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Abstract

We classify Lie–Poisson brackets that are formed from Lie algebra extensions. The problem is relevant because many
physical systems owe their Hamiltonian structure to such brackets. A classification involves reducing all brackets to a set of
normal forms, and is achieved partially through the use of Lie algebra cohomology. For extensions of order less than five,
the number of normal forms is small and they involve no free parameters. We derive a general method of finding Casimir
invariants of Lie–Poisson bracket extensions. The Casimir invariants of all low-order brackets are explicitly computed. We
treat in detail a four field model of compressible reduced magnetohydrodynamics. ©2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

This paper deals with the classification of Lie–Poisson brackets obtained from extensions of Lie algebras. A large
class of finite- and infinite-dimensional dynamical equations admit a Hamiltonian formulation using noncanonical
brackets of the Lie–Poisson type. Finite-dimensional examples include the Euler equations for the rigid body [1]
and the moment reduction of the Kida vortex [2], while infinite-dimensional examples include the Vlasov equation
[3,4] and the Euler equation for the ideal fluid [5–9]. Lie–Poisson brackets naturally define a Poisson structure (i.e.,
a symplectic structure) on the dual of a Lie algebra. For the rigid body, the Lie algebra is the one associated with
the rotation group,SO(3), while for the Kida vortex moment reduction the underlying group isSO(2,1). For the
two-dimensional ideal fluid, the relevant Lie algebra corresponds to the group of volume-preserving diffeomorphisms
on the fluid domain.

We will classify low-order bracket extensions and find their Casimir invariants. An extension is simply a new Lie
bracket, derived from a base algebra (for example,SO(3)), and defined onn-tuples of that algebra. We are ruling
out extensions where the brackets that appear are not of the same form as that of the base algebra. We are thus
omitting some brackets [5,10], but the brackets we are considering are amenable to a general classification.
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The method of extension yields interesting and physically relevant algebras. Using this method we can de-
scribe finite-dimensional systems of several variables and infinite- dimensional systems of several fields. For
finite-dimensional systems an example is the two vector model of the heavy top [11]. For infinite-dimensional
systems there are models with two [12–14], three [12,15,16], and four [17] fields. Knowing the bracket allows one
to find the Casimir invariants of the system [18–20]. These are quantities which commute with every functional on
the Poisson manifold, and thus are conserved by the dynamics for any Hamiltonian. They are useful for analyzing
the constraints in the system [21] and for establishing stability criteria (see for example [22–24] and the reviews
[25] and [26]).

The outline of this paper is as follows. In Section 2, we review the general theory behind Lie–Poisson brackets.
We give examples of physical systems of Lie–Poisson type, both finite- and infinite-dimensional. We introduce the
concept of Lie algebra extensions and derive some of their basic properties. Section 3 is devoted to the more abstract
treatment of extensions through the theory of Lie algebra cohomology [27–29]. We define some terminology and
special extensions such as the semidirect sum and the Leibniz extension. In Section 4, we use the cohomology
techniques to treat the specific type of extension with which we are concerned, brackets overn-tuples. We give an
explicit classification of low-order extensions. By classifying we mean reducing — through coordinate changes —
all possible brackets to independent normal forms. We find that the normal forms are relatively few and involve
no free parameters — at least for low-order extensions. In Section 5, we turn to the problem of finding the Casimir
invariants of the brackets, those functionals that commute with every other functional in the algebra. We derive some
general techniques for doing so that apply to extensions of any order. Some explicit examples are derived, including
the Casimir invariants of a particular model of magnetohydrodynamics (MHD). These are also given a physical
interpretation. A formula for the invariants of Leibniz extenions of any order is also derived. Then in Section 6 we
use the classification of Section 4 to derive the Casimir invariants for low-order extensions. Finally in Section 7 we
offer some concluding remarks and discuss future directions.

2. Lie–Poisson brackets

Lie–Poisson brackets define a natural Poisson structure on duals of Lie algebras. Physically, they often arise in the
reductionof a system. For our purposes, a reduction is a mapping of the dynamical variables of a system to a smaller
set of variables, such that the transformed Hamiltonian and bracket depend only on the smaller set of variables. (For
a more detailed mathematical treatment, see for example [30–34].) The simplest example of a reduction is the case
in which a cyclic variable is eliminated, but more generally a reduction exists as a consequence of an underlying
symmetry of the system. For instance, the Lie–Poisson bracket for the rigid body is obtained from a reduction of
the canonical Euler angle description using the rotational symmetry of the system [11]. The Euler equation for the
two-dimensional ideal fluid is obtained from a reduction of the Lagrangian description of the fluid, which has a
relabeling symmetry [26,35–37].

