, let us consider the action as follows:

S(φ) = S(φ<, φ>) = S0(φ<) + S0(φ>) + Sint(φ<, φ>) (4.4)

with S0 being a quadratic function of its arguments that separates into a slow and a

fast piece, and Sint contains the interaction which mixes both slow and fast modes.

The partition function can thus be rewritten as

Z =
∫
D(φ<)D(φ>) e−[S0(φ<)+S0(φ>)+Sint(φ<,φ>)] = Z0>

∫
D(φ<) e−Seff(φ<) (4.5)

where Z0> is the partition function of the fast modes. The effective action Seff(φ<)

is thus given by

eSeff(φ<) = eS0(φ<)
〈
eSint(φ<,φ>)

〉
0>

(4.6)

Here, 〈· · · 〉0> denotes the functional average with respect to the fast modes. Let

us assume in the following discussion that the theory is renormalizable, i.e. that the

physical quantities are independent of the cutoff upon taking the limit Λ→∞ [23].

This implies that the effective action Seff is of the same form as the initial action up

to irrelevant terms generated by integrating out the fast modes.

After performing this mode elimination, the effective action Seff(φ<) provides

a good description of the low-energy physics. However, if we compare the old and

new theory we see immediately that they are defined on two different kinematical
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regions, and thus we cannot compare the various parameters in the interactions. In

order to solve this problem we rescale momenta after the mode elimination,

k′ = bk (4.7)

such that k′ runs over the same momentum range [0,Λ] as the initial momentum

k did before mode elimination. Having restored the initial momentum cutoff Λ

there remains just one more problem. Certain changes in the parameters are not of

physical importance because they can be absorbed by field rescaling. To eliminate

this problem let us define new fields,

φ′(k′) = N−1φ<(k′/b) (4.8)

and choose N such that a certain coupling, e.g. the kinetic term in the quadratic

part of the action has a fixed coefficient. The final effective action S will then be

expressed in terms of these new fields.

In the final analysis of the renormalization group the so-called β function plays

a central role. For a generic coupling constant g it is defined as

β(g) =
dg

dl
(4.9)

where l = ln b is the logarithmic control parameter of the renormalization group

transformation. Note that throughout this chapter we use the convention that upon

increasing l the momentum cutoff Λ decreases.

To sum up, the renormalization group program is a three stage process: In the

first step one eliminiates the fast modes, i.e. reduces the momentum cutoff from

Λ to Λ/b. Then one rescales momenta, k′ = bk, which restores the initial cutoff.

Afterwards, one introduces rescaled fields φ′(k′) and rewrites the effective action

in terms of them which then has the same coefficient for a certain quadratic term.

Finally, one can infer from the renormalized effective action the β functions for the

coupling constants of the system.

With this definition of the renormalization group scheme we have a mapping

of the initial action defined in a certain phase space to actions in the same phase

space but with renormalized couplings. Thus, representing the initial action as a

point in a coupling constant space, this point will flow to another point in the same

space under renormalization group transformation. The flow of coupling constants

as described by the β functions opens up the possibility of fixed points. These

are points at which the action remains unchanged under a renormalization group

transformation. Physically, if the system had a correlation length ξ it must be

either zero or infinite at the fixed point since it must remain the same under a

renormalization group transformation. Due to this divergence fixed points play a

special role in the renormalization group flow.
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First, there are stable fixed points, i.e. attractive points in the coupling con-

stant space. Starting with an action in the coupling space somewhere near to the

fixed point, the action will flow towards and, at least asymptotically, reach the fixed

point. Couplings which are renormalized to zero are called irrelevant since they

make no difference in the long-range properties. Physically, looking on larger and

larger length scales the system resembles more and more the infinitely large cor-

relations. Complementary to the stable fixed points are the unstable fixed points.

Any deviation in coupling constant space from the fixed point values will force the

action to flow away from it. A coupling that gets amplified under renormalization

group transformation is called relevant. The long-distance behavior of correlation

functions typically corresponds to exponential decay. Finally, there exists a class of

generic fixed points with both relevant and irrelevant couplings. These points are

of particular interest since they can be associated with phase transitions. In the

general problem, there can also be marginal perturbations which neither grow nor

decay under the renormalization group transformation.

This concludes our brief summary of the concept renormalization group methods.

However, there are a lot of interesting points such as critical phenomena and phase

transitions which can be studied in the framework of renormalization group. A

variety of applications of renormalization group methods has been the focus of many

textbooks and reviews, see e.g. [11, 22].

4.2 Perturbative Approach

We consider the model of a spinless electrons in a two-band quantum wire. The

action of the system consists of three parts, S = Spl + Sel + Sel−pl. The first part

describes the density excitations of the lower subband as plasmons with acoustic

spectrum,

Spl =
1
2

1
βL

∑
q,Ωn

φ∗q,ΩnD−1
0 (q,Ωn)φq,Ωn (4.10)

where D0 is the plasmon propagator defined as

D0(q,Ωn) =
−πKv

(iΩn)2 − (vq)2
(4.11)

Here, L is the one-dimensional volume or length of our model, β = 1/(kBT ) is the

inverse of temperature, v = vF1/K is the plasmon velocity, vF1 is the Fermi velocity

in the first (lower) subband, and K is the Luttinger liquid parameter. The second

part, Sel, represents the excitations of the second subband in terms of Ising fermions,

Sel =
1
2

1
βL

∑
k,ωn

Ψ†k,ωnG−1
0 (k, ωn)Ψk,ωn (4.12)

where the fermion propagator G0 is defined as

G0(k, ωn) =
1

(iωn)2 − ω2
k

[−iωn11 + µσ3 − ukσ2] (4.13)
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Figure 4.1: Parameters for our model of interacting electrons in a two-band quantum

wire. The points κ = 0 and κ = 1 correspond to the strong and weak coupling

limits, respectively. There exists a multicritical point at (κ, µ) = (κcr, 0) where for

κ > κcr the electron pair transfer operator becomes less relevant than the quadratic

dispersion of the fermions. The chemical potential µ tunes the distance to quantum

criticality at µ = µc = 0. The inter-band density-density coupling λ ∼ κ is treated

perturbatively in a renormalization group approach (shaded area).

with u the fermion velocity and ωk =
√
µ2 + (uk)2 the eigenenergies. The chemical

potential µ tunes the distance to quantum criticality. Note that we introduced here

a Nambu spinor notation for the Ising fermions:

Ψ†k,ωn = (ψ†k,ωn , ψ−k,−ωn), Ψk,ωn =

(
ψk,ωn

ψ†−k,−ωn

)
(4.14)

Finally, the interaction between the plasmons and Ising fermions is given by

Sel−pl =
1
2

1
(βL)2

∑
q,Ωn

∑
k,ωn

Γ0(q,Ωn; k, ωn)iqφq,ΩnΨ†k+q,ωn+Ωn
σ3Ψk,ωn (4.15)

with the bare coupling constant

Γ0(q,Ωn; k, ωn) = λ (4.16)

We now turn to the calculation of the one-loop order self-energies and vertex

corrections in a perturbative approach. In the strong coupling limit, i.e. κ→ 0, we

perform perturbation theory in the small inter-band density-density coupling λ ∼ κ
(cf. Eq. (3.31)), and we obtain perturbative corrections for the fermion and plasmon

propagators as well as the interaction vertex. In general, the self-energy is defined

as the difference between the bare propagator in the non-interacting system and

the propagator in the interacting system, and thus it describes the renormalization

effects of the bare propagator due to interactions. In Sec. 4.2.1 and 4.2.2, we calculate

these self-energy corrections for the plasmons, Π, and for the fermions, Σ, to leading

order in λ. In Sec. 4.2.3, we calculate the leading-order vertex correction, δΓ. Both

leading-order self-energies and the vertex correction contain logarithmic divergencies

which are evaluated with a hard momentum cutoff. For detailed calculations on the

leading order corrections see App. A. Finally, we obtain the modified plasmon and

fermion propagators and interaction vertex.
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4.2.1 Plasmon Self-Energy

The self-energy for the plasmons, Π, is given by the Dyson equation,

D−1(q,Ωn) = D−1
0 (q,Ωn)−Π(q,Ωn) (4.17)

Here, D is the full propagator and D0 is the bare plasmon propagator as defined

by the corresponding plasmon action. Performing perturbation theory in λ, the

plasmon self-energy in a one-loop order expansion reads (cf. Fig. 4.2)

Π(q,Ωn) = − 1
2!
λ2q2 1

βL

∑
k,ωn

Tr
{
σ3G0(k, ωn)σ3G0(k + q, ωn + Ωn)

}
(4.18)

= −λ2q2 1
βL

∑
k,ωn

iωn(iωn + iΩn)− u2k(k + q) + µ2

[(iωn)2 − ω2
k][(iωn + iΩn)2 − ω2

k+q]
(4.19)

Since we are interested in the large distance and large time behavior of the sys-

tem, we consider the external momentum q and frequence iΩn to be small compared

to a momentum cutoff Λ. Thus, let us carry out a Taylor expansion for small mo-

mentum q and frequency Ωn. In the vicinity of the quantum critical point, µ = 0,

the leading-order term of the plasmon self-energy reads

Π(q,Ωn) = −λ2q2 1
βL

∑
k,ωn

(iωn)2 − u2k(k + q) + µ2

[(iωn)2 − ω2
k][(iωn)2 − ω2

k+q]

The summation over fermionic Matsubara frequencies, ωn = (2n + 1)π/β, is per-

formed in a standard way [11]. Rewriting the sum over ωn as a contour integral in

complex frequency space we obtain

1
β

∑
ωn

(iωn)2 − u2k(k + q) + µ2

[(iωn)2 − ω2
k][(iωn)2 − ω2

k+q]
= −

∫
dz

2πi
nF (z)

z2 − u2k(k + q) + µ2

[z2 − ω2
k][z

2 − ω2
k+q]

=
∑
α=±1

[
nF (αωk)

ω2
k − u2k(k + q) + µ2

2αωk(ω2
k − ω2

k+q)
+ nF (αωk+q)

ω2
k+q − u2k(k + q) + µ2

2αωk+q(ω2
k+q − ω2

k)

]

q

k

q

k + q

Figure 4.2: Leading-order self-energy diagram for the plasmons, Π. (Fermion fields

are depicted by solid lines, plasmon fields by dashed lines, and the interaction vertex

is depicted by a dot.)
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where nF/B(ε) =
(
1±eβε)−1 are the Fermi and Bose occupation factors, respectively.

At zero temperature both occupation factors take a simple form,

nF/B(ε)→ ±Θ(−ε) for β →∞ (4.20)

where Θ(x) is the Heaviside step function. Therefore, the plasmon self-energy (4.19)

at zero temperature is equal to

Π(q,Ωn) = λ2q2 1
L

∑
k

[
ω2
k − u2k(k + q) + µ2

2ωk(ω2
k − ω2

k+q)
+
ω2
k+q − u2k(k + q) + µ2

2ωk+q(ω2
k+q − ω2

k)

]
The remaining momentum integral contains a logarithmic divergence for large k.

This ultraviolet divergence can be evaluated with a hard spatial momentum cutoff

Λ. Assuming that the external momentum q is small compared to the cutoff Λ the

logarithmic divergence of the plasmon self-energy is given by

Π(q,Ωn) ≈ λ2q2

∫ Λ

−Λ

dk

2π
1

2|u||k| =
λ2q2

2π|u| ln Λ (4.21)

Thus, the Green function of the interacting system reads (cf. Eq. (4.17))

D−1(q,Ωn) =
−1
πKv

[
(iΩn)2 −

(
1− λ2K

2|u|v ln Λ
)

(vq)2

]
(4.22)

For a detailed calculation of the plasmon self-energy see Appendix A.1.

4.2.2 Fermion Self-Energy

Similar to the plasmon self-energy, the self-energy for the fermions, Σ, is given by

G−1(k, ωn) = G−1
0 (k, ωn)− Σ(k, ωn) (4.23)

where G is the full propagator and G0 is the bare fermion propagator as defined by

the fermion action. In a one-loop order expansion, the fermion self-energy Σ reads

(cf. Fig. 4.3)

Σ(k, ωn) = λ2 1
βL

∑
q,Ωn

q2D0(q,Ωn)σ3G0(k + q, ωn + Ωn)σ3 (4.24)

= λ2 1
βL

∑
q,Ωn

q2 −πKv
(iΩn)2 − (vq)2

−(iωn + iΩn)11 + µσ3 + u(k + q)σ2

(iωn + iΩn)2 − ω2
k+q

(4.25)

The summation of bosonic Matsubara frequencies, Ωn = 2nπ/β, is again per-

formed by means of a contour integral. However, one has to take care since the Bose

occupation factor changes into a Fermi factor upon adding a fermionic Matsubara

frequencu in its argument:

nB(z + iωn) = −nF (z) (4.26)
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k

q

kk + q

Figure 4.3: Leading-order self-energy diagram for the Ising fermions, Σ. (Fermion

fields are depicted by solid lines, plasmon fields by dashed lines, and the interaction

vertex is depicted by a dot.)

After performing the Matsubara summation one can then carry out a Taylor expan-

sion for small external momentum k and frequency ωn and evaluate the remaining

momentum integral. As for the plasmon self-energy, the remaining momentum in-

tegral over q contains a logarithmic ultraviolet divergence which can be extracted

by using the same momentum cutoff Λ. The leading-order term in the self-energy

at zero temperature for fermions is given by

Σ(k, ωn) ≈ − λ2K

2(v + |u|)2

[
−iωn11 +

v + |u|
|u| µσ3 − ukσ2

]
ln Λ (4.27)

Thus, to leading order in λ the modified Green function at zero temperature reads

G−1(k, ωn) =
(

1 +
λ2K

2(v + |u|)2
ln Λ

)
(−iωn)11

−
(

1− λ2K

2|u|(v + |u|) ln Λ
)
µσ3 +

(
1− λ2K

2(v + |u|)2
ln Λ

)
ukσ2 (4.28)

For a detailed calculation of the fermion self-energy see Appendix A.2.

4.2.3 Vertex Correction

Finally, the vertex correction δΓ to the interaction is defined by

Γ(q,Ωn; k, ωn) = Γ0(q,Ωn; k, ωn) + δΓ(q,Ωn; k, ωn) (4.29)

where Γ denotes the full interaction and Γ0 is the bare interaction vertex. The vertex

correction in a one-loop order expansion is given by (cf. Fig. 4.4)

δΓ(q,Ωn; k, ωn) =
1
2!
λ3 1
βL

∑
q′,Ω′n

q′2D0(q′,Ω′n)

× Tr
{
σ3G0(k + q′, ωn + Ω′n)σ3G0(k + q + q′, ωn + Ωn + Ω′n)

}
(4.30)

The Matsubara summation is performed in the same way as in the previous

sections. Since the interaction is a marginal term in the Hamiltonian, it suffices to
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q

k + q + q′

k + q

k + q′

k

q′

Figure 4.4: Leading-order self-energy diagram for the vertex correction, δΓ.

set the external momenta and frequencies to zero in order to obtain the leading-

order behavior of δΓ. After evaluating the remaining ultraviolet divergence of the

momentum integral with a hard momentum cutoff Λ the vertex correction at zero

temperature reads

δΓ(q,Ωn; k, ωn) ≈ − λ3K

2|u|(v + |u|) ln Λ (4.31)

To leading order in λ, the modified interaction vertex at zero temperature is

Γ(q,Ωn; k, ωn) = λ

(
1− λ2K

2|u|(v + |u|) ln Λ
)

(4.32)

For a detailed calculation of the vertex correction see Appendix A.3.

4.3 Renormalization of the Theory

Let us now turn to a renormalization group analysis of our model. According to the

general renormalization group scheme, we integrate out in a first step the fast modes

which lie in the momentum shell [Λ/b,Λ] with 0 < ln b� 1. This mode elimination

leads to perturbative corrections to the Green functions and to the interaction vertex

in the form given by Eqs. (4.22), (4.28) and (4.32), but with the cutoff Λ replaced

by b. In a second step, we rescale momentum

k′ = bk, q′ = bq (4.33)

and frequency

ω′n = bz̃ωn, Ω′n = bz̃Ωn (4.34)

in order to restore the momentum cutoff Λ for the slow modes. Note that we rescale

frequencies with a generic scale bz̃. Later it will turn out that the particular choice

of a non-universal exponent z̃ allows for an easier interpretation of the β functions.

Finally, we rescale the slow bosonic field by

φ′(q′,Ω′n) = Z
−1/2
B b−(3+z̃)/2φ(q′/b,Ω′n/b

z̃) (4.35)
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and the slow fermionic fields by

Ψ′(k′, ω′n) = Z
−1/2
F b−(2+z̃)/2Ψ(k′/b, ω′n/b

z̃) (4.36)

Ψ′†(k′, ω′n) = Z
−1/2
F b−(2+z̃)/2Ψ†(k′/b, ω′n/b

z̃) (4.37)

Here, the renormalization parameters ZB and ZF are left unspecified for the moment.