Here, we shall take a more abstract viewpoint: we do not assume that the Lie–Poisson bracket is obtained from a
reduction, though it is always possible to do so by the method of Clebsch variables [26]. Rather we proceed directly
from a given Lie algebra to build a Lie–Poisson bracket. The choice of algebra can be guided by the symmetries of
the system. After deriving the basic theory behind Lie–Poisson brackets in Section 2.1, we will show some explicit
examples in Section 2.2. We then describe general Lie algebra extensions in Section 2.3.

2.1. Lie–Poisson brackets on duals of Lie Algebras

We begin by taking the Lie algebrag associated with some Lie group. The Lie group might be chosen to reflect
the symmetries of a physical system. There will be a Lie bracket [,] :g × g → g associated withg. Consider the
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dual g∗ of g with respect to the pairing〈, 〉 : g∗ × g → R. Then for real-valued functionalsF andG, that is,
F,G : g∗ → R, andξ ∈ g∗, we can define

{F,G}±(ξ) = ±
〈
ξ,

[
δF

δξ
,
δG

δξ

]〉
. (2.1)

The sign choice comes from whether we are considering right invariant (+) or left invariant (−) functions on the
cotangent bundle of the Lie group [9,34], but for our purposes we simply choose the sign as needed. The functional
derivativeδF/δξ is defined by

δF [ξ ; δξ ] := d

dε
F [ξ + εδξ ]

∣∣∣∣
ε=0
=:

〈
δξ,

δF

δξ

〉
. (2.2)

We shall refer to the bracket [ , ] as the inner bracket and to the bracket{ , } as the Lie–Poisson bracket. The dual
g∗ together with the Lie–Poisson bracket is a Poisson manifold; that is, the bracket{ , } is a Lie algebra structure
on real-valued functionals that is a derivation in each of its arguments. For finite-dimensional groups, Eq. (2.1) was
first written down by Lie [38] and was rediscovered by Berezin [39]; it is also closely related to work of Arnold
[40], Kirillov [41], Kostant [42], and Souriau [43].

The bracket ing is the same as the adjoint action ofg on itself: [α, β] = adαβ, whereα, β ∈ g. From this we

define the coadjoint action ad†
α of g ong∗ by

〈ad†αξ, β 〉 := 〈ξ, adαβ〉, (2.3)

whereξ ∈ g∗. We also define the coadjoint bracket [ , ]† : g× g∗ → g∗ by [α, ξ ]† := ad†α ξ , so that

〈[α, ξ ]†, β 〉 := 〈ξ, [α, β] 〉; (2.4)

the bracket [, ]† satisfies the identity

〈[α, ξ ]†, β〉 = −〈[β, ξ ]†, α〉.
Since the inner bracket is Lie, it satisfies the Jacobi identity, and consequently the form given by (2.1) for the
Lie–Poisson bracket will automatically satisfy the Jacobi identity ([44], p. 614).

Given a HamiltonianH : g∗ → R, the equation of motion forξ ∈ g∗ is

ξ̇ = {ξ,H } = ±
〈
ξ,

[
∆,

δH

δξ

]〉
= ∓

〈[
δH

δξ
, ξ

]†
, ∆

〉
= ∓

[
δH

δξ
, ξ

]†
, (2.5)

where∆ is a Kronecker or Dirac delta, or a combination of both for an infinite-dimensional system of several fields.

2.2. Examples of Lie–Poisson systems

We will say that a physical systems can be described by a given Lie–Poisson bracket and Hamiltonian if its
equations of motion can be written as (2.5); the system is then said to be Hamiltonian of the Lie–Poisson type. We give
four examples: the first is finite-dimensional (the free rigid body, Section 2.2.1) and the second is infinite-dimensional
(Euler’s equation for the ideal fluid, Section 2.2.2). The third and fourth examples are also infinite-dimensional and
serve to introduce the concept of extension. They are low–beta reduced magnetohydrodynamics (MHD) in Section
2.2.3 and compressible reduced MHD in Section 2.2.4. These last two examples are meant to illustrate the physical
relevance of Lie algebra extensions.
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2.2.1. The free rigid body
The classic example of a Lie–Poisson bracket is obtained by taking forg the Lie algebra of the rotation group

SO(3). If the ê(i) denote a basis ofg = so(3), the Lie bracket is given by[
ê(i), ê(j)

] = ckij ê(k),

whereckij = εijk are the structure constants of the algebra, in this case the totally antisymmetric symbol. Using as
a pairing the usual contraction between upper and lower indices, with (2.1) we are led to the Lie–Poisson bracket

{f, g} = −ckij `k
∂f

∂`i

∂g

∂`j
,

where the three-vector̀ is in g∗, and we have chosen the minus sign in (2.1). The coadjoint bracket is obtained
using (2.3),

[β, `]†i = −ckij βj `k.
If we use this coadjoint bracket and insert the Hamiltonian

H = 1
2(I
−1)ij `i `j

in (2.5) we obtain

˙̀
m = {`m,H } = ckmj (I−1)jp `k `p.

Notice how the moment of inertia tensorI plays the role of a metric — it allows us to build a quadratic form (the
Hamiltonian) from two elements ofg∗. If we takeI = diag(I1, I2, I3), we recover Euler’s equations for the motion
of the free rigid body

˙̀1 =
(

1

I2
− 1

I3

)
`2 `3,

and cyclic permutations of 1,2,3. The`i are the angular momenta about the axes and theIi are the principal moments
of inertia. This result is naturally appealing because we expect the rigid body equations to be invariant under the
rotation group, hence the choice ofSO(3) forG.

2.2.2. The two-dimensional ideal fluid
Consider now an ideal fluid with the flow taking place over a two- dimensional domainΩ. Let g be the

infinite-dimensional Lie algebra associated with the Lie group of volume-preserving diffeomorphisms ofΩ. In
two spatial dimensions this is the same as the group of canonical transformations onΩ. The bracket ing is the
canonical bracket

[a, b] = ∂a

∂x

∂b

∂y
− ∂b
∂x

∂a

∂y
. (2.6)

We formally identifyg andg∗ and use as the pairing〈, 〉 the usual integral over the fluid domain,

〈F,G〉 =
∫
Ω

F(x)G(x)d2x,

wherex := (x, y). For infinite-dimensional spaces, there are functional analytic issues about whether we can make
this identification, and takeg∗∗ = g. We will assume here that these relationships hold formally. See Marsden et al.
[32] for references on this subject and the book by Audin [45] for a treatment of the identification ofg andg∗.
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Assuming appropriate boundary conditions for simplicity, we get [ , ]† = − [ , ] from (2.4). (Otherwise the
coadjoint bracket would involve extra boundary terms.) Take the vorticityω as the field variableξ and write for the
Hamiltonian

H [ω] = −1
2〈ω,∇−2ω〉,

where

(∇−2ω)(x) :=
∫
Ω

K(x|x′) ω(x′)d2x′,

andK is Green’s function for the Laplacian. The Green’s function plays the role of a metric since it maps an element
of g∗ (the vorticityω) into an element ofg to be used in the right slot of the pairing. This relationship is only weak:
the mappingK is not surjective, and thus the metric cannot formally be inverted (it is calledweakly nondegenerate).
When we have identifiedg andg∗ we shall often drop the comma in the pairing and write

H [ω] = −1
2〈ω φ〉 = 1

2〈|∇φ|2〉,
whereω = ∇2φ defines the streamfunctionφ. We work out the evolution equation forω explicitly:

ω̇(x)= {ω,H } =
∫
Ω

ω(x′)
[
δω(x)
δω(x′)

,
δH

δω(x′)

]
d2x′ =

∫
Ω

ω(x′)[δ(x − x′),−φ(x′)] d2x′

=
∫
Ω

δ(x − x′)[ω(x′), φ(x′)] d2x′ = [ω(x), φ(x)].

This is Euler’s equation for a two-dimensional ideal fluid. We could also have written this result down directly from
(2.5) using [, ]† = −[, ].