This rescaling of momenta, frequencies and fields leads to an effective theory for the

slow modes but with renormalized Green function and interaction vertex given by

D′−1(q′,Ω′n) =
−ZB
πKv

[
b2(1−z̃)(iΩ′n)2 −

(
1− λ2K

2|u|v ln b
)

(vq′)2

]
(4.38)

G′−1(k′, ω′n) = ZF

[(
1 +

λ2K

2(v + |u|)2
ln b
)
b1−z̃(−iω′n)11 (4.39)

−
(

1− λ2K

2|u|(v + |u|) ln b
)
bµσ3 +

(
1− λ2K

2(v + |u|)2
ln b
)
uk′σ2

]
Γ′(q′,Ω′n; k′, ω′n) = Z

1/2
B ZF b

(1−z̃)/2λ
(

1− λ2K

2|u|(v + |u|) ln b
)

(4.40)

Note that the factor of b accompanying the chemical potential µ reflects its en-

gineering scaling dimension. In order to continue our analysis we have to specify

renormalization conditions on the Green functions and the interaction vertex. In

the following we will discuss three different choices for z̃, ZB and ZF . Note that the

physics in our model remains unaffected by the choice of a particular set of renor-

malization conditions. However, as we see below the renormalization group flow is

easier to interpret under certain conditions.

4.3.1 Renormalization Conditions: Set I

Our first ansatz towards a renormalization of the theory is the choice to set the ex-

ponent to unity, z̃ = 1, and to fix the prefactors in front of the frequency dependence

of both Green funtions in the following way:

D′−1(q′,Ω′n)
∣∣∣
q′=0

=
−1
πK ′v′

(iΩ′n)2 =
−1
πKv

(iΩ′n)2 (4.41a)

G′−1(k′, ω′n)
∣∣∣
k′=0

= −iω′n11 (4.41b)

In the last equation we considered the quantum critical point where µ = 0. These

conditions can be satisfied by setting

Z−1
F = 1 +

λ2K

2(v + |u|)2
ln b (4.42a)

Z−1
B = 1 (4.42b)

Note that this renormalization conditions imply in particular that the combination

K ′v′ = Kv = vF1 (4.43)
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is an invariant of the renormalization group flow. The effective theory for the slow

modes now takes the same form as the original one but with the following renormal-

ized parameters:

v′2 = v2

(
1− λ2vF1

2|u|v2
ln b
)

(4.44a)

u′ = u

(
1− λ2vF1

v(v + |u|)2
ln b+O((ln b)2

))
(4.44b)

µ′ = µ

[
1 +

(
1− λ2vF1

2|u|v(v + |u|) −
λ2vF1

2v(v + |u|)2

)
ln b+O((ln b)2

)]
(4.44c)

λ′ = λ

[
1−

(
λ2vF1

2|u|v(v + |u|) +
λ2vF1

2v(v + |u|)2

)
ln b+O((ln b)2

)]
(4.44d)

Here we substituted the Luttinger liquid parameter K by the invariant vF1. We can

infer from the renormalized parameters the β functions as follows:

β(v) = −λ
2vF1

4|u|v (4.45a)

β(u) = − λ2vF1u

v(v + |u|)2
(4.45b)

β(µ) = µ

[
1− λ2vF1

2

(
1

v|u|(v + |u|) +
1

v(v + |u|)2

)]
(4.45c)

β(λ) = −λ
3vF1

2

(
1

v|u|(v + |u|) +
1

v(v + |u|)2

)
(4.45d)

Note that β(g) = ∂g/∂ ln b as defined in Sec. 4.1.

4.3.2 Renormalization Conditions: Set II

Instead of fixing the Fermi velocity vF1 we can demand that the Luttinger liquid

parameter K does not flow under renormalization group transformation. With z̃ = 1

this implies the following conditions:

D′−1(q′,Ω′n)
∣∣∣
q′=0

=
−1
πKv′

(iΩ′n)2 (4.46a)

G′−1(k′, ω′n)
∣∣∣
k′=0

= −iω′n11 (4.46b)

In the last equation we again considered the quantum critical point, µ = 0. These

conditions can be satisfied by setting

Z−1
F = 1 +

λ2K

2(v + |u|)2
ln b (4.47a)

Z−1
B =

v′

v
(4.47b)
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leading to renormalized parameters as follows:

v′2 = v2

(
1− λ2K

2v|u| ln b
)

(4.48a)

u′ = u

(
1− λ2K

(v + |u|)2
ln b
)

(4.48b)

µ′ = µ

[
1 +

(
1− λ2K

2|u|(v + |u|) −
λ2K

2(v + |u|)2

)
ln b+O((ln b)2

)]
(4.48c)

λ′ = λ

[
1−

(
λ2K

2|u|(v + |u|) +
λ2K

2(v + |u|)2
− λ2K

8v|u|
)

ln b+O((ln b)2
)]

(4.48d)

Note that in the derivation of λ′ we used

Z
1/2
B =

(
1− λ2vF1

2|u|v2
ln b
)−1/4

≈ 1 +
1
4
λ2vF1

2|u|v ln b+O((ln b)2
)

The resulting β functions for this set of renormalization conditions thus read

β(v) = −λ
2K

4|u| (4.49a)

β(u) = − λ2Ku

(v + |u|)2
(4.49b)

β(µ) = µ

[
1− λ2K

2

(
1

|u|(v + |u|) +
1

(v + |u|)2

)]
(4.49c)

β(λ) = −λ
3K

2

(
1

|u|(v + |u|) +
1

(v + |u|)2
− 1

4|u|v
)

(4.49d)

Note that the β functions for the fermion and plasmon velocities v and u and for the

chemical potential µ are equal to the β functions obtained in set I upon substituting

K = vF1/v. On the other hand, the β function for the coupling λ differs slightly

in its form by an additional term. This is due to the fact that we used different

conditions to fix the Luttinger liquid parameter K instead of the Fermi velocity

vF1 = Kv.

4.3.3 Renormalization Conditions: Set III

Finally, we consider a third set where neither the plasmon velocity v nor the Lut-

tinger liquid parameter K are allowed to flow under renormalization group trans-

formations. Additionally, we fix the prefactor of the frequency dependence of the

fermion Green function. This implies the conditions

D′−1(q′,Ω′n)
∣∣∣
q′=0

=
−1
πKv

(iΩ′n)2 (4.50a)

D′−1(q′,Ω′n)
∣∣∣
Ω′n=0

=
1

πKv
(vq′)2 (4.50b)

G′−1(k′, ω′n)
∣∣∣
k′=0

= −iω′n11 (4.50c)
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and in the last equation we again considered the quantum critical point, µ = 0.

Note that in contrast to the sets I and II we allow here for a generic exponent z̃. By

setting

b2(1−z̃) = Z−1
B (4.51a)

Z−1
F = 1 +

λ2K

2(v + |u|)2
ln b (4.51b)

Z−1
B = 1− λ2K

2|u|v ln b (4.51c)

these conditions are satisfied. Solving the first condition one obtains the exponent

z̃(b) = 1 +
λ2(b)K
4v|u(b)| +O(ln b) (4.52)

Note that this exponent now is explicitly interaction-dependent. In set III, the

renormalized parameters of the system are given by

v′ = v (4.53a)

u′ = u

[
1 +

(
(z − 1)− λ2K

(v + |u|)2

)
ln b+O((ln b)2

)]
(4.53b)

µ′ = µ

[
1 +

(
z − λ2K

2

(
1

|u|(v + |u|) +
1

(v + |u|)2

))
ln b+O((ln b)2

)]
(4.53c)

λ′ = λ

[
1 +

(
z − 1

2
− λ2K

2

(
1

|u|(v + |u|) +
1

(v + |u|)2
− 1

2|u|v
))

ln b+O((ln b)2
)]

(4.53d)

and the resulting β functions read

β(v) = 0 (4.54a)

β(u) = −λ2Ku

(
1

(v + |u|)2
− 1

4|u|v
)

(4.54b)

β(µ) = µ

[
1− λ2K

2

(
1

|u|(v + |u|) +
1

(v + |u|)2
− 1

2|u|v
)]

(4.54c)

β(λ) = −λ
3K

2

(
1

|u|(v + |u|) +
1

(v + |u|)2
− 3

4|u|v
)

(4.54d)

The β functions for the plasmon velocity v vanishes identically due to our renormal-

ization condition that v and K do not flow. Moreover, the remaining β functions

for the fermion velocity u, the chemical potential µ, and the coupling λ are quite

different from the β functions obtained in sets I and II. This is due to the fact that

in the derivation of set III we do not fix the exponent to z̃ = 1. Thus, the resulting

β functions of sets I (II) may be directly compared with the β functions of set III.

4.4 Solving the β Functions

In the previous section, we have derived complementary sets of β functions describing

the flow of the fermion and plasmon velocities u and v, the coupling constant λ,
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and the chemical potential µ in different pictures. Although the partial differential

equations for u, v and λ are coupled and non-linear in their structure, an analytical

solution is actually feasible. Without loss of generalization, let us assume u to be

positive. In a first step, we solve the differential equation

dv

du
=
β(v)
β(u)

(4.55)

for v as a function of u. With this solution in mind we can solve a similar differential

equation for λ in a second step:

dλ

du
=
β(λ)
β(u)

∣∣∣∣
v=v(u)

(4.56)

This enables us to solve in a third step the remaining differential equation for u,

du

d ln b
= β(u)

∣∣∣∣
v=v(u),λ=λ(u)

(4.57)

which yields a solution for ln b as a function of u. Upon inverting this relation we

finally obtain the flow of the couplings as function of the control parameter b, i.e.

u(b), v(b) and λ(b), respectively. Finally, it is convenient to absorb the engineering

scaling dimension of the chemical potential into the gap function ∆(b) which is

defined by ∆(b) = b−1µ(b). In the following sections we apply the above procedure

to solve the sets I–III of β functions.

4.4.1 Solution of Set I

Following the procedure as described above we obtain the following exact solutions

for our model:

v(u) = u

[
1− 4

(
4u0

u0 − v0
+ ln

u

u0

)−1]
(4.58)

λ(u) = λ0
16
√
u0

(u0 − v0)2
u3/2

(
4u0

u0 − v0
+ ln

u

u0

)−2

(4.59)

ln b(u) = − (u0 − v0)4

960u0vF1λ2
0

[
3
(

2
u0 + v0

u0 − v0
+ ln

u

u0

)5

− 96
(
u0 + v0

u0 − v0

)5

− 20
(

2
u0 + v0

u0 − v0
+ ln

u

u0

)3

+ 160
(
u0 + v0

u0 − v0

)3]
(4.60)

Finally, the gap function of the fermions is given by

∆(u) = ∆0
16
√
u0

(u0 − v0)2
u3/2

(
4u0

u0 − v0
+ ln

u

u0

)−2

(4.61)

which is identical in its structure to the interaction, λ(u), due to similar β functions.

Here, u0, v0, λ0 and ∆0 = µ0 are the initial (bare) coupling constants of the model.
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4.4.2 Solution of Set II

Solving the β functions of set II according to the previous section yields the same

results for the physical quantities such as the velocities u, v and the excitation gap

∆. For example, the plasmon velocity v and the gap ∆ are given by

v(u) = u

[
1− 4

(
4u0

u0 − v0
+ ln

u

u0

)−1]
(4.62)

∆(u) = ∆0
16
√
u0

(u0 − v0)2
u3/2

(
4u0

u0 − v0
+ ln

u

u0

)−2

(4.63)

On the other hand, since the β function of λ contains an additional term, we may

not expect that λ(u) is of the same form as before. Indeed, the solution for λ is

equal to

λ(u) = λ0
16
√
u0v0

(u0 − v0)2
u

(
4v0

u0 − v0
+ ln

u

u0

)−1/2( 4u0

u0 − v0
+ ln

u

u0

)−3/2

(4.64)

Finally, the fermion velocity u as a function of ln b is implicitly given by

ln b(u) = − (u0 − v0)4

960u0v0Kλ2
0

[
3
(

2
u0 + v0

u0 − v0
+ ln

u

u0

)5

− 96
(
u0 + v0

u0 − v0

)5

− 20
(

2
u0 + v0

u0 − v0
+ ln

u

u0

)3

+ 160
(
u0 + v0

u0 − v0

)3]
(4.65)

Note that this solution is of the same form as in set I.

4.4.3 Solution of Set III

Let us now consider the complementary set III which differs considerably in its

derivation from the first two sets. First of all, the β function of the plasmon ve-

locity v vanishes due to our renormalization condition that v does not flow under

renormalization group transformations. Thus,

v(u) = v0 = const (4.66)

The solution for the inter-band density-density coupling constant λ is given by

λ(u) = λ0

(
u− v0

u0 − v0

)2( u

u0

)−1/2

(4.67)

Solving the β function of u to obtain ln b (cf. Eq. (4.57)) yields a much simpler

relation than in sets I and II above:

ln b(u) = − 2v0

15u0(u0 − v0)Kλ2
0

[(
u0 − v0

u− v0

)5(
15u3 + 5u2v0 + 5uv2

0 − v3
0

)
− (15u3

0 + 5u2
0v0 + 5u0v

2
0 − v3

0

)]
(4.68)
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Finally, upon integrating the β function of the chemical potential we obtain the

following solution for the gap function ∆,

∆(u) = ∆0

(
u− v0

u0 − v0

)2( u

u0

)−1

exp
{

2
(

v0

u− v0
− v0

u0 − v0

)}
(4.69)

Note that the solutions for u, v, λ and ∆ cannot be compared with the solutions

of sets I and II due to the fact that we have choosen a completely different set of

renormalization conditions and that we allow for a generic dynamical exponent z.

4.5 Discussion

Let us now discuss the solutions of the β functions. First, we consider set II where the

Luttinger liquid parameter K does not flow, cf. Eqs. (4.49), in different regimes of

the initial fermion and plasmon velocities u0 and v0. The resulting renormalization

group diagram summarizes the non-analytic behavior of the solutions within these

renormalization conditions. Afterwards, we discuss set III where we allow for a

generic dynamical exponent, cf. Eqs. (4.54). The non-analyticity observed in set II

can be easily understood here due to the interaction dependent dynamical exponent.

Finally, we compare the results of the two sets.

4.5.1 Discussion of Set II

First of all, let us consider the case where the initial velocity of the Ising fermions is

smaller than the plasmon velocity, u0 < v0. In this case, both velocities u(b) and v(b)

decrease upon increasing the renormalization group control parameter b, as shown

in Fig. 4.5 (a)–(c). Moreover, the flow of the inter-band density-density coupling

strength λ is towards weak coupling, i.e. λ(b) → 0 for b → ∞. From Eq. (4.65) we

can infer the asymptotic behavior of the fermion velocity v for large b,

u(b) = u0e
−(C ln b)1/5

with C = 320
u0v0Kλ

2
0

(u0 − v0)4
(4.70)

A similar relation holds for the plasmon velocity v,

v(b) ∼ u0e
−(C ln b)1/5

[
1 +

4
(C ln b)1/5

]
(4.71)

In order to better understand the decrease of u and v let us consider the mean

velocity, V = (v + u)/2, and the (dimensionless) velocity difference, ε = (v − u)/v.

For large b the two velocities u and v approach each other as

ε(b) =
v(b)− u(b)

v(b)
∼ 4

(C ln b)1/5
(4.72)

while the mean velocity decreases non-algebraically as

V (b) =
v(b) + u(b)

2
∼ u0e

−(C ln b)1/5 ∼ u0e
−4/ε(b) (4.73)
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It is this non-analyticity of the mean velocity V on the parameter ε that prevents

us from analyzing the asymptotic behavior of u and v directly on the level of their

β functions. However, the non-analyticity of the solutions can be easily captured

when allowing for a generic dynamical exponent z as in set III (see Sec. 4.5.2).

Now let us turn to the case where the initial fermion velocity is larger than

the plasmon velocity, u0 > v0. In this case we find that the fermion and plasmon

velocities u(b) and v(b) decrease as b increased, as well as the interaction strength

λ(b) decreases. However, there exists a scale b∗ at which λ(b) diverges towards strong

coupling as shown in Fig. 4.5 (d)–(f). From Eqs. (4.64) and (4.65) we infer that this

strong coupling scale is given by

ln b∗ =
2v0

15u0(u0 − v0)Kλ2
0

(
15u3

0 + 5u2
0v0 + 5u0v

2
0 − v3

0

)
(4.74)

At the strong coupling scale, b∗, the plasmon velocity vanishes while the fermion

velocity remains finite,

v(b∗) = 0, (4.75)

u(b∗) = u0e
−4v0/(u0−v0) (4.76)

and the inter-band density-density coupling strength diverges,

λ(b)→∞ for b→ b∗ (4.77)

It is noteworthy that the plasmon velocity vanishes at the strong coupling scale.

In order to understand this peculiarity, let us consider the compressibility κ which

measures the relative change in the systems volume when a pressure is applied. The

compressibility of a Luttinger liquid is given by the inverse of its plasmon velocity,

κ−1 ∼ v (see e.g. [17]). Thus, at the strong coupling scale the compressibility

diverges as v vanishes. This might indicate a first order transition in the Luttinger

liquid part of our model.

Finally, let us consider the case where the initial fermion and plasmon velocities

are equal, u0 = v0. In this case, the β functions (4.54) simplify and read

β(v) = −λ
2K

4v
(4.78a)

β(u) = −λ
2K

4v
(4.78b)

β(µ) = µ

(
1− 3

2
λ2K

4v

)
(4.78c)

β(λ) = −λ
3K

4v2
(4.78d)

These β functions allow for a simple solution,

v(b)
v0

=
u(b)
u0

=
λ(b)
λ0

= b−Kλ
2
0/(4v

2
0) (4.79)
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Figure 4.5: Renormalization group flow of the plasmon velocity v, the fermion ve-

locity u, and the inter-band density-density coupling strength λ. Fig. (a)–(c) show

the case u0 < v0 where the flow is towards weak coupling, λ→ 0. Fig. (d)–(f) show

the case u0 > v0 where the flow is towards strong coupling, λ → ∞. At the strong

coupling scale b∗ the plasmon velocity vanishes while the fermion velocity remains

finite, and λ diverges.

while the gap function is given by

∆(b)
∆0

=
(
b−Kλ

2
0/(4v

2
0)
)3/2 (4.80)

Obviously, the renormalization group flow is still towards weak coupling as λ → 0

for b→∞. Likewise, the fermion and plasmon velocities u(b) and v(b) still decrease

as b is increased. However, the ratio of velocities v(b)/u(b) = v0/u0 = 1 remains

constant for all b. This indicates that the dispersion relation is modified by an

effective dynamical exponent z,

ω ∼ vkz with z = 1 +
Kλ2

0

4v2
0

= const (4.81)

Note that this dynamical exponent is not the exponent of frequency rescaling z̃ = 1

(cf. Eq. (4.34)). In the case of a non-interacting Luttinger liquid, z̃ = z = 1 [17].

Finally, let us note that the role of the line u0 = v0 can be interpreted as a separatrix

in the renormalization group diagram below.

The above results for set II are depicted in Fig. 4.6. In the case where the

initial fermion velocity is smaller than the plasmon velocity, ε0 = v0 − u0 > 0,

the renormalization group flow is towards weak coupling, λ → 0 and ε → 0. On
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V

ε

0

Figure 4.6: Renormalization group diagram in the (V, ε)-plane. The velocity differ-

ence ε = (v − u)/v is shown as function of the mean velocity V = (v + u)/2. For a

discussion see the main text.

the other hand, in the case where the fermion velocity is larger than the plasmon

veocity, ε0 < 0, the flow is towards strong coupling, λ→∞. Finally, the line ε0 = 0

corresponds to a separatrix where the flow is still towards weak coupling but the

ratio u/v = 1 is constant. The non-analyticity of the asymptotic solutions manifests

itself in the nearly horizontal flow along the V axis for small ε.

4.5.2 Discussion of Set III

Let us now consider set III, cf. Eqs. (4.54). We have seen in above discussion of

set II that both velocities u and v decrease upon increasing b. Moreover, the mean

velocity obtains a non-analytic dependence on the velocity difference ε between u

and v. The flow along the trajectories, as depicted in the renormalization group

diagram 4.6, is determined by the dependence of the β functions on ε. Thus, an

expansion of set III in small ε is sufficient to determine its asymptotical behavior.

Since the plasmon velocity v is kept constant in set III we substitute u = v(1 − ε)
and carry out a Taylor expansion in small ε:

β(ε) = −λ
2K

v2

ε2

16
(4.82a)

β(λ) = −λ
3K

v2

ε

8
(4.82b)

β(µ) = µ

(
1− λ2K

8v2

)
(4.82c)

Note that the asymptotic behavior of the model is completely described by the β

functions of ε and λ. Their solution can be obtained in a way similar to the one

described above. As a result the velocity difference is equal to

ε(b) =
4[C ln(b/b∗)

]1/5 with C = 320
Kλ2

0

v2
0ε

4
0

(4.83)

where C is an invariant of the renormalization group flow. Moreover, this invariant

can be identified with the same invariant in Eq. (4.72) upon expanding the latter
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one in ε and keeping only leading order terms. Similarly, b∗ is defined as

ln b∗ = −1024
Cε50

(4.84)

which for ε0 < 0 coincides with the strong coupling scale b∗ defined by Eq. (4.74)

upon expanding the latter one to leading order in ε. Likewise, the solution of the

interaction strength λ reads

λ(b) = λ0

[
ln(1/b∗)
ln(b/b∗)

]2/5

(4.85)

Note that these solutions are in agreement with the asymptotic behavior obtained

from the exact solutions of set II.

Let us now discuss the behavior of ε(b) for different regimes of the initial value

of ε0. In the case where the fermion velocities is smaller than the plasmon velocity,

ε0 > 0, we get b∗ < 1, and thus the renormalization group flow is towards weak

coupling, λ → 0 for b → ∞. In the opposite case where the fermion velocity is

larger than the plasmon velocity, ε0 < 0, the flow is towards strong coupling as λ

diverges for b→ b∗. Finally, in the case when both velocities are equal, ε0 = 0, the

β functions of ε and λ vanish, indicating that the line ε = 0 is actually a line of fixed

points. Along this line, the interaction λ is constant, and thus

z̃ = z = 1 +
Kλ2

0

4v2
0

= const (4.86)

This suggests that the interactions between electrons effectively modifies the disper-

sion relation of the Luttinger liquid and the Ising fermions, ω ∼ vkz. This agrees

with our findings in set II. Moreover, from the β function of the chemical potential,

cf. Eq. (4.82) we can infer that the correlation length exponent ν is also modified,

ν = 1− Kλ2
0

8v2
0

= const (4.87)

Note that in our one-loop approach ν = 2/(3 − z). Note also that in the non-

interacting case z = ν = 1.

Moreover, it is possible to discuss these results directly on the level of the β

functions. At the quantum critical point, µ = 0, the β function for the chemical po-

tential vanishes, and the renormalization group diagram is completely determined by

the β functions for the velocity distance, ε, and the inter-band interaction strength,

λ. Using the invariant C (cf. Eq. (4.83)) it is easy to see that the trajectories in

the renormalization group diagram are given by ε ∼ √λ, as shown in Fig. 4.7. For

ε0 > 0, i.e. in the case where the plasmons are faster than the fermions, the flow

is towards the non-interacting symmetric case as λ and ε decrease. In the opposite

case, ε0 < 0, we see that the flow is away from the non-interacting system as λ in-

creases. Finally, note that the line ε = 0 is a line of fixed points as β(ε) = β(λ) = 0

on this line.
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ε

0 λ

Figure 4.7: Renormalization group diagram in the (λ, ε)-plane. The velocity differ-

ence ε is shown as function of the inter-band interaction strength λ. The line ε = 0

is a line of fixed points as β(ε) = β(λ) = 0. For a detailed discussion see the main

text.

In order to be able to compare the results of set III with those of set II we have

to take into account the scale-dependent dynamical exponent,

z(b) = 1 +
λ(b)2K

4v2(1− ε(b)) ≈
1 + λ2(b)

4v2
= 1 +

C
1280

ε(b)4 (4.88)

Here, we used the invariant C in the last equation, cf. Eq. (4.83). At each step

during the renormalization group transformations we have rescaled the dynamical

exponent z in order to independently fix the plasmon velocity v and the Luttinger

liquid parameter K. To obtain the plasmon velocity v(b) at scale b we have to

reverse this rescaling. Thus,

v(b) = v0 exp
{
−
∫ ln b

0
d(ln b′) [z(b′)− 1]

}
= v0 exp

{
−
(
C ln

b

b∗

)1/5

+
(
C ln

1
b∗

)1/5} (4.89)

The fermion velocity u(b) at scale b is obtained in a similar way, which in combination

with v(b) reproduces the asymptotic behavior of the mean velocity V = (v + u)/2.

It is noteworthy that we have been able to derive this asymptotic behavior of

ε and V directly from set III upon expanding it in ε. This contrasts set II where

the non-analyticity of V prevented us from deriving such an asymptotic behavior

directly on the level of β functions. However, the asymptotic results of both sets

comply with each other, provided we take into account the interaction-dependend

dynamical exponent z.

4.6 Summary of Results

Our model of interacting spinless electrons in a two-band quantum wire can be

easily investigated with renormalization group methods. Here, the density-density
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interaction between the two bands is treated as a weak perturbation. Integrating

out the fast modes, we obtain the self-energies and the vertex correction to leading

order in λ. The renormalization of the theory itself is done by imposing different

conditions resulting in complementary sets of β functions. Each set amounts for

an analytical solution although the sets consist of coupled non-linear differential

equations and are thus rather complex. The physical interpretation is of course the

same, regardless of which set we consider in particular.

In both set II and III we see that our peturbative renormalization group approach

is well-behaved for the initial flow parameters |u0| < v0, i.e. when the fermions

are slower than the plasmons. The renormalization group flow is towards a non-

interacting fixed point with equal velocities, or in other words, the velocity difference

scales to zero as b is increased, ε = (v − u)/v → 0. The dynamical exponent

obtains logarithmic corrections, z = 1 + (log. corrections). However, for large b

these corrections are negligible. To sum up:

|u0| < v0 :


λ→ 0

|u| → v

z → 1

for b→∞ (4.90)

Thus, for each b the critical theory looks like a conformal invariant theory of three

Majorana fields, provided we rewrite the Luttinger liquid in terms of two Majorana

fields. However, a careful analysis of the β functions reveals that not only the velocity

difference ε decreases but so does the mean velocity V due to residual logarithmically

strong interactions. Although the decrease of V is logarithmically slow, it clearly

shows that the critical theory is not a conformal field theory of three Majorana

fermions as one might have guessed in the first place. Instead, we see that the

renormalization group flow is towards a non-interacting theory while both plasmon

and fermion velocities decrease logarithmically.

In the case when both plasmons and fermions are equally fast, i.e. for |u0| =

v0, or in other words ε0 = 0, much of what has been said above prevails. The

renormalization group flow is still benign and is towards a weak coupling fixed point

with equal velocities. However, the dispersion relation ω ∼ kz of both bands is

modified by the interaction between electrons, resulting in an effective dynamical

exponent equal to

ω ∼ vkz with z = 1 +
Kλ2

0

4v2
0

= const (4.91)

Note that this dynamical exponent is far from being universal due to its dependence
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on the parameters of our model. Summarizing:

|u0| = v0 :


λ→ 0

|u| = v

z > 1

for b→∞ (4.92)

Finally, let us consider the case when the plasmons are slower than the fermions,

i.e. |u0| > v0. Here, our perturbation theory breaks down at some strong coupling

scale b∗ where the interaction λ diverges. However, following the renormalization

group flow we see that the plasmon velocity v vanishes at this scale, v(b∗) = 0.

On the other hand, the fermion velocity remains finite, u(b∗) > 0. The fact that

the plasmon velocity vanishes implies a diverging compressibility κ−1 ∼ v which, in

general, indicates a first order phase transition in the Luttinger liquid part of our

model. However, we are not able to further investigate this possibility on the level

of β functions. In summary:

|u0| > v0 :



λ→∞
v → 0

|u| > 0

z → 1

for b→ b∗ (4.93)

This concludes the analysis of our model on the level of renormalization group

methods. To gain more insight into the physics of our model, we should have a

closer look at the thermodynamic properties, for example the specific heat and the

compressiblity.
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Chapter 5

Thermodynamics

In this chapter, we focus on thermodynamical properties of the two-band quantum

wire. First, a brief review about the general concepts of a quantum phase transition

and of a quantum critical point are given. In Sec. 5.2, we introduce the specific heat

coefficient which is expected to show some characteristic features near the quantum

phase transition. These are investigated in the framework of a scaling analysis in

Sec. 5.3. In our model, we expect the specific heat coefficient to diverge close the

quantum critical point. In Sec. 5.4, we calculate explicitly the leading behavior of the

specific heat. Finally, in Sec. 5.5, we discuss the results focusing on the non-universal

power-law behavior in the vicinity of the quantum critical point.

5.1 Quantum Phase Transitions

Most phase transitions in condensed matter physics are governed by the appearance

of a spontaneously broken symmetry below a certain critical tuning parameter, for

example below a critical temperature Tc. The low-temperature phase of a continuous

phase transition can usually be characterized by an order parameter which, in the

simplest case, is of density type like the total magnetization in a ferromagnetic

transition. In general, an order parameter is a thermodynamic quantity that vanishes

in one (the disordered) phase and is non-zero in the other (the ordered) phase. While

the thermodynamic average of the order parameter itself is zero in the disordered

phase, its fluctuations are non-zero. Approaching the phase transition from the

disordered phase, the spatial correlations of the order parameter fluctuations become

larger and larger. Close to the critical point their typical length scale, the correlation

length ξ, diverges as

ξ ∼ |r|−ν (5.1)

where ν is the correlation length exponent and r is the dimensionless distance of

some control parameter from the critical point. For instance, it can be defined as

r = (T − Tc)/Tc if the transition occurs at a finite temperature Tc.
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Figure 5.1: Generic phase diagram (a) with and (b) without order at finite temper-

atures. The dashed lines identify the crossover from the low-temperature regime to

the quantum critical regime. (Figure taken from [24].)

In addition to the spatial long-range correlations there are long-range correlations

in time. The typical scale for the decay of fluctuations is the so-called correlation

time τc. As the critical point is approached the correlation time diverges as

τc ∼ ξz ∼ |r|−νz (5.2)

where z is the dynamical exponent. Close to the critical point there exists no other

characteristic length scale than the correlation length ξ and no other characteristic

time scale than the correlation time τc, despite of a microscopic cutoff scale such as

the lattice spacing.

However, in a quantum mechanical system a phase transition may not only be

reached by lowering the temperature. Instead, at zero temperature the tuning of an

external control parameter r, e.g. by varying pressure p, doping x, magnetic field

h or some other physical quantity, may also drive the system from the disordered

phase into the ordered phase. The so-called quantum phase transition occurs when

the control parameter r vanishes, and the point r = 0 in parameter space is called

the quantum critical point. In many cases the quantum critical point is the zero

temperature endpoint of a line of second order phase transitions at finite tempera-

tures. A generic phase diagram in the (r, T )-plane is shown in Fig. 5.1 (a). Note

that the quantum critical point at zero temperature is qualitatively different from

the rest of the phase boundary at finite temperatures. The critical fluctuations at

zero temperature are exclusively of quantum mechanical nature.

Quite naturally, one may ask to what extent quantum mechanics is important for

understanding a continuous phase transition, or in other words, how the competition

between thermal and quantum fluctuations affects critical properties of the system.

It turns out that quantum mechanics does not play any role for the critical behavior

if the transition occurs at a finite temperature. There are, of course, exceptions
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to this statement such as the phase transition to a superconducting state where

the underlying order parameter is inherently quantum mechanical. In general, the

phase transition at finite temperature is driven by thermal fluctuations, thus the

system behaves classically in the classical regime. However, the portion of the phase

diagram that can be described in terms of classical degrees of freedom is quite small

near the quantum critical point, and the classical regime quickly shrinks to zero as

the temperature is lowered. In fact, the critical behavior associated with classical

phase transitions is practically unobservable at low enough temperatures.

On the other hand, for low temperatures away from the quantum critical point

the quantum fluctuations around the quantum mechanical ground state still prevail.

Their dominance is however challenged when the temperature is comparable to their

typical energy scale,

kBT ∼ ~ωc ∼ ~/τc ∼ ξ−z ∼ |r|νz (5.3)

which defines a crossover to the quantum critical regime, see Fig 5.1. In the quantum

critical regime, the competition between thermal and quantum fluctuations is very

strong, and this opens up the possibility that thermodynamic quantities show an

interesting behavior. Although the quantum phase transition occurs only at zero

temperature, it strongly influences the physics at finite temperatures.

Finally, let us consider low-dimensional systems. Upon decreasing the dimen-

sionality the fluctuations become more and more relevant, and when the spatial

dimension d is sufficiently low, i.e. below the lower critical dimension, the thermal

fluctuations will totally supress the ordered phase according to the Mermin-Wagner

theorem. Thus, no phase transition at finite temperatures exists. However, there

may still exist a quantum phase transition due to its enhanced dimensionality d+ z.

A phase diagram of such a system is shown in Fig. 5.1 (b).

For a more extensive introduction into quantum phase transitions and applica-

tions see, for example, [25, 26, 27, 28, 29].

5.2 Specific Heat Coefficient

As mentioned above, the phase boundary in the phase diagram Fig. 5.1 is a line

of classical finite-temperature transitions ending in a quantum critical point. In

the (r, T )-plane there exists only one direction to approach the phase boundary,

i.e. the direction perpendicular to it. On the other hand, there exist two distinct

directions to approach the quantum critical point. Therefore we can expect that

we get additional information about the quantum critical point along these two

directions.