2.2.3. Low–beta reduced MHD
This example will illustrate the concept of a Lie algebra extension, the main topic of this paper. Essentially, the

idea is to use an algebra ofn-tuples, which we call an extension, to describe a physical system with more than one
dynamical variable. As in Section 2.2.2 we consider a flow taking place over a two-dimensional domainΩ. The
Lie algebrag is again taken to be that of volume-preserving diffeomorphisms onΩ, but now we consider also the
vector spaceV of real-valued functions onΩ (an Abelian Lie algebra under addition). Thesemidirect sumof g and
V is a new Lie algebra whose elements are two-tuples(α, v) with a bracket defined by

[(α, v), (β,w)] := ([α, β], [α,w] − [β, v]), (2.7)

whereα andβ ∈ g, v andw ∈ V . This is a Lie algebra, so we can use the prescription of Section 2.1 to build a
Lie–Poisson bracket,

{F,G} =
∫
Ω

(
ω

[
δF

δω
,
δG

δω

]
+ ψ

([
δF

δω
,
δG

δψ

]
−
[
δG

δω
,
δF

δψ

]))
d2x.

Let ω = ∇2φ, whereφ is the electric potential,ψ is the magnetic flux, andJ = ∇2ψ is the current. (We use the
same symbol for the electric potential as for the streamfunction of Section 2.2.2 since they play a similar role.) The
pairing used is a dot product of the vectors followed by an integral over the fluid domain (again identifyingg and
g∗ as in Section 2.2.2). The Hamiltonian

H [ω;ψ ] = 1

2

∫
Ω

(
|∇φ|2+ |∇ψ |2

)
d2x
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with the above bracket leads to the equations of motion

ω̇ = [ω, φ] + [ψ, J ], ψ̇ = [ψ, φ].

This is a model for low-beta reduced MHD [12,46,47]. It is obtained by an expansion in the inverse aspect ratioε

of a tokamak, withε small. This is called low beta since the plasma beta (the ratio of plasma pressure to magnetic
pressure) is of orderε2. With a strong toroidal magnetic field, the dynamics are then approximately two-dimensional.

Benjamin [13] used a system with a similar Lie–Poisson structure, but for waves in a density-stratified fluid.
Semidirect sum structures are ubiquitous in advective systems: one variable (in this example,φ) “drags” the others
along [21].

2.2.4. Compressible reduced MHD
In general there are other, more general ways to extend Lie algebras besides the semidirect sum. The model

derived by Hazeltine et al. [17,48] for two-dimensional compressible reduced MHD (CRMHD) is an example. This
model has four fields, and as for the system in Section 2.2.3 it is also obtained from an expansion in the inverse
aspect ratio of a tokamak. It includes compressibility and finite ion Larmor radius effects. The Hamiltonian is

H [ω, v, p,ψ ] = 1

2

∫
Ω

(
|∇φ|2+ v2+ (p − 2βi x)2

βi
+ |∇ψ |2

)
d2x, (2.8)

wherev is the parallel ion velocity,p the pressure, andβi is a parameter that measures compressibility. The other
variables are as in Section 2.2.3. The coordinatex points outward from the center of the tokamak in the horizontal
plane andy is the vertical coordinate. The motion is made two-dimensional by the strong toroidal magnetic field.
The bracket we will use is

{F,G} =
∫
Ω

(
ω

[
δF

δω
,
δG

δω

]
+ v

([
δF

δω
,
δG

δv

]
+
[
δF

δv
,
δG

δω

])
+ p

([
δF

δω
,
δG

δp

]
+
[
δF

δp
,
δG

δω

])

+ψ
([
δF

δω
,
δG

δψ

]
+
[
δF

δψ
,
δG

δω

])
− βi ψ

([
δF

δp
,
δG

δv

]
+
[
δF

δv
,
δG

δp

]))
d2x. (2.9)

Together, this bracket and the Hamiltonian (2.8) lead to the equations

ω̇ = [ω, φ] + [ψ, J ] + 2[p, x], v̇ = [v, φ] + [ψ,p] + 2βi [x,ψ ], ṗ = [p, φ] + βi [ψ, v], ψ̇ = [ψ, φ],

which reduce to the example of Section 2.2.3 in the limitv = p = βi = 0 (when compressibility effects are
unimportant).