For the sake of concreteness, let us consider the entropy S. Its total differential
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in the (r, T )-plane,

dS =
∂S

∂T

∣∣∣∣
r

dT +
∂S

∂r

∣∣∣∣
T

dr (5.4)

is characterized by two derivatives specifying the change in entropy upon tuning

either temperature T or the control parameter T . The first derivative, i.e. the

variation of entropy S with respect to temperature T , is measured by the specific

heat coefficient γ,

γ =
cr
T

=
1
V

∂S

∂T

∣∣∣∣
r

= − 1
V

∂2F

∂T 2
(5.5)

where cr is the specific heat coefficient at constant control parameter r, and V is the

volume of the system. F = F (r, T ) is the Gibbs free energy which depends on some

generalized pressure r and on temperature T . The second derivate, i.e. the variation

of entropy S with respect to the control parameter r, is the quantity complementary

to the specific heat. Depending on the experimental realization this derivative can

be identified with some well-known thermodynamic quantities. In the case where

the quantum phase transition is approached by pressure tuning, r ≈ (p− pc)/pc, it

is proportional to the thermal expansion α,

αp =
1
V

∂V

∂T

∣∣∣∣
p

=
1
V

∂2F

∂T∂p
= − 1

V

∂S

∂p

∣∣∣∣
T

= − 1
V pc

∂S

∂r

∣∣∣∣
T

(5.6)

In the case where the quantum phase transition is controlled by tuning the chemical

potential, r ≈ (µ−µc)/µc, the second term is proportional to the compressibility κ,

κ =
∂N

∂µ

∣∣∣∣
T

=
∂2F

∂µ2
(5.7)

In the following, we focus on the specific heat coefficient, γ, and determine its

behavior close to the quantum critical point. However, we will restrict ourselves

to the cases |u| ≤ v since our perturbative renormalization group approach breaks

down in the opposite case.

5.3 Scaling Theory

In this section, we analyze the thermodynamic quantities introduced in the previous

section in the framework of scaling theory. This is subject of several textbooks and

reviews, for example, see e.g. [25, 30, 31].

5.3.1 Scaling Ansatz

First of all, let us define the scaling dimensions of the system parameters involved.

Traditionally, the scaling dimension of the control parameter r is given by 1/ν (cf.

Eq. (5.1)), and the temperature scales with the dynamical exponent z (cf. Eq. (5.3)).

Additionally, we define the scaling dimension yf for the singular part of the free
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energy per volume, fcr. In the case where hyperscaling applies [30], this scaling

dimension is equal to the effective dimensionality, yf = d + z. Upon rescaling the

unit length by a factor of b an interval in space, ∆x, is scaled down to ∆x′ = b−1∆x

and thus has the scaling dimension dim[x] = −1.

The scaling behavior of the control parameter r, the temperature T , and the

singular part of the free energy fcr can be summarized as follows:

∆x→ ∆x′ = b−1∆x

r → r′ = b1/νr

t→ t′ = bzt

fcr → f ′cr = byf fcr

(5.8)

Note that t = T/T0 is a dimensionless temperature, and T0 is some temperature

scale which is left unspecified at the moment.

The scaling hypothesis we use here is based on the assumption that close to the

critical point there is only one characteristic length scale, namely the correlation

length ξ, that determines the singular properties near quantum criticality. In a

formal way, scale invariance at criticality is defined by the relation

fcr(r, t)
!= b−yf fcr(b1/νr, bzt), (5.9)

i.e. the scale transformation of the control parameter r and the dimensionless tem-

perature t in the arguments of the free energy per volume can be absorbed into

the scale factor of the free energy itself. From Eq. (5.9) we can derive the scaling

properties of the specific heat coefficient, γ. Using the scaling ansatz (5.9) and the

definition of γ, cf. Eq. (5.5), we obtain

γ(r, t) = −∂
2fcr(r, t)
∂t2

!= −∂
2
[
b−yf fcr(b1/νr, bzt)

]
∂t2

= −b−yf+2z ∂
2fcr(b1/νr, bzt)
∂(bzt)2

= b−yf+2zγ(b1/νr, bzt)
(5.10)

Therefore, the specific heat coefficient γ has the scaling dimension

dim[γ] = dim[fcr]− 2z = yf − 2z = d− z (5.11)

where the last relation holds when hyperscaling applies. Note that the specific heat

coefficient diverges within this scaling approach when z > d. In particular, for our

two-band quantum model Eq. (5.11) implies that γ diverges when |u| = v as z > 1

in this case.

5.3.2 Behavior of the Specific Heat Coefficient

The engineering scaling dimension of the specific heat coefficient, dim[γ] = d − z,
shows that γ diverges at the quantum critical point if z > d. However, we have
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Figure 5.2: Different regimes in the (r, T )-plane. The crossover lines (dashed lines)

are defined by the condition |r| ∼ T 1/(νz). (Figure taken from [24].)

to distinguish how exactly the quantum critical point is approached. Depending on

the relative values of the control parameter r and the temperature T there exist

two different directions, as shown in Fig. 5.2. The two regimes are separated by

crossover lines at which

|r|t−1/(νz) ∼ O(1) (5.12)

In the quantum critical regime this particular combination is small, |r|t−1/(νz) � 1.

In order to determine the behavior of γ in this regime let us choose a definite value

for the scale factor b in Eq. (5.10), i.e. bzt = 1. The leading behavior of the specific

heat coefficient is thus given by

γ(r, t) = t−
2z−yf
z γ

(
rt−

1
νz , 1

)
for |r|t− 1

νz � 1 (5.13)

Obviously, the specific heat coefficient diverges upon decreasing the temperature

with an exponent −(2z − yf )/z. In the other regime, the low-temperature regime

where |r|t−1/(νz) � 1, we choose instead the scale b such that |r|b1/ν = 1. In this

case,

γ(r, t) = |r|−ν(2z−yf )γ
(
1, t|r|−νz) for |r|t−1/(νz) � 1 (5.14)

Thus, in the low-temperature regime the specific heat coefficient diverges upon de-

creasing the control parameter r with an exponent −ν(2z − yf ).

5.3.3 Universality of the Scaling Ansatz

Although Eqs. (5.13) and (5.13) provide some insight into the divergence of γ upon

approaching the quantum critical point, we can bring these scaling relations into

a more formal representation. To this end, let us go back to the scaling relation

(5.9) for singular part of free energy per volume, fcr. Differentiating with respect to

temperature we obtain the scaling relation for the entropy per volume,

scr(r, t) = b−yf+zscr(b1/νr, bzt) (5.15)

70



5.3. Scaling Theory

It is now convenient to rewrite the entropy by introducing scaling functions for

the quantum critical regime and the low-temperature regime. Repeating the above

procedure by choosing certain scales in both regimes, the entropy can be written as

scr =

t
yf−z
z scr(t−1/(νz)r, 1) for |r|t−1/(νz) � 1

|r|ν(yf−z)scr(sign(r)|r|−νzt) for |r|t−1/(νz) � 1
(5.16)

=


(
T
T0

) yf−z
z ΨQC

(
r
(
T
T0

)− 1
νz
)

for |r|(T/T0)−1/(νz) � 1

|r|ν(yf−z)Ψsign(r)
LT

(
T
T0
|r|−νz

)
for |r|(T/T0)−1/(νz) � 1

(5.17)

Here, we have introduced some a priori unknown but universal scaling functions ΨQC

and Ψ±LT. Note that in the low-temperature regime there are two scaling functions

for positive and negative values of the control parameter r, respectively. Moreover,

we have replaced the dimensionless temperature t by T/T0 in order to show that the

arguments of the scaling functions have the engineering dimension zero.

In order to obtain the leading behavior of the entropy per volume and the specific

heat coefficient we have to expand the scaling functions for small arguments. First,

the scaling function ΨQC is expected to be regular for small arguments since there

no phase transition takes place at r = 0 for finite temperature. Thus,

ΨQC(x) ≈ ΨQC(0) + Ψ′QC(0)x+ . . . for x→ 0 (5.18)

On the other hand, the scaling functions Ψ±LT describes the low-temperature behav-

ior of the phases to left and to the right hand side of the quantum critical point,

see Fig. 5.2. According to the third law of thermodynamics, the entropy has to

vanish upon approaching zero temperature. This condition restricts the form of

Ψ±LT for small arguments. Assuming that the entropy vanishes algebraically, a low-

temperature expansion of Ψ±LT takes the form

Ψ±LT(x) ≈ a±xb± + . . . for x→ 0 (5.19)

where a± are constants, and the positive exponents b± > 0 characterize the power-

law behavior of the specific heat in the low-temperature phase, i.e. c ∼ T b± . Gapped

systems in which the entropy vanishes exponentially in the low-temperature regime

are described by the scaling function

Ψ±LT(x) ≈ a±xb±e−c±/x + . . . for x→ 0 (5.20)

where a± and c± are some positive constants, and b± is a positive or negative

exponent.

The limiting behavior the specific heat coefficient γ is then easily obtained. Dif-

ferentiating the entropy per volume scr (cf. Eq. (5.17) with respect to temperature
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yields

γ(r, T ) =


1
T0

yf−z
z ΨQC(0)

(
T
T0

) yf−2z

z for |r|(T/T0)−1/(νz) � 1

1
T0
a±b±|r|ν(yf−z−zb±)

(
T
T0

)b±−1
for |r|(T/T0)−1/(νz) � 1

(5.21)

Note that in Eq. 5.21 we consider only the case where the entropy vanishes alge-

braically as zero temperature is approached. The constants a± and the exponents b±

are to be understood for either positive or negative values of the control parameter

r, respectively.

5.4 Analytical Results for the Specific Heat Coefficient

In this section, we present an explicit calculation of the free energy and the specific

heat coefficient for our model of a two-band quantum wire. Due to the two-band

structure there exist two contributions to the specific heat coefficient, one from the

plasmon excitations of the Luttinger liquid in the first subband, and one from the

Ising fermions in the second subband. We compare the results with the prediction of

our scaling ansatz. Finally, note that for the following calculations we only consider

the case where the fermions velocity is less than or equal to the plasmon velocity,

|u| ≤ v. In the opposite case, we might encounter a first order transition in the

Luttinger liquid. This scenario requires more elaborate work and has not yet been

subject of our analysis. For details on the calculations of the specific heat coefficient

see App. B.

5.4.1 Non-Interacting System

First of all, we consider the non-interacting system, λ = 0. From Eqs. (4.52) and

(4.87) we infer that the dynamical exponent z and the correlation length exponent

ν are equal to

z = ν = 1 (5.22)

In the non-interacting case, the two bands are completely decoupled and we expect

the specific heat coefficient to consist of two independent contributions, one from

each subband. The Luttinger liquid in the first band has the specific heat coefficient

(see e.g. [17])

γpl =
π

3v
(5.23)

where v = vF1/K is the plasmon velocity. On the other hand, critical Ising fermions

have the specific heat coefficient

γel =
π

6|u| for µ = 0 (5.24)

where u is the velocity of the Ising fermions. We expect the following calculations

to reproduce the above results upon taking the limits z → 1 and ν → 1.
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Free Energy

Let us consider the free energy per volume of the plasmon excitations in the Luttinger

liquid. In general, the free energy is given by

fpl =
1
L
Fpl = −T

L
lnZpl =

T

2L
Tr{detD−1

0 } (5.25)

where L is the one-dimensional volume or length of the model, Zpl is the plasmon

partition function, D0 is the plasmon propagator, and the trace runs over momentum

and frequency space. The summation over bosonic Matsubara frequencies, Ωn =

2nπ/β, is performed by means of the residue theorem. Converting the remaining

sum over momenta into a momentum integral we obtain the plasmon contribution

to the free energy per volume,

fpl = 2T
∫ Λ

0

dk

2π
ln
[
2 sinh

(
vk

2T

)]
(5.26)

where Λ is the ultraviolet momentum cutoff introduced in Chapter 4 to regularize

the integral. For a detailed calculation of fpl see Appendix B.1.1.

In a similar way, the contribution of the Ising fermions to the free energy per

volume is given by

fel =
1
L
Fel = −T

L
lnZel = − T

2L
Tr{detG−1

0 } (5.27)

where G0 is the electron propagator. Note that G0 actually has a matrix structure,

thus the trace contains a summation over momentum and frequency space as well

as a summation of the eigenvalues of G0. Performing the Matsubara summation by

means of the residue theorem the electron free energy per volume is equal to

fel = −2T
∫ Λ

0

dk

2π
ln
[
2 cosh

(√
µ2 + (uk)2

2T

)]
(5.28)

For a detailed calculation of fel see Appendix B.1.2.

Now let us calculate the specific heat coefficient γ which is given by the second

derivative of the free energy per volume with respect to temperature (cf. Eq. (5.5)),

γ =
∂2f

∂T 2

∣∣∣∣
µ

(5.29)

Note that in our model the control parameter of the quantum phase transition is

the chemical potential, r = µ.

Quantum Critical Regime: |µ|T−1/(νz) � 1

Differentiating the plasmon free energy (5.26) twice with respect to temperature

yields the plasmon contribution to the specific heat coefficient,

γpl =
1

2T 3

∫ Λ

0

dk

2π
(vk)2

sinh2
[
vk
2T

] (5.30)
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In the limit Λ→∞ we obtain

γpl =
π

3v
for λ = 0, |µ|T−1/(νz) � 1 (5.31)

which is in agreement with our expectations. Note that this results holds also in the

low-temperature regime. For details on the calculation of Eq. (5.30) see Sec. B.2.1.

Likewise, the electron contribution to the specific heat coefficient is obtained by

differentiating the fermion free energy (5.28) twice with respect to temperature,

γel =
1

2T 3

∫ Λ

0

dk

2π
µ2 + (uk)2

cosh2
[

1
2T

√
µ2 + (uk)2

] (5.32)

In the quantum critical regime, µT−1/(νz) � 1, we can neglect the explicit depen-

dence of γ on the chemical potential since it yields only subleading corrections. In

the limit Λ→∞ we get (for details see Sec. B.2.2)

γel =
π

6|u| for λ = 0, |µ|T−1/(νz) � 1 (5.33)

Note that at the symmetric point of our model, |u| = v, the specific heat coefficient

of the plasmons, γpl, is twice as large as the electron one, γel. This is due to the fact

that for |u| = v our model can be rewritten in terms of three Majorana fields. We

note here that the Luttinger liquid is described in terms of two Majorana fields while

the fermions are described by only one Majorana field. Hence, we observe above an

integer relation between the specific heat coefficients γpl and γel as described.

Low-Temperature Regime: |µ|T−1/(νz) � 1

In the low-temperature regime, we can carry out a Taylor expansion of Eq. (5.32)

in its small argument T/|µ| � 1:

γel =
1

2T 3

∫ ∞
0

dk

2π
µ2 + (uk)2

cosh2
[

1
2T

√
µ2 + (uk)2

]
≈ 1
π|u|

( |µ|
T

)3 ∫ ∞
0

dx (1 + x2) exp
(
−|µ|
T

√
1 + x2

)
where the limit Λ→∞ is taken. Thus, the electron contribution to the specific heat

coefficient in the low-temperature regime is exponentially suppressed (for details see

Sec. B.2.2),

γel ≈ 1√
2π|u|

( |µ|
T

)5/2

e−|µ|/T for λ = 0, |µ|T−1/(νz) � 1 (5.34)

This results is once again in agreement with the prediction from our previous scaling

analysis of the specific heat coefficient.
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5.4.2 Interacting System

Now let us consider the interacting system, λ 6= 0. In this case, the interactions

between electrons in the two bands lead to a renormalization of the model parameters

u, v, µ and λ, as shown in Chapter 4. Additionally, the dynamical exponent z and

the correlation length exponent ν are different from unity, cf. Eqs. (4.52) and (4.87).

Note that we consider |u| ≤ v only, as mentioned above.

Free Energy

In the interacting case, the free energy per volume is also modified due to electron

interactions. In the spirit of the momentum-shell renormalization group methods,

the mode elimination renormalizes the bare velocities u, v, the chemical potential

µ, and the interaction λ. Afterwards, the integrand is rescaled which restores the

ultraviolet momentum cutoff. In a final step, the plasmon and electron fields are

renormalized to keep certain quadratic parts in the action invariant. In addition to

the β functions that have been derived in Chapter 4, this scheme yields the following

β function for the free energy per volume,

β(f) = yff(b) + δf(b) (5.35)

Here, yf = d + z is the engineering scaling dimension of f , and δf(b) are the

momentum-shell corrections due to interactions between electrons. Note that the

engineering scaling dimension of f can be absorbed by defining f̃ = b−yf f(b) which

leads to

β(f̃) = b−yf δf(b) (5.36)

The leading-order corrections consists of two contributions, δf(b) = δfpl(b)+δfel(b),

which resemble the renormalization effects of u, v and µ. There exist logarithmic

corrections δfel−pl(b) to the free energy per volume which stem from the interaction

between the electrons in the two subbands. However, since the interaction term in

the Hamiltonian is marginal we expect these additional term to be small and thus

neglect it in the following discussion.

Integrating the β function for the free energy per volume we can rewrite it as an

integral along the trajectory in parameter space. In the limit b→∞,

f =
∫ ∞

0
d(ln b) b−yf δf

(
bzT, b1/νµ, v(b), u(b)

)
(5.37)

where we have rewritten the integrand δf(b) in terms of the parameters flowing

under renormalization group transformations. Note that we also have to take into

account that the temperature is rescaled under renormalization group transforma-

tion. Substituting b = Λ/k we can rewrite the plasmon and the fermion contribution

as

fpl = 2T
∫ Λ

0

dk

2π
ln
[
2 sinh

(
v
(

Λ
k

)
k

2T

)]
(5.38)
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and

fel = −2T
∫ Λ

0

dk

2π
ln
[
2 cosh

(
1

2T

√
∆2

(
Λ
k

)
+ u2

(
Λ
k

)
k2

)]
(5.39)

where the limit Λ→∞ is implicit. Note that we have replaced the chemical potential

by the corresponding gap function, ∆(b) = b−1µ(b), to account for the engineering

scaling dimension of the chemical potential. For details on the derivation of fpl and

fel see Sec. B.3.

Obviously, the net effect of the renormalization group analysis is but to introduce

a momentum-dependence for the parameter u, v and µ in our model. We can thus

easily calculate the specific heat coefficient γ by using the above formulas upon

substituting the renormalized parameters. However, we have to keep in mind that

the renormalization group flow of the parameters stops at a certain cut-off scale b∗

which is defined by the relations

T (b∗) ∼ u(b∗)Λ (5.40a)

µ(b∗) ∼ u(b∗)Λ (5.40b)

The latter condition comes from the calculation of the fermionic self-energy Σ where

we perform a Taylor expansion in µ � uk and consider leading-order terms only.

Note that in the symmetric case, |u| = v, the renormalization group flow follows a

power-law. Thus, the cut-off scale b∗ can be rewritten as

b∗ = min
{(

E0

|µ|
)ν
,

(
E0

T

)1/z}
(5.41)

where ν is the correlation length exponent, z the effective dynamical exponent, and

E0 = E0(Λ) ∼ VΛ is an energy scale that depends on the momentum cutoff used

in our perturbative renormalization group approach. Finally, note that V is some

velocity to get the correct physical dimensions for the energy scale E0.

Quantum Critical Regime: |µ|T−1/(νz) � 1

In the interacting case we have to distinguish between the symmetric model, |u| = v,

and the generic, asymmetric model, |u| < v.

Symmetric Case (|u| = v): The renormalization group flow of the plasmon ve-

locity is simply given by its solution from set II,

v(b) =

vb1−z for b < b∗

v∗ for b ≥ b∗
with z = 1 +

λ2K

4v2
= const (5.42)

Here, the velocity at the cutoff scale is equal to v∗ = v(b∗)1−z with b∗ = (E0/T )1/z =

(VΛ/T )1/z, cf. Eq. (5.41). Note that in the symmetric model the interaction be-

tween electrons generates an effective dynamical exponent z 6= 1, see Sec. 4.5.1.
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Differentiating the free energy per volume twice with respect to the temperature we

obtain the specific heat coefficient,

γpl =
1

2T 3

∫ Λ

0

dk

2π
v2
(

Λ
k

)2
k2

sinh2
[
k

2T v
(

Λ
k

)] (5.43)

which corresponds to the non-interacting relation for γpl, cf. Eq. (5.30), but with a

momentum-dependent plasmon velocity v(Λ/k). The integral can be calculated in

a straightforward way yielding (see Sec. B.4.1 for details)

γpl ≈ C1(z)
2
πv

(VΛ
T

) z−1
z

for λ 6= 0, |u| = v, |µ|T−1/(νz) � 1 (5.44)

with C1(z) = z+1
z2 Γ

(
z+1
z

)
ζ
(
z+1
z

)
being an interaction-dependent prefactor. From

Eq. (5.44) we immediately see that the specific heat coefficient γpl diverges as zero

temperature is approached with an exponent −(z − 1)/z. Moreover, γpl obtains

an explicit dependence on the momentum cutoff Λ. It is also noteworthy that

Eq. (5.44) is consistent with our scaling prediction for the quantum critical regime,

cf. Eq. (5.21). Finally, in the limit λ → 0, we re-obtain the result from the non-

interacting case as C1(0) = π2/6, and the exponent is equal to zero.

In a similar way we can calculate the specific heat coefficient for the electrons

which in general is given by

γel =
1

2T 3

∫ Λ

0

dk

2π
∆2
(

Λ
k

)
+ u2

(
Λ
k

)
k2

cosh2
[

1
2T

√
∆2
(

Λ
k

)
+ u2

(
Λ
k

)
k2
] (5.45)

The fermion velocity is given by

u(b) =

ub1−z for b < b∗

u∗ for b ≥ b∗
with z = 1 +

λ2K

4v2
= const (5.46)

where the velocity at the cutoff scale is given by u∗ = u(b∗)1−z with b∗ = (E0/T )1/z =

(VΛ/T )1/z. We thus easily obtain the relation (see Sec. B.4.2 for details)

γel ≈ C2(z)
1
π|u|

(VΛ
T

) z−1
z

for λ 6= 0, |u| = v, |µ|T−1/(νz) � 1 (5.47)

where C2(z) = 2(1 − 2−1/z)C1(z) differs by a factor from C1(z). Note that the

fermion specific heat coefficient diverges in the same way as γpl diverges as zero

temperature is approached. Likewise, in limit λ→ 0, we obtain the previous result

from the non-interacting case since C2(0) = C1(0) = π2/6.

Asymmetric Case (|u| < v): In this case, the renormalization group flow of the

plasmon velocity is asymptotically given by

v(b) ≈
ve−(C ln b)1/5

for b < b∗

v∗ for b ≥ b∗
with C = 320

uvKλ2

(u− v)4
(5.48)
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Here, the plasmon velocity at the cutoff scale is equal to v∗ = ve−(C ln b∗)1/5
with

b∗ = (E0/T )1/z = (VΛ/T )1/z. The explicit calculation shows that the specific heat

coefficient γpl is proportional to the plasmon velocity at the cut-off scale, i.e.

γpl ≈ π

3v∗
=

π

3v
e

(
Cz−1 ln VΛ

T

)1/5

for λ 6= 0, |u| < v, |µ|T−1/(νz) � 1 (5.49)

For details on the calculation see Sec. B.4.1.

Similarly, the electron contribution to the specific heat coefficient is proportional

to the fermion velocity at the cut-off scale (see Sec. B.4.2 for details),

γel ≈ π

6|u∗| =
π

6|u| e
(
Cz−1 ln VΛ

T

)1/5

for λ 6= 0, |u| < v, |µ|T−1/(νz) � 1 (5.50)

Obviously, both specific heat coefficients γpl (cf. Eq. (5.49)) and γel (cf. Eq. (5.50))

diverge logarithmically as zero temperature is approached. In the limit λ → 0, i.e.

for C → 0 and z → 1, we re-obtain the results for the non-interacting system.

Low-Temperature Regime: |µ|T−1/(νz) � 1

The low-temperature regime is characterized by the fact that the cutoff of the renor-

malization group flow is now given by b∗ = (E0/|µ|)ν . We again have to distinguish

between the cases of the symmetric model with |u| = v and the asymmetric case,

|u| < v.

Symmetric Case (|u| = v): In the symmetric case, the overall form of the specific

heat coefficient of the plasmons prevails, but the cutoff dependence is changed (see

Sec. B.4.1 for details):

γpl ≈ C1(z)
2
πv

(VΛ
|µ|
)ν(z−1)

for λ 6= 0, |u| = v, |µ|T−1/(νz) � 1 (5.51)

However, γpl diverges as the quantum critical point is approached upon decreasing

the chemical potential |µ| with a power of −ν(z−1). This results for γpl agrees with

our scaling prediction (5.21) for b± = 1 and yf = d+ z = 1 + z.

On the other hand, the specific heat coefficient for the electrons is obtained by

carrying out a Taylor expansion of Eq. (5.45) in the small argument T/|µ| � 1, and

we get (see Sec. B.4.2 for details)

γel ≈ C2

(
νz − 1
ν

)
1
π|u|

(VΛ
|µ|
) ν
νz−1

(VΛ
T

) ν
νz−1

−1

for λ 6= 0, |u| 6= v, |µ|T−1/(νz) � 1 (5.52)

Here, z is the dynamical exponent and ν = 3−z
2 is the correlation length exponent

as introduced in Sec. 4.5.2. The specific heat coefficient γel diverges as the quantum

critical point is approached with a power −ν/(νz − 1). Note that Eq. (5.52) agrees
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with our scaling prediction for the low-temperature regime, cf. Eq. (5.21), with

b± = ν/(νz − 1) and yf = d + z = 1 + z. Finally, note also that this relation

for γel does not allow for taking the weak coupling limit, z → 1 and ν → 1. This

resembles the fact that the specific heat coefficient γel in the non-interacting system

is exponentially supressed, and in this sense the limit λ→ 0 is non-analytic.

Asymmetric Case (|u| < v): Finally, let us consider the asymmetric case, |u| <
v. In the same way as above, the result for γpl prevails in the low-temperature

regime, i.e.

γpl ≈ π

3v∗
=

π

3v
e

(
Cν ln VΛ

|µ|

)1/5

for λ 6= 0, |u| < v, |µ|T−1/(νz) � 1 (5.53)

where v∗ is the plasmon velocity at the cut-off scale, b∗ = E0/|µ| (see Sec. B.4.1 for

details)

The calculation of the specific heat coefficient for the fermions is tedious, but

can be performed similarly to the previous calculations (see Sec. B.4.2 for details).

Finally, γel is given by

γel ≈ 1√
2π|u∗|

( |∆∗|
T

)5/2

e−|∆
∗|/T for λ 6= 0, |u| < v, |µ|T−1/(νz) � 1 (5.54)

which corresponds to the non-interacting result but with the chemical potential µ

and the fermion velocity u replaced by their values ∆∗ and u∗ at the cut-off scale,

respectively:

u∗ = u exp
[
−
(
Cν ln

VΛ
|µ|
)1/5]

and ∆∗ = µ exp
[
−3

2

(
Cν ln

VΛ
|µ|
)1/5]

5.4.3 Summary

Let us summarize the results from above calculations in Table 5.1. Note that we

explicitly list the results for the non-interacting case, λ = 0, to show the effect of

interactions between electrons in the quantum wire. A discussion of the results is

given in the next section.

In Table 5.1, T denotes the temperature, and the chemical potential µ tunes the dis-

tance to the quantum phase transition. V is an arbitrary constant with the dimension

of a velocity to ensure proper physical dimensions, and Λ is the momentum cutoff

introduced in the renormalization group. The functions C1(z) = z+1
z2 Γ

(
z+1
z

)
ζ
(
z+1
z

)
and C2(z) = 2(1 − 2−1/z)C1(z) are prefactors that depend only on the dynamical

exponent z. Finally, in the last line we used that u∗ = u exp
[
−(Cν ln VΛ

|µ|
)1/5] and

∆∗ = µ exp
[
−3

2

(Cν ln VΛ
|µ|
)1/5].
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plasmons fermions

λ = 0
QC regime π

3v
π

6|u|

low-T regime π
3v

1√
2π|u|

( |µ|
T

)
e−|µ|/T

λ 6= 0

|u| = v

QC regime C1(z) 2
πv

(VΛ
T

) z−1
z C2(z) 1

π|u|
(VΛ
T

) z−1
z

low-T regime C1(z) 2
πv

(
VΛ
|µ|
)ν(z−1)

C2

(
νz−1
ν

)
1
π|u|

(
VΛ
|µ|
) ν
νz−1 (VΛ

T

) ν
νz−1

−1

λ 6= 0

|u| < v

QC regime π
3v e

(
Cz−1 ln VΛ

T

)1/5

π
6|u| e

(
Cz−1 ln VΛ

T

)1/5

low-T regime π
3v e

(
Cν ln VΛ

|µ|

)1/5

1√
2π|u∗|

( |∆∗|
T

)
e−|∆∗|/T

Table 5.1: Summary of the results for the specific heat coefficient, γ.

5.5 Discussion of the Results

With general arguments it is shown scale invariant combination |r|t−1/(νz) of the

control parameter r = µ and the (dimensionless) temperature t = T/T0 defines a

crossover line which separates the phase diagram into a quantum critical regime and

a low-temperature regime. The quantum critical regime is governed by a power-law

behavior of the specific heat coefficient γ, while in the low-temperature regime the

fermion contribution, γel, is exponentially suppressed for |u| < v. As expected, this

is a result of of strong interaction effects close to the quantum critical point.

In the non-interacting case, the specific heat coefficient for the plasmon exci-

tations in the Luttinger liquid is equal to γpl = π/(3v) which is a well-known re-

sult [17]. On the other hand, the Ising fermions have the specific heat coefficient

γel = π/(6|u|). If the plasmons and fermions are equally fast, i.e. |u| = v, the specific

heat coefficient of the Ising fermions is just half as much as the plasmon one. This

peculiar property can be easily understood upon rewriting our model in terms of

Majorana fermions: Each Majorana field has a specific heat coefficient of π/(6v).

Since the Luttinger liquid consists of two Majorana fields, its specific heat coefficient

is simply given by twice this value. On the other hand, the Ising fermions can be

rewritten in terms of a single Majorana field. This integer relation between γel and

γpl thus indicates that our model has a higher symmetry for |u| = v.

When the interaction between electrons is switched on, we see that the renor-

malization of both plasmon and fermion velocity introduces an explicit momentum-

dependence of the parameters. The calcuation of the free energy and subsequently

the specific heat coefficient γ has to take into account for the renormalized parame-

ters. It turns out that the results in the quantum critical regime are quite different

from those in the low-temperature regime, at least for the fermion part of our model.

First, let us focus on the case where plasmons and fermions are equally fast,
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Figure 5.3: Schematic picture of the specific heat coefficient, γ. Fig. (a) shows γ

in the non-interacting system where the constant contribution (dashed line) comes

from the plasmons. The specific heat coefficient of the Ising fermions, γel, shows an

exponential suppression in the low-temperature phase, and the width of the peak in

the quantum critical regime is proportional to temperature. Fig. (b) shows γ in the

interacting system. As a result, the central peak at µ = 0 diverges as the quantum

critical point is approached upon lowering the temperature.

|u| = v. Here, our renormalization group analysis shows that the interactions modify

the dispersion relation ω ∼ kz by introducing an effective dynamical exponent z.

Note that this dynamical exponent actually is interaction-dependent and constant,

z = z(λ) = const. Under renormalization group transformations both the plasmon

and fermion velocities decrease with a power law of z. Subsequently, the specific

heat coefficients of both subsystems, γpl and γel, show a power-law behavior as

well. Approaching the quantum critical point by either decreasing the temperature

T or the chemical potential µ, we see that the specific heat coefficients diverge at

quantum criticality. The exponents obtained from explicit calculations agree with

the predictions from our scaling analysis. Finally, one should also note that in the

low-temperature regime the specific heat coefficient of the fermions, γel, also obeys a

power-law behavior. This is in contrast to the exponential suppression of γel in the

asymmetric case |u| < v. A schematic picture of the results is depicted in Fig. 5.3.

Now let us consider the case where the plasmons are faster than the fermions,

|u| < v. Here we obtain results which look similar to those obtained for the non-

interacting model. However, since both velocities |u| and v decrease under renormal-

ization group transformations, the corresponding specific heat coefficients diverge as

the quantum critical point is approached, similarly to the case |u| = v. However,

in contrast to the symmetric case with a power-law divergence of the specific heat

coefficient γ, for the asymmetric case |u| < v we observe a non-analytic divergence

of γ.

Finally, the divergence of the specific heat coefficient γ shows that the critical
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theory is not a conformal field theory. This can be understood in terms of the

so-called central charge of a conformal field theory, c, which is defined by

γ = c
π

3V (5.55)

Here, V is a typical velocity of the underlying model. In the non-interacting system,

the central charge of our model at |u| = v is c = 1 + 1
2 = 3

2 . However, once

we take into account for the interaction between electrons, the velocity entering

Eq. (5.55) decreases under renormalization group transformations. Although we

can formulate our renormalization group approach in such a way that the plasmon

velocity v remains constant, the effective dynamical exponent z already indicates

that the critical theory is strongly changed. Indeed, upon rewriting the theory in

the original variables we see that due to the decrease of v the central charge diverges

as the quantum critical point is approached. Thus, in this picture the critical theory

is not a conformal field theory of three Majorana fields.
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Chapter 6

Summary and Outlook

In this thesis, we study a one-dimensional system of interacting spinless electrons at

quantum criticality. We consider a two-band model, where the second band becomes

activated as a function of the chemical potential. In our theoretical analysis we

describe the lower band as a Luttinger liquid while the upper one is described in

terms of Ising fermions. In addition to the usual density-density interaction between

the two bands, we consider the term in the Hamiltonian which transfers pairs of

electrons from one band to the other.