It is far from clear that the Jacobi identity for (2.9) is satisfied. A direct verification is straightforward (if tedious),
but we shall see in Section 2.3 that there is an easier way.

2.3. General algebra extensions

We wish to generalize the types of bracket used in Sections 2.2.3 and 2.2.4. We build an algebra extension by
forming ann-tuple of elements of a single Lie algebrag,

α := (α1, . . . , αn), (2.10)

whereαi ∈ g. The most general bracket on thisn-tuple space obtained from a linear combination of the one ing
has components

[α, β]λ =
n∑

µ,ν=1

W
µν
λ [αµ, βν ], λ = 1, . . . , n, (2.11)
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where theWµν
λ are constants. (From now on we will assume that repeated indices are summed unless otherwise

noted.) Since the bracket ing is antisymmetric theW ’s must be symmetric in their upper indices,

W
µν
λ = Wνµ

λ . (2.12)

This bracket must also satisfy the Jacobi identity

[α, [β, γ ]]λ + [β, [γ, α]]λ + [γ, [α, β]]λ = 0, λ = 1, . . . , n.

The first term can be written as

[α, [β, γ ]]λ = Wστ
λ Wµν

σ [ατ , [βµ, γν ]] ,

which when added to the other two gives

Wστ
λ Wµν

σ ([ατ , [βµ, γν ]] + [βτ , [γµ, αν ]] + [γτ , [αµ, βν ]]) = 0.

We cannot yet make use of the Jacobi identity ing: the subscripts ofα, β, andγ are different in each term so they
represent different elements ofg. We first relabel the sums and then make use of the Jacobi identity ing to obtain

(Wστ
λ Wµν

σ −Wσν
λ Wτµ

σ ) [ατ , [βµ, γν ]] + (Wσµ
λ Wντ

σ −Wσν
λ Wτµ

σ ) [βµ, [γν, ατ ]] = 0.

This identity is satisfied if and only if

Wστ
λ Wµν

σ = Wσν
λ Wτµ

σ , (2.13)

which together with (2.12) implies that the quantityWστ
λ W

µν
σ is symmetric in all three free upper indices. If we

write theW ’s asn matricesW(ν) with rows labeled byλ and columns byµ,[
W(ν)

]µ
λ

:= Wµν
λ , (2.14)

then (2.13) says that those matrices pairwise commute:

W(ν) W(σ) = W(σ) W(ν). (2.15)

Eqs. (2.12) and (2.15) form a necessary and sufficient condition: a set ofn commuting matrices of sizen × n
satisfying the symmetry given by (2.12) can be used to make a good Lie algebra bracket. From this Lie bracket we
can build a Lie–Poisson bracket using the prescription of (2.1) to obtain

{F,G}±(ξ) = ±
n∑

λ,µ,ν=1

W
µν
λ

〈
ξλ,

[
δF

δξµ
,
δG

δξν

]〉
.

We now return to the two extension examples of Sections 2.2.3 and 2.2.4 and examine them in light of the general
extension concept introduced here.

2.3.1. Low-beta reduced MHD
For this example we have(ξ0, ξ1) = (ω,ψ), with

W(0) =
(

1 0
0 1

)
, W(1) =

(
0 0
1 0

)
.

The reason why we start labeling at 0 will become clearer in Section 4.4. The twoW(µ) commute sinceW(0) = I ,
the identity. The tensorW also satisfies the symmetry property (2.12). Hence, the bracket is a good Lie algebra
bracket.
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2.3.2. Compressible reduced MHD
We haven = 4 and take(ξ0, ξ1, ξ2, ξ3) = (ω, v, p,ψ), so the tensorW is given by

W(0) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , W(1) =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 −βi 0


 ,

W(2) =




0 0 0 0
0 0 0 0
1 0 0 0
0 −βi 0 0


 , W(3) =




0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


 . (2.16)

It is easy to verify that these matrices commute and that the tensorW satisfies the symmetry property (2.12), so that
the Lie–Poisson bracket given by (2.9) satisfies the Jacobi identity. (See Section 4.4 for an explanation of why the
labeling is chosen to begin at zero.)

3. Extension of a Lie algebra

In this section we review the theory of Lie algebra cohomology and its application to extensions. This is useful
for shedding light on the methods used in Section 4 for classifying extensions. However, the mathematical details
presented in this section can be skipped without seriously compromising the flavor of the classification scheme of
Section 4.