It is shown in Chapter 3 that the relevance of the pair-transfer operator depends

crucially on the inter-band interaction strength. In the weak coupling limit it turned

out that this operator is relevant and has to be taken into account. Subsequently, we

rewrite the Hamiltonian performing a unitary transformation. It is shown that the

net effect of the pair-transfer can be re-absorbed in a modified inter-band density-

density interaction.

The unitary transformation allows us to study the model with renormalization

group methods in Chapter 4. Using a momentum-shell renormalization scheme, we

calculate perturbatively the self-energy and vertex corrections to leading order in

the interaction. However, these corrections turn out to have a logarithmic UV di-

vergence, as one expects for gapless one-dimensional systems. The actual renormal-

ization of the model is performed by imposing different renormalization conditions.

The resulting non-linear differential equations allow for an analytical solution. Upon

integrating the equations we show that both the plasmons and fermions velocity de-

crease under subsequent renormalization transformations.

There is however an important difference in how the two velocities decrease. In

the case where the plasmons are faster than the fermions the velocities decrease

exponentially and eventually vanish, but the convergence of the flow is very slow.

When the fermions are faster than the plasmons instead, there exists a scale at which

the plasmon velocity is zero while the fermionic one is still finite. The vanishing

plasmon velocity indicates a diverging compressibility in the Luttinger liquid sector
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of our model. This would open up the possibility of a first order transition.

Finally, the case of plasmons and fermions being equally fast resulted to be

special. In fact, the interaction between electrons modifies effectively the dispersion

relation for the plasmons, introducing a dynamical exponent z. This dynamical

exponent is interaction-dependent and non-universal.

Therefore, we started to investigate thermodynamical quantities. As a concrete

example we considered the specific heat coefficient γ. In Chapter 5 we use scaling

theory to guess the leading behavior of the specific heat coefficient in the quantum

critical and the low-temperature regime. These predictions are confirmed by explicit

analytical calculations.

As expected, the interaction between electrons modifies the thermodynamical

properties. However, in the case where plasmons and fermions are equally fast, we

find a non-universal power-law behavior of the specific heat coefficient in both the

quantum critical regime and the low-temperature regime. In the zero temperature

limit, the specific heat coefficient diverges as a function of temperature with some

power law depending on the dynamical exponent z.

A natural next step is to consider additional quantities. For example, the com-

pressibility of the Luttinger liquid would give us insights about the possibility of a

first order transition preempting Ising criticality. Moreover, from an experimental

point of view it is also important to look at transport properties.
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Appendix A

Calculation of the

Leading-Order Corrections

A.1 Plasmon Self-Energy

In general, the self-energy is defined as the difference between the bare propagator

in the non-interacting system and the propagator in the interacting system. It thus

describes the renormalization of the bare propagator due to interactions between

the particles. According to the Dyson equation, the self-energy for the plasmons, Π,

is given by the relation

D−1(q,Ωn) = D−1
0 (q,Ωn)−Π(q,Ωn) (A.1)

where D0 and D are the bare and full plasmon propagators, respectively.

In order to calculate the plasmon self-energy, Π, to leading order we perform

perturbation theory in the strong coupling limit, i.e. for small inter-band coupling

λ between the plasmons in the lower subband and the Ising fermions in the upper

subband. In a one-loop order expansion, the plasmon self-energy Π reads

Π(q,Ωn) = − 1
2!
λ2q2 1

βL

∑
k,ωn

Tr
{
σ3G0(k, ωn)σ3G0(k + q, ωn + Ωn)

}
(A.2)

= −λ2q2 1
βL

∑
k,ωn

iωn(iωn + iΩn)− u2k(k + q) + µ2

[(iωn)2 − ω2
k][(iωn + iΩn)2 − ω2

k+q]
(A.3)

Here, q and Ωn are the external momentum and frequency of the self-energy bubble,

as shown in Fig. A.1. Furthermore, k and ωn are the internal momentum and

frequency degrees of freedom which are to be integrated out. β = 1/(kBT ) is the

inverse of temperature, and L is the one-dimensional volume of the model. The

chemical potential µ tunes the distance to quantum criticality at µc = 0, and the

eigenenergies of the Ising fermions are given by ωk =
√
µ2 + (uk)2 with u being the

fermion velocity.
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Figure A.1: Leading-order self-energy diagram for the plasmons, Π. Fermion fields

are shown as solid lines, plasmon ones as dashed lines.
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Figure A.2: A reasonable deformation of the integration contour C (dashed line) for

the summation over fermionic Matsubara frequencies ωn (crosses).

The summation over fermionic Matsubara frequencies, ωn = (2n + 1)π/β, is

performed in a standard way [12]. In a first step, we apply the residue theo-

rem and rewrite the sum as a contour integral in the complex frequency plane

(see Fig. A.2 (a)),

Π(q,Ωn) = −λ2q2 1
βL

∑
k,ωn

iωn(iωn + iΩn)− u2k(k + q) + µ2

[(iωn)2 − ω2
k][(iωn + iΩn)2 − ω2

k+q]

= +λ2q2 1
L

∑
k

∮
C
dz

2πi
nF (z)

z(z + iΩn)− u2k(k + q) + µ2

[z2 − ω2
k][(z + iΩn)2 − ω2

k+q]

Here, nF/B(z) =
(
1±eβε)−1 are the Fermi and Bose occupation factors, respectively.

The additional prefactor −1 stems from the Fermi factor and compensates the cor-

responding residue at z = iωn. In a second step, we deform the integraction contour

C in such a way that upon performing the contour integral only a finite number of

poles have to be evaluated. One particular way to deform the integration contour

for above integral is shown in Fig. A.2 (b).
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A.2. Fermion Self-Energy

Following the above procedure, the plasmon self-energy Π takes the form

Π(q,Ωn) = −λ2q2 1
βL

∑
k,ωn

iωn(iωn + iΩn)− u2k(k + q) + µ2

[(iωn)2 − ω2
k][(iωn + iΩn)2 − ω2

k+q]

= +λ2q2 1
L

∑
k

∮
C
dz

2πi
nF (z)

z(z + iΩn)− u2k(k + q) + µ2

[z2 − ω2
k][(z + iΩn)2 − ω2

k+q]

= −λ2q2 1
L

∑
k

∑
α=±1

[
nF (αωk)

ωk(ωk + iΩn)− u2k(k + q) + µ2

2αωk[(ωk + iΩn)2 − ω2
k+q]

+ nF (αωk+q − iΩn)
(ωk+q − iΩn)ωk+q − u2k(k + q) + µ2

2αωk+q[(ωk+q − iΩn)2 − ω2
k]

]
Note that the Fermi occupation factor remains unchanged when adding a bosonic

Matsubara frequency Ωn to its argument:

nF (ε− iΩn) = nF (ε) for all Ωn = 2nπ/β (A.4)

Moreover, in the limit of zero temperature, the structure of the Fermi and Bose

occupation factors gets much simpler as

nF/B(ε)→ ±Θ(−ε) for β →∞ (A.5)

where Θ(x) is the Heaviside step function. Thus,

Π(q,Ωn) = +λ2q2 1
L

∑
k

[
ωk(ωk + iΩn)− u2k(k + q) + µ2

2ωk[(ωk + iΩn)2 − ω2
k+q]

+
(ωk+q − iΩn)ωk+q − u2k(k + q) + µ2

2ωk+q[(ωk+q − iΩn)2 − ω2
k]

]
The remaining momentum integral contains a logarithmic ultraviolet divergence

which can be extracted by using a hard momentum cutoff Λ. At zero temperature

the external momentum, q, and frequency, Ωn, are small compared to the momentum

cutoff Λ. In the vicinity of the quantum critical point, µ = 0, a Taylor expansion of

the self-energy Π to leading order in the small parameters q, Ωn and µ gives rise to

a logarithmic correction of the bare plasmon propagator,

Π(q,Ωn) ≈ λ2q2

∫ Λ

−Λ

dk

2π

[
1

4|u||k| +
1

4|u||k|
]
≈ λ2q2

2π|u| ln Λ (A.6)

Here, Λ is the ultraviolet momentum cutoff to regularize the logarithmic divergence

of the plasmon self-energy as described above.

A.2 Fermion Self-Energy

The fermion self-energy, Σ, describes the renormalization of the Ising fermions due

to the inter-band density-density interaction between the two subbands. It follows

from a Dyson equation similar to Eq. (A.1),

G−1(k, ωn) = G−1
0 (k, ωn)− Σ(k, ωn) (A.7)
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k

q

kk + q

Figure A.3: Leading-order self-energy diagram for the Ising fermions, Σ. Fermion

fields are shown as solid lines, plasmon ones as dashed lines.

where G0 and G are the bare and full fermion propagators, respectively. In the strong

coupling limit, i.e. for small inter-band coupling λ, the fermion self-energy takes the

form

Σ(k, ωn) = λ2 1
βL

∑
q,Ωn

q2D0(q,Ωn)σ3G0(k + q, ωn + Ωn)σ3 (A.8)

= λ2 1
βL

∑
q,Ωn

q2 −πKv
(iΩn)2 − (vq)2

−(iωn + iΩn)11 + µσ3 + u(k + q)σ2

(iωn + iΩn)2 − ω2
k+q

(A.9)

Here, k and ωn are the external momentum and frequency of the fermionic self-

energy, as shown in Fig. A.3. The internal degrees of freedom, i.e. momentum q and

frequency Ωn, are integrated out in the following. The chemical potential µ tunes the

distance to quantum criticality, ωk =
√
µ2 + (uk)2 are the fermionic eigenenergies

with u being the fermion velocity. Finally, v is the plasmon velocity, and K the

Luttinger liquid parameter of the first subband.

The summation over bosonic Matsubara frequencies, ωn = 2nπ/β, is performed

in a similar way as described in the previous section. In a first step, we apply the

residue theorem to rewrite the sum as a contour integral in the complex frequency

plane,

Σ(k, ωn) = −λ2πKv
1
βL

∑
q,Ωn

q2 −(iωn + iΩn)11 + µσ3 + u(k + q)σ2

[(iΩn)2 − (vq)2][(iωn + iΩn)2 − ω2
k+q]

= −λ2πKv
1
L

∑
q

q2

∮
C
dz

2πi
nB(z)

−(iωn + z)11 + µσ3 + u(k + q)σ2

[z2 − (vq)2][(iωn + z)2 − ω2
k+q]

= +λ2πKv
1
L

∑
q

q2
∑
α=±1

[
nB(αvq)

−(iωn + αvq)11 + µσ3 + u(k + q)σ2

2αvq[(iωn + αvq)2 − ω2
k+q]

+ nB(αωk+q − iωn)
−αωk+q11 + µσ3 + u(k + q)σ2

2αωk+q[(αωk+q − iωn)2 − (vq)2]

]
Note that for bosonic Matsubara frequencies there is no additional prefactor of −1

since the Bose occupation factor has the residue +1 at z = iΩn. On the other hand,

when adding a fermionic Matsubara frequency to the argument of the Bose factor

it changes into a Fermi factor,

nB(ε− iωn) = −nF (ε) for all ωn = (2n+ 1)π/β (A.10)
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Thus, the fermion self-energy Σ reads

Σ(k, ωn) = +λ2πKv
1
L

∑
q

q2
∑
α=±1

[
nB(αvq)

−(iωn + αvq)11 + µσ3 + u(k + q)σ2

2αvq[(iωn + αvq)2 − ω2
k+q]

− nF (αωk+q)
−αωk+q11 + µσ3 + u(k + q)σ2

2αωk+q[(αωk+q − iωn)2 − (vq)2]

]
In the zero temperature limit, we can replace the Fermi and Bose occupation factors

by Heaviside step functions, cf. Eq. (A.5). This yields

Σ(k, ωn) = −λ2πKv
1
L

∑
q

q2
∑
α=±1

[
Θ(−αvq) −(iωn + αvq)11 + µσ3 + u(k + q)σ2

2αvq[(iωn + αvq)2 − ω2
k+q]

+ Θ(−αωk+q)
−αωk+q11 + µσ3 + u(k + q)σ2

2αωk+q[(αωk+q − iωn)2 − (vq)2]

]
In principle, the leading order correction can be obtained by carrying out a Taylor

expansion for small external momentum k and frequency ωn with respect to the

momentum cutoff Λ. However, due to the structure of Σ one has to take more care

in carrying out the actual Taylor expansion than for the plasmon self-energy, Π. Let

us consider the two terms in the fermion self-energy separately,

S1 = q2
∑
α=±1

Θ(−αvq) −(iωn + αvq)11 + µσ3 + u(k + q)σ2

2αvq[(iωn + αvq)2 − ω2
k+q]

S2 = q2
∑
α=±1

Θ(−αωk+q)
−αωk+q11 + µσ3 + u(k + q)σ2

2αωk+q[(αωk+q − iωn)2 − (vq)2]

First, let us focus on the first term, S1. Assuming that the plasmon velocity is

positive, v > 0, we can rewrite S1 in a first step as

S1 = q2
∑
α=±1

−(iωn − v|q|)11 + µσ3 + u(k − α|q|)σ2

−2v|q|[(iωn − v|q|)2 − ω2
k−α|q|]

Since we are interested in the low-energy behavior of Σ near the quantum critical

point we then carry out a Taylor expansion for small momentum k, small frequency

ωn, and small chemical potential µ. Retaining only the leading order terms, this

leads to

S1 =
−11

v2 − |u|2 +
[
(−iωn)11

v2 + |u|2
v(v2 − |u|2)2

− µσ3 1
v(v2 − |u|2)

− ukσ2 v2 + |u|2
v(v2 − |u|2)2

]
1
|q|

Thus, upon integrating out the internal momenta q we obtain a logarithmic ultra-

violet divergence,∫ Λ

−Λ

dq

2π
S1 =

Λ
π

−11
v2 − |u|2

+
[
(−iωn)11

v2 + |u|2
v(v2 − |u|2)2

− µσ3 1
v(v2 − |u|2)

− ukσ2 v2 + |u|2
v(v2 − |u|2)2

]
ln Λ
π
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where Λ is the same ultraviolet momentum cutoff as in the previous section which

regularizes the divergence of the above momentum integral.

In a similar way, we can calculate the second term, S2. In a first step, we use

the fact that the fermion eigenenergies are positive, ωk > 0, and rewrite S2 as

S2 = q2 ωk+q11 + µσ3 + u(k + q)σ2

−2ωk+q[(ωk+q + iωn)2 − (vq)2]

We can then carry out a Taylor expansion for small external momentum k, small

frequency ωn, and small chemical potential µ. The leading order terms for S2 read

S2 =
11

v2 − |u|2 +
[
(−iωn)11

−2|u|
(v2 − |u|2)2

+ µσ3 1
|u|(v2 − |u|2)

− ukσ2 2|u|
(v2 − |u|2)2

]
1
|q|

Thus, the leading order divergence of S2 is given by∫ Λ

−Λ

dq

2π
S2 =

Λ
π

11
v2 − |u|2

+
[
(−iωn)11

−2|u|
(v2 − |u|2)2

+ µσ3 1
|u|(v2 − |u|2)

− ukσ2 2|u|
(v2 − |u|2)2

]
ln Λ
π

with Λ being the same ultraviolet momentum cutoff as above.

Finally, by summing up both contributions S1 and S2 we obtain the fermion

self-energy Σ to leading order in k, ωn and µ as

Σ(k, ωn) = − λ2K

2(v + |u|)2

[
(−iωn)11 +

v + |u|
|u| µσ3 − ukσ2

]
ln Λ (A.11)

Note that the chemical potential µ obtains a correction different from the dynamical

parts, ωn and u.

A.3 Vertex Correction

Finally, let us consider the interaction between the plasmons and fermions in the

lower and upper subband, as shown in Fig. A.4. In general, a vertex correction δΓ

is defined by the relation

Γ(q,Ωn; k, ωn) = Γ0(q,Ωn; k, ωn) + δΓ(q,Ωn; k, ωn) (A.12)

Here, k and ωn are the external momentum and frequency dependence of the incom-

ing fermion field, and q and Ωn denote the momentum and frequency dependence of

the incoming plasmon field. The outgoing fermion field takes momentum k + q and

frequency ωn + Ωn. Note that Γ0(q,Ωn; k, ωn) ≡ λ = const. In the strong coupling

limit, i.e. for small inter-band interaction λ, the one-loop vertex correction reads

δΓ(q,Ωn; k, ωn) =
1
2!
λ3 1
βL

∑
q′,Ω′n

q′2D0(q′,Ω′n)

× Tr
{
σ3G0(k + q′, ωn + Ω′n)σ3G0(k + q + q′, ωn + Ωn + Ω′n)

}
(A.13)
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Figure A.4: Leading-order self-energy diagram for the vertex correction, δΓ. Fermion

fields are shown as solid lines, plasmon ones as dashed lines.

where D0 and G0 are the bare plasmon and fermion propagators, respectively.

Since we are interested in the low-energy properties near the Fermi surface, all

incoming and outgoing momenta k, q, and k+q have to be close to the Fermi surface.

Moreover, since the inter-band density-density interaction, Γ0, is a marginal term in

the Hamiltonian, it suffices to calculate the correction δΓ for small external momenta

and frequencies. In fact, the linear and all higher orders in a Taylor expansion result

in additional terms in the Hamiltonian which are irrelevant in the renormalization

group sense. Thus, to leading order we get

δΓ = −λ3πKv
1
βL

∑
q′,Ω′n

q′2

[(iΩ′n)2 − (vq′)2][(iΩ′n)2 − ω2
q′ ]

In a first step, we can rewrite the summation over bosonic Matsubara frequencies

by means of the residue theorem,

δΓ = −λ3πKv
1
βL

∑
q′,Ω′n

q′2

[(iΩ′n)2 − (vq′)2][(iΩ′n)2 − ω2
q′ ]

= −λ3πKv
1
L

∑
q′

∮
C
dz

2πi
nB(z)

q′2

[z2 − (vq′)2][z2 − ω2
q′ ]

= +λ3πKv
1
L

∑
q′

∑
α=±1

[
nB(αvq′)

q′2

2αvq′[(vq′)2 − ω2
q′ ]

+ nB(αωq′)
q′2

2αω2
q′ [ω

2
q′ − (vq′)2]

]
In the zero temperature limit, the Bose occupation factors can be replaced by Heavi-

side step functions,

δΓ = +λ3πKv
1
L

∑
q′

[
q′2

2v|q′|[(vq′)2 − ω2
q′ ]

+
q′2

2ωq′ [ω2
q′ − (vq′)2]

]

= +λ3πKv
1
L

∑
q′

[
1

2v(v2 − |u|2)|q′| +
1

2|u|(|u|2 − v2)|q′|
]
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The remaining momentum integral contains a logarithmic ultraviolet divergence.

Using the hard momentum cutoff scheme as described in the previous sections we

can extract this divergence. To leading order we obtain

δΓ ≡ δΓ(q,Ωn; k, ωn) = − λ3K

2|u|(v + |u|) ln Λ (A.14)

where Λ is the ultraviolet momentum cutoff.

92



Appendix B

Calculation of the Specific Heat

Coefficient

B.1 Free Energy in the Non-Interacting System

The starting point of our analysis is the functional representation of the free energy

per volume, f ≡ L−1F = −(βL)−1 lnZ, through the quantum partition function Z.

B.1.1 Free Energy of the Plasmons

Using a coherent state path integral for the plasmon field φ the quantum partition

function of the plasmons is given by

Zpl =
∫
D(φ) exp

{
−1

2
1
βL

∑
q,Ωn

φ∗q,ΩnD−1
0 (q,Ωn)φq,Ωn

}
=
(
detD−1

0

)−1/2 (B.1)

Thus, the plasmon contribution to the free energy per volume is obtained as

fpl = − 1
βL

lnZpl =
1
2

1
βL

ln
{

detD−1
0

}
=

1
2

1
βL

Tr
{

lnD−1
0

}
(B.2)

where L is the one-dimensional volume of the system, and β = 1/(kBT ) is the

inverse of temperature. Note that the trace runs over momentum space and bosonic

Matsubara frequencies, i.e. Tr(· · · ) ≡∑k,Ωn
(· · · ).

First, let us rewrite the sum over bosonic Matsubara frequencies, Ωn = 2nπ/β,

by means of the residue theorem in terms of a contour integral in complex frequency

space,

fpl =
1

2L

∑
k

∮
C
dz

2πi
β

2
coth

(
βz

2

)
ln
[ −πKv
z2 − (vk)2

]
where h(z) = (β/2) coth(βz/2) has simple poles at z = iΩn with unit residue. Note

that the logarithm has a branch cut along the negative real axis in the complex
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Appendix B. Calculation of the Specific Heat Coefficient

(a)

ω

branch cut

of ln

vk−vk

(b)

ω

branch cut

of ln

vk−vk

Figure B.1: Deformation of the integration contour C (dashed line) for the plasmon

contribution to the free energy, fpl. The bosonic Matsubara frequencies Ωn = 2nπ/β

are marked by crosses, and the branch cut of ln(vk± z) is indicated by a thick line.

plane. By deforming the integration contour C according to Fig. B.1 we obtain∮
C
dz

2πi
β

2
coth

(
βz

2

)
ln
[ −πKv
z2 − (vk)2

]
= −2

∫ Ω̄

v|k|
dΩ

β

2
coth

(
βΩ
2

)
= −2

∫ Ω̄

v|k|
dΩ

d

dΩ
ln sinh

(
βΩ
2

)
= −2 ln sinh

(
βΩ
2

)∣∣∣∣Ω̄
v|k|

= 2 ln
[
2 sinh

(
βv|k|

2

)]
+ const

where in the last line we have neglected the (infinite) constant which arises from

the frequency cutoff Ω̄→∞. Thus, the plasmon contribution to the free energy per

volume is given by

fpl = 2T
∫ Λ

0

dk

2π
ln
[
2 sinh

(
vk

2T

)]
(B.3)

where Λ is the ultraviolet momentum cutoff introduced in Chapter 4 to regularize

the logarithmic ultraviolet divergence of the integral.

B.1.2 Free Energy of the Ising Fermions

In a coherent state path integral representation, the quantum partition function of

the Ising fermions reads

Zel =
∫
D(ψ,ψ†) exp

{
−1

2
1
βL

∑
k,ωn

Ψ†k,ωnG−1
0 (k, ωn)Ψk,ωn

}
=
(
detG−1

0

)1/2 (B.4)

where G0 is the bare propagator of the Ising fermions. Here, we use a Nambu spinor

notation for the Ising fermions which results in the unusual exponent of 1/2. The

contribution of the Ising fermions to the free energy is thus given by

fel = − 1
βL

lnZel = −1
2

1
βL

ln
{

detG−1
0

}
= −1

2
1
βL

Tr
{

lnG−1
0

}
(B.5)
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B.2. Specific Heat Coefficient in the Non-Interacting System

where L is the one-dimensional volume of the system, and β = 1/(kBT ) is the

inverse of temperature. Note that the trace not only runs over momentum space

and fermionic frequencies but also contains a summation over the eigenvalues of G−1
0

due to its matrix structure, i.e. Tr(· · · ) ≡∑k,ωn

∑
EV(· · · ).

After diagonalizing the inverse of the fermion propagator, G−1
0 , the sum over

fermionic Matsubara frequencies, ωn = (2n + 1)π/β, can be easily performed by

means of the residue theorem. Rewriting the sum as a contour integral in complex

frequency space we get

fel = − 1
2L

∑
k

∑
α=±1

∮
C
dz

2πi
β

2
tanh

(
βz

2

)
ln(αωk − z)

where ωk =
√
µ2 + (uk)2 are the eigenenergies of the Ising fermions, and u being the

fermion velocity. Note that h(z) = (β/2) tanh(βz/2) has unit residue at z = iωn. By

deforming the integration contour C with respect to the branch cut of the logarithm

(see Fig. B.2) we obtain∮
C
dz

2πi
β

2
tanh

(
βz

2

)
ln(αωk − z)

= −
∫ ω̄

αωk

dω
β

2
tanh

(
βω

2

)
= −

∫ ω̄

αωk

dω
d

dω
ln cosh

(
βω

2

)
= − ln cosh

(
βω

2

)∣∣∣∣ω̄
αωk

= ln
[
2 cosh

(
αβωk

2

)]
+ const

In the last line we again have neglected an (infinite) constant due to the frequency

cutoff ω̄ →∞. Finally, upon performing the remaining momentum integral we get

fel = −2T
∫ Λ

0

dk

2π
ln
[
2 cosh

(
ωk
2T

)]
with ωk =

√
µ2 + (uk)2 (B.6)

where Λ is the ultraviolet momentum cutoff introduced before.

B.2 Specific Heat Coefficient in the Non-Interacting

System

The specific heat coefficients for both the plasmonic and fermionic excitations in the

two subbands are obtained by differentiating the corresponding free energy twice

with respect to temperature. In the non-interacting system, the resulting integrals

can be easily solved using the following identities:∫ ∞
0

dx
(2x)n

sinh2(x)
= 2nΓ(n) ζ(n) (B.7)∫ ∞

0
dx

(2x)n

cosh2(x)
= 2n (1− 21−n) Γ(n) ζ(n) (B.8)
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(a)

ω

branch cut

of ln

k
ω

(b)

ω

branch cut

of ln

k
ω

Figure B.2: Deformation of the integration contour C (dashed line) for the Ising

fermion contribution to the free energy, fel. The fermionic Matsubara frequencies

Ωn = (2n + 1)π/β are marked by crosses, and the branch cut of ln(αωk − z) for

α = +1 is indicated by a thick line.

where Γ(n) is the Euler gamma function and ζ(n) is the Riemann zeta function,

Γ(z) =
∫ ∞

0
dt tz−1e−t and ζ(s) =

∞∑
k=1

1
ks

for Re(s) > 1 (B.9)

B.2.1 Specific Heat Coefficient of the Plasmons

The plasmon contribution to the specific heat coefficient, γpl, is obtained by dif-

ferentiating the free energy per volume fpl (cf. Eq. (B.3)) twice with respect to

temperature,

γpl =
∂2fpl

∂T 2

∣∣∣∣
µ

=
1

2T 3

∫ Λ

0

dk

2π
(vk)2

sinh2
[
vk
2T

] (B.10)

where Λ is the ultraviolet momentum cutoff introduced in the previous sections. As

the integrand falls off exponentially for large x it is safe to set Λ→∞. Thus, upon

substituting x = (vk)/(2T ) we get

γpl =
2
πv

∫ ∞
0

dx
x2

sinh2(x)
=

2
πv

Γ(2) ζ(2) =
2
πv

π2

6
=

π

3v
(B.11)

B.2.2 Specific Heat Coefficient of the Ising Fermions

The specific heat coefficient of the Ising fermions, γel, is obtained by differentiating

the free energy per volume fel (cf. Eq. (B.6)) twice with respect to T ,

γel =
∂2fel

∂T 2

∣∣∣∣
µ

=
1

2T 3

∫ Λ

0

dk

2π
ω2
k

cosh2
[
ωk
2T

] with ωk =
√
µ2 + (uk)2 (B.12)
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B.3. Free Energy in the Interacting System

Quantum Critical Regime: |µ|T−1/(νz) � 1

In the quantum critical regime, we can carry out a Taylor expansion in |µ|/T � 1

and retain only leading order terms. In the limit Λ→∞ we get

γel ≈ 1
2T 3

∫ ∞
0

dk

2π
(|u|k)2

cosh2
[ |u|k

2T

] =
2
π|u|

∫ ∞
0

dx
x2

cosh2(x)
=

2
π|u|

1
2

Γ(2) ζ(2) =
π

6|u|
(B.13)

where we have used the identity (B.8) to evaluate the integral.

Low-Temperature Regime: |µ|T−1/(νz) � 1

In the low-temperature regime, we can carry out a Taylor expansion in T/|µ| � 1.

To this end, let us first substitute x = |u|k/|µ|,

γel =
1

2T 3

∫ ∞
0

dk

2π
µ2 + (uk)2

cosh2
[

1
2T

√
µ2 + (uk)2

]
=

1
4π|u|

( |µ|
T

)3 ∫ ∞
0

dx
1 + x2

cosh2
[ |µ|

2T

√
1 + x2

]
The denominator of the integrand can be simplified by replacing the hyperbolic

cosine with an exponential term,

γel ≈ 1
4π|u|

( |µ|
T

)3 ∫ ∞
0

dx
1 + x2

1
4 exp

[ |µ|
2T

√
1 + x2

]
=

1
π|u|

( |µ|
T

)3 ∫ ∞
0

dx (1 + x2) exp
[
−|µ|
T

√
1 + x2

]
≈ 1
π|u|

( |µ|
T

)3 ∫ ∞
0

dx (1 + x2) exp
[
−|µ|
T

(
1 +

x2

2

)]
where in the last line we have substituted the square root by its series expansion.

To leading order we thus get

γel ≈ 1√
2π|u|

( |µ|
T

)5/2

e−|µ|/T (B.14)

B.3 Free Energy in the Interacting System

The starting point of our calculation of the specific heat in the interacting system

is the free energy per volume, f = −(βL)−1 lnZ, where Z is the quantum partition

function.

In the spirit of the momentum-shell renormalization group methods, the free

energy is renormalized, and the resulting β function reads

β(f) = yff(b) + δf(b) (B.15)
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Appendix B. Calculation of the Specific Heat Coefficient

where yf = d + z is the engineering scaling dimension of f , and δf(b) are the

momentum-shell corrections due to the interactions between electrons. It is conve-

nient to absorb the engineering scaling dimension by defining f̃ = b−yf f(b) which

leads to

β(f̃) = b−yf δf(b) (B.16)

Note that the interaction corrections consist of two contributions, δf(b) = δfpl(b) +

δfel(b) which stem from the renormalization of the plasmon velocity v, the fermion

velocity u and the chemical potential µ. Upon integrating the β function, the free

energy per volume is obtained as

f =
∫ ∞

0
d(ln b) b−yf δf

(
bzT, b1/νµ, v(b), u(b)

)
+ const (B.17)

where we have neglected the regular part of the free energy since this contribution

scales to zero in the limit b→∞.

B.3.1 Free Energy of the Plasmons

The plasmon contribution to the free energy per volume is thus given by

fpl =
∫ ∞

0
d(ln b) b−(d+z)δfpl

(
bzT, b1/νµ, v(b), u(b)

)
(B.18)

Here, δfpl denotes the leading order corrections which arises from integrating out

high-energy excitations during a renormalization group transformation of the bare

free energy,

δfpl(T, µ, v, u) ≈ T

π
ln
[
2 sinh

(
vΛ
2T

)]
Λ (B.19)

Thus, the free energy of the plasmons reads

fpl =
∫ ∞

0
d(ln b) b−(d+z)T (b)

π
ln
[
2 sinh

(
v(b)Λ
2T (b)

)]
Λ

Upon substituting b = Λ/k and T (b) = bzT we get

fpl = 2T
∫ Λ

0

dk

2π
ln
[
2 sinh

(
v
(

Λ
k

)
k

2T

)]
(B.20)

where T is the bare (initial) temperature of the renormalization group flow. Note

that the main difference between the interacting and the non-interacting system is

the explicit momentum dependence of the plasmon velocity v, cf. Eq. (B.3).

B.3.2 Free Energy of the Ising Fermions

Similarly, the contribution of the Ising fermions to the free energy is given by

fel =
∫ ∞

0
d(ln b) b−(d+z)δfel

(
bzT, b1/νµ, v(b), u(b)

)
(B.21)
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where δfel denotes the leading order corrections from the momentum shell which is

integrated out in the renormalization group transformation,

δfel(T, µ, v, u) ≈ −T
π

ln
[
2 cosh

(
ωΛ

2T

)]
Λ (B.22)

Repeating above steps, the free energy per volume of the Ising fermions reads

fel = −2T
∫ Λ

0

dk

2π
ln
[
2 cosh

(
1

2T

√
∆2

(
Λ
k

)
+ u2

(
Λ
k

)
k2

)]
(B.23)

Note that in the derivation of Eq. (B.23) we have substituted ∆(b) = b−1µ to absorb

the engineering scaling dimension of the chemical potential.

B.4 Specific Heat Coefficient in the Interacting System

As for the specific heat coefficients in the non-interacting system, γpl and γel are

obtained from the free energy per volume by differentiating twice with respect to

temperature. However, the resulting momentum integrals are tedious to work out,

as is shown in the following discussion.

B.4.1 Specific Heat Coefficient of the Plasmons

The specific heat coefficient of the plasmon excitations is equal to

γpl =
∂2fpl

∂T 2

∣∣∣∣
µ

=
1

2T 3

∫ Λ

0

dk

2π
v2
(

Λ
k

)
k2

sinh2
[
k

2T v
(

Λ
k

)] (B.24)

where Λ is the ultraviolet momentum cutoff introduced in our renormalization group

scheme. In the interacting case we have to consider the symmetric case, |u| = v,

and the asymmetric case, |u| < v, separately.

Symmetric Case (|u| = v): Here, the renormalization group flow of the plasmon

velocity obeys a power-law,

v(b) =

vb1−z for b < b∗

v∗ for b ≥ b∗

with v∗ = v(b∗) and z = 1 + (λ2K)/(4v2) = const being the effective dynamical

exponent. Note that b∗ is the cutoff scale of the renormalization group flow. Thus,

the plasmon specific heat coefficient reads

γpl =
1

2T 3

∫ Λ

0

dk

2π
v2
(

Λ
k

)
k2

sinh2
[
k

2T v
(

Λ
k

)]
=

1
2T 3

∫ k∗

0

dk

2π
(v∗k)2

sinh2
[
v∗k
2T

] +
1

2T 3

∫ Λ

k∗

dk

2π
v2
(

Λ
k

)
k2

sinh2
[
k

2T v
(

Λ
k

)]
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where k∗ = Λ/b∗. In the limit Λ → ∞ the first term is negligible as the main

contribution to γpl comes from the second term. Thus, γpl can be approximated as

γpl ≈ 1
2T 3

∫ ∞
0

dk

2π
v2
(

Λ
k

)
k2

sinh2
[
k

2T v
(

Λ
k

)] =
1

2T 3

∫ ∞
0

dk

2π

(
vΛ1−zkz

)2
sinh2

[
v

2T Λ1−zkz
]

with Λ→∞. This integral can be solved by substituting x = v
2T Λ1−zkz:

γpl ≈ 1
2T 3

∫ ∞
0

dk

2π

(
vΛ1−zkz

)2
sinh2

[
v

2T Λ1−zkz
] ≈ 2

πv

(VΛ
T

) z−1
z 1
z

∫ ∞
0

dx
(2x)

z+1
z

sinh2(x)

Using Eq. (B.8) this yields the following result for the specific heat coefficient in the

quantum critical regime:

γpl ≈ C1(z)
2
πv

(VΛ
T

) z−1
z

with C1(z) =
z + 1
z2

Γ
(
z + 1
z

)
ζ

(
z + 1
z

)
(B.25)

Here, V is some velocity scale to obtain the correct physical dimensions. In a similar

way, we can calculate the specific heat coefficient in the low-temperature regime.

Here we obtain

γpl ≈ C1(z)
2
πv

(VΛ
|µ|
)ν(z−1)

(B.26)

where ν is the effective correlation length exponent.

Asymmetric Case (|u| < v): Here, the renormalization group flow of v is domi-

nated by a logarithmic dependence,

v(b) =

ve−(C ln b)1/5
for b < b∗

v∗ for b ≥ b∗

with v∗ = v(b∗) = ve−(C ln b∗)1/5
, and C being the invariant of the renormalization

group flow. As for the symmetric case, γpl is equal to

γpl =
1

2T 3

∫ Λ

0

dk

2π
v2
(

Λ
k

)
k2

sinh2
[
k

2T

(
Λ
k

)]
=

1
2T 3

∫ k∗

0

dk

2π
(v∗k)2

sinh2
[
v∗k
2T

] +
1

2T 3

∫ Λ

k∗

dk

2π
v2
(

Λ
k

)
k2

sinh2
[
k

2T

(
Λ
k

)]
with k∗ = Λ/b∗. In the limit Λ→∞ the dominant contribution to γpl again comes

from the second term. Thus,

γpl ≈ 1
2T 3

∫ ∞
0

dk

2π
v2
(

Λ
k

)
k2

sinh2
[
k

2T

(
Λ
k

)] =
1

2T 3

∫ ∞
0

dk

2π

[
vke−(C ln(Λ/k))1/5]2

sinh2
[
v

2T ke
−(C ln(Λ/k))1/5

]
First, let us rewrite the integrand by introducing the expansion parameter Ξ =

(VΛ/T )1/z � 1. Re-exponentiating the terms linear in k we get

γpl ≈ 2
T

∫ ∞
0

dk

2π

[
ez
−1 ln Ξ−ln(Λ/k)−(C ln(Λ/k))1/5]2

sinh2
[
ez−1 ln Ξ−ln(Λ/k)−(C ln(Λ/k))1/5

]
≈ 2
πv

∫ ∞
−z−1 ln Ξ

dx e−x
[
e−x−(C(x+z−1 ln Ξ))1/5]2

sinh2
[
e−x−(C(x+z−1 ln Ξ))1/5

]
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In the last line we we have substituted x = ln(Λ/k)− z−1 ln Ξ. Since Ξ� 1 we can

carry out a Taylor expansion in x/Ξ� 1. Keeping only leading order terms we get

γpl ≈ 2
πv

∫ ∞
−z−1 ln Ξ

dx e−x
[
e−x−(Cz−1 ln Ξ)1/5]2

sinh2
[
e−x−(Cz−1 ln Ξ)1/5

]
Finally, let us revert above substitution by setting y = e−x−(Cz−1 ln Ξ)1/5

. The re-

maining integral

γpl ≈ 2
πv

e(Cz−1 ln Ξ)1/5

∫ ∞
0

dy
y2

sinh2(y)

is then solved easily. We obtain in the quantum critical regime the specific heat

coefficient

γpl ≈ π

3v
e(Cz−1 ln VΛ

T
)1/5

=
π

3v∗
(B.27)

where v∗ is the plasmon velocity at the cutoff scale b∗ in the quantum critical regime.

A similar calculation is performed in the low-temperature regime. However, in

this regime the expansion parameter Ξ has to be defined as Ξ = (VΛ/|µ|)ν , and a

subsequent Taylor expansion shows that in the low-temperature regime the specific

heat coefficient is given by

γpl ≈ π

3v
e

(Cν ln VΛ
|µ| )

1/5

=
π

3v∗
(B.28)

with v∗ being the plasmon velocity at the cutoff scale in the low-temperature regime.

B.4.2 Specific Heat Coefficient of the Ising Fermions

The specific heat coefficient of the Ising fermions is in general given by

γel =
∂2fel

∂2T

∣∣∣∣
µ

=
1

2T 3

∫ Λ

0

dk

2π
∆2
(

Λ
k

)
+ u2

(
Λ
k

)
k2

cosh2
[

1
2T

√
∆2
(

Λ
k

)
+ u2

(
Λ
k

)
k2
] (B.29)

where ∆(b) = b−1µ is a convenient choice to absorb the engineering scaling dimension

of the chemical potential, and u is the fermion velocity.

Quantum Critical Regime: |µ|T−1/(νz) � 1

In the quantum critical regime we can carry out a Taylor expansion in |µ|/T � 1,

independent from the actual renormalization group flow of the fermion velocity u

and the gap function ∆,

γel ≈ 1
2T 3

∫ Λ

0

dk

2π

[
u
(

Λ
k

)
k
]2

cosh2
[

1
2T u

(
Λ
k

)
k
]
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Symmetric Case (|u| = v): In the symmetric case, the renormaliation group flow

of the fermion velocity follows a power-law behavior:

u(b) =

ub1−z for b < b∗

u∗ for b ≥ b∗
and ∆(b) =

µb
3
2

(1−z) for b < b∗

∆∗ for b ≥ b∗

with u∗ = u(b∗) and z = 1 + (λ2K)/(4v2) = const the effective dynamical exponent.

Note that the renormalization group flow of u stops at the cutoff scale b∗. In the

quantum critical regime, γel is given by

γel ≈ 1
2T 3

∫ Λ

0

dk

2π
u2
(

Λ
k

)
k2

cosh2
[

1
2T u

(
Λ
k

)
k
]

=
1

2T 3

∫ k∗

0

dk

2π
(u∗k)2

cosh2
[
u∗k
2T

] +
1

2T 3

∫ Λ

k∗

dk

2π
u2
(

Λ
k

)
k2

cosh2
[

1
2T u

(
Λ
k

)
k
]

with k∗ = Λ/b∗. Again, in the limit Λ→∞ the main contribution to γel comes from

the second term. This integral is solved in very much the same way as in Sec. B.4.1.

Thus,

γel ≈ C2(z)
1
π|u|

(VΛ
T

) z−1
z

with C2(z) = 2(1− 2−1/z)C1(z) (B.30)

Note that V is some velocity scale which gives the correct physical dimensions.

Asymmetric Case (|u| < v): In the asymmetric case, the renormalization group

flow of the fermion velocity and the gap function is given by a logarithmic decrease,

u(b) =

ue−(C ln b)1/5
for b < b∗

u∗ for b ≥ b∗
and ∆(b) =

µe−
3
2

(C ln b)1/5
for b < b∗

∆∗ for b ≥ b∗

with u∗ = u(b∗) and ∆∗ = ∆(b∗). Similar to the symmetric case the main contribu-

tion to the specific heat coefficient arises from the following integral:

γel ≈ 1
2T 3

∫ ∞
0

dk

2π

[
uke−(C ln(Λ/k))1/5]2

cosh2
[
uk
2T e
−(C ln(Λ/k))1/5

]
Note that we have calculated this type of integral in Sec. B.4.1. Thus,

γel ≈ π

6|u| e
(Cz−1 ln VΛ

T
)1/5

=
π

6|u∗| (B.31)

with u∗ being the fermion velocity at the cutoff scale of the renormalization group

flow.

Low-Temperature Regime: |µ|T−1/(νz) � 1

In the low-temperature regime we can carry out a Taylor expansion in T/|µ| � 1

which yields

γel ≈ 1
2T 3

∫ Λ

0

dk

2π

[
∆
(

Λ
k

)]2
cosh2

[
1

2T ∆
(

Λ
k

)]
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B.4. Specific Heat Coefficient in the Interacting System

Symmetric Case (|u| = v): Here, the fermion velocity u and the gap function ∆

again obey a power-law behavior under renormalization group transformations,

u(b) =

ub1−z for b < b∗

u∗ for b ≥ b∗
and ∆(b) =

µb
3
2

(1−z) for b < b∗

∆∗ for b ≥ b∗

with u∗ = u(b∗) and ∆∗ = ∆(b∗), and z being the effective dynamical exponent.

Due to the cutoff scale b∗, the above integral for γel splits up into two parts,

γel ≈ 1
2T 3

∫ Λ

0

dk

2π

[
∆
(

Λ
k

)]2
cosh2

[
1

2T ∆
(

Λ
k

)]
=

1
2T 3

∫ k∗

0

dk

2π
(∆∗)2

cosh2
[

∆∗

2T

] +
1

2T 3

∫ Λ

k∗

dk

2π

[
∆
(

Λ
k

)]2
cosh2

[
1

2T ∆
(

Λ
k

)]
Here, the main contribution to γel comes from the second term:

γel ≈ 1
2T 3

∫ ∞
0

dk

2π

[|µ|Λ 3
2

(1−z)k−
3
2

(1−z)]2
cosh2

[ |µ|
2T Λ

3
2

(1−z)k−
3
2

(1−z)]
Upon substituting x = |µ|Λ 3

2
(1−z)k−

3
2

(1−z) we can easily calculate the remaining

integral by using the identity (B.8). As a result,

γel ≈ C2

(
νz − 1
ν

)
1
π|u|

(VΛ
|µ|
) ν
νz−1

(VΛ
T

) ν
νz−1

−1

(B.32)

where C2(z) = 2(1 − 2−1/z)C1(z), and C1(z) = z+1
z2 Γ

(
z+1
z

)
ζ
(
z+1
z

)
as been defined

above.

Asymmetric Case (|u| < v): In the asymmetric case, the renormalization group

flow of u and ∆ is given by

u(b) =

ue−(C ln b)1/5
for b < b∗

u∗ for b ≥ b∗
and ∆(b) =

µe−
3
2

(C ln b)1/5
for b < b∗

∆∗ for b ≥ b∗

with u∗ = u(b∗) and ∆∗ = ∆(b∗). The main contribution to the specific heat

coefficient γel can be obtained by performing a Taylor expansion of γel in |µ|/T � 1.

Combining the expansion from Sec. B.2.2 and the results for the low-temperature

regimes in the interacting system, we finally get the relation

γel ≈ 1√
2π|u∗|

( |∆∗|
T

)5/2

e−|∆
∗|/T (B.33)

for the specific heat coefficient. Note that u∗ and ∆∗ are the fermion velocity and

the gap at the cutoff scale, respectively.
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Deutsche Zusammenfassung

Stark korrelierte Elektronensysteme sind ein bedeutender Schwerpunkt in der mo-

dernen Festkörperphysik. Viele Experimente weisen auf die Existenz starker Kor-

relationen in ein-, zwei- und dreidimensionalen Systemen hin, aber die theoretische

Beschreibung vieler der beobachteten Phänomene ist unklar oder diskutabel. Ins-

besondere werden viele bislang unerklärte Phänomene mit den außergewöhnlichen

Eigenschaften von sogenannten Quantenphasenübergängen in Verbindung gebracht.

Quantenphasenübergänge finden streng genommen nur am absoluten Temperatur-

nullpunkt durch Variation eines externen Kontrollparameter wie zum Beispiel des

Drucks statt. Trotz dieser Einschränkung beeinflussen quantenkritische Punkte im

Phasendiagramm wesentlich die thermodynamischen Eigenschaften des zugrundelie-

genden Modells auch bei endlichen Temperaturen. Die Untersuchung dieser Quan-

tenphasenübergänge und ihrer Eigenschaften ist daher Gegenstand aktueller For-

schung.

Diese Diplomarbeit beschäftigt sich mit einem solchen Quantenphasenübergang.

Als theoretisches Modell wird ein eindimensionaler Quantendraht spinpolarisierter

Elektronen betrachtet, in dem die Elektronen zwei Bänder besetzen können. Durch

Variation des chemischen Potentials wird der Quantenphasenübergang kontrolliert,

bei dem Elektronen das obere Band besetzen. Aufgrund der eindimensionalen Struk-

tur ist es angemessen, das untere Band im Niederenergiesektor durch eine Luttinger-

Flüssigkeit zu beschreiben, während das obere Band durch Ising-Fermionen beschrie-

ben werden kann. Kapitel 2 führt zunächst in die theoretische Beschreibung eindi-

mensionaler wechselwirkender Elektronensysteme ein und beschreibt ausführlich die

Herleitung und Lösung des Tomonaga-Luttinger Modells, welches die Eigenschaften

eindimensionaler Elektronensysteme im Niederenergiesektor beschreibt.

Neben der gewöhnlichen Coulomb-Wechselwirkung zwischen den Elektronen exi-

stiert in diesem Modell eines Quantendrahtes darüber hinaus die Möglichkeit, dass

Elektronen paarweise vom unteren Band ins obere Band wechseln, und umgekehrt.

Es ist gerade dieser Prozess, der interessante Phänomene im betrachteten Modell

ermöglicht. Es wird in Kapitel 3 gezeigt, dass im Limes starker Wechselwirkung

zwischen den Bändern dieser Elektronen-Paartransfer relevant für die Niederener-

giephysik ist.
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Deutsche Zusammenfassung

In Kapitel 4 wird die Renormierungsgruppen-Theorie eingeführt, die auf das vor-

liegende Modell angewandt wird, um dessen Eigenschaften zu untersuchen. Zunächst

werden dabei im Limes schwacher Wechselwirkung perturbativ die Selbstenergien

und Vertexkorrekturen bestimmt, mit dem Ergebnis, dass diese Korrekturen von lo-

garithmischer Größenordnung sind. Die anschließende Renormierungsanalyse zeigt,

dass die Geschwindigkeiten der Anregungen in beiden Bändern logarithmisch ver-

schwinden, und zwar auf unterschiedliche Weise in Abhängigkeit von den physika-

lischen Anfangsparametern. Im Fall, dass die Plasmonen schneller sind als die Fer-

mionen finden wir, dass der Fluß in den Bereich schwacher Wechselwirkung zeigt,

während im entgegengesetzten Fall der Fluß zu starker Wechselwirkung zwischen den

Bändern und gleichzeitig zum Verschwinden der Plasmon-Geschwindigkeit führt. In-

teressant ist hier insbesondere der Grenzfall, in dem beide Geschwindigkeiten gleich

groß sind. Hier finden wir, dass die Wechselwirkung einen effektiven dynamischen

Exponenten z und einen effektiven Exponenten ν für die Korrelationslänge defi-

niert, der invariant unter Renormierungsgruppen-Transformationen ist. Dies ist ein

mögliches Indiz für die Existenz eines interessanten quantenkritischen Punktes.

Im Vergleich zu klassischen Phasenübergängen, die bei endlicher Temperatur

stattfinden, sind Quantenphasenübergänge streng genommen experimentell nicht zu-

gänglich sind. Im sogenannten quantenkritischen Bereich kann man aber erwarten,

dass der Quantenphasenübergang auch bei endlichen Temperaturen physikalische

Eigenschaften beeinflusst. Daher sind thermodynamische Größen wie beispielsweise

die spezifische Wärme ein wichtiges Hilfsmittel, um Quantenphasenübergänge zu

charakterisieren. Durch eine Skalenanalyse wird in Kapitel 5 gezeigt, dass der Ko-

effizient γ der spezifischen Wärme am Quantenphasenübergang in unserem Modell

divergiert und dass die Divergenz durch den dynamischen Exponenten z und den

Exponenten ν der Korrelationslänge charakterisiert wird. Die Vorhersagen der Ska-

lenanalyse werden schließlich anhand des vorliegenden Modells durch analytische

Rechnungen überprüft.
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