3.1. Cohomology of Lie algebras

We now introduce the abstract formalism of Lie algebra cohomology. Historically there were two different reasons
for the development of this theory. One, known as the Chevalley–Eilenberg formulation [27], was developed from
de Rham cohomology. de Rham cohomology concerns the relationship between exact and closed differential forms,
which is determined by the global properties (topology) of a differentiable manifold. A Lie group is a differentiable
manifold and so has an associated de Rham cohomology. If invariant differential forms are used in the computation,
one is led to the cohomology of Lie algebras presented in this section [28,29,49]. The second motivation is the one
that concerns us: we will show in Section 3.2 that the extension problem — the problem of enumerating extensions
of a Lie algebra — can be related to the cohomology of Lie algebras.

Let g be a Lie algebra, and let the vector spaceV over the fieldK (which we take to be the real numbers later)
be a leftg-module,1 that is, there is an operatorρ : g× V → V such that

ρα(v + v′) = ρα v + ρα v′, ρα+α′v = ραv + ρα′v, ρ[α,α′]v = [ρα, ρα′ ] v, (3.1)

for α, α′ ∈ g andv, v′ ∈ V . The operatorρ is known as a left action. Ag-module gives a representation ofg onV .
An n-dimensionalV -valued cochainωn for g, or justn-cochain for short, is a skew-symmetricn-linear mapping

ωn :
←n→

g× g× . . .× g→ V.

1 WhenV is a rightg-module, we haveρ[α,α′] = −[ρα, ρα′ ]. The results of this section can be adapted to a right action by changing the sign
every time a commutator appears.
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Cochains are Lie algebra cohomology analogues of differential forms on a manifold. Addition and scalar multipli-
cation ofn-cochains are defined in the obvious manner by

(ωn + ω′n)(α1, . . . , αn) := ωn(α1, . . . , αn)+ ω′n(α1, . . . , αn), (aωn)(α1, . . . , αn) := aωn(α1, . . . , αn),

whereα1, . . . , αn ∈ g anda ∈ K. The set of alln-cochains thus forms a vector space over the fieldK and is
denoted byCn(g, V ). The 0-cochains are defined to be just the elements ofV , so thatC0(g, V ) = V .

The coboundary operator is the map between cochains,

sn : Cn(g, V )→ Cn+1(g, V ),

defined by

(snωn)(α1, . . . , αn+1) :=
n+1∑
i=1

(−)i+1ραiωn(α1, . . . , α̂i , . . . , αn+1)

+
n+1∑
j,k=1
j<k

(−)j+kωn([αj , αk], α1, . . . , α̂j , . . . , α̂k, . . . , αn+1),

where the caret means an argument is omitted. We shall often drop then subscript onsn, deducing it from the
dimension of the cochain on whichs acts.

We shall make use mostly of the first few cases:

(sω0)(α1) = ρα1 ω0, (3.2)

(sω1)(α1, α2) = ρα1 ω1(α2)− ρα2ω1(α1)− ω1([α1, α2]), (3.3)

(s ω2)(α1, α2, α3) = ρα1ω2(α2, α3)+ ρα2 ω2(α3, α1)+ ρα3 ω2(α1, α2)

−ω2([α1, α2], α3)− ω2([α2, α3], α1)− ω2([α3, α1], α2). (3.4)

It is easy to verify thatsωn defines an(n+ 1)-cochain, and it is straightforward (if tedious) to show thatsn+1sn =
s2 = 0. For this to be true, the homomorphism property ofρ is crucial.

An n-cocycle is an elementωn ofCn(g, V ) such thatsnωn = 0. Ann-coboundaryωcob is an element ofCn(g, V )
for which there exists an elementωn−1 of Cn−1(g, V ) such thatωcob = sωn−1. Note that all coboundaries are
cocycles, but not vice versa.

Let

Znρ(g, V ) := kersn

be the vector subspace of alln-cocycles,Znρ(g, V ) ⊂ Cn(g, V ), and let

Bnρ(g, V ) := rangesn−1

be the vector subspace of alln-coboundaries,Bnρ(g, V ) ⊂ Cn(g, V ). Thenth cohomology group ofg with coeffi-
cients inV is defined to be the quotient vector space:

Hn
ρ (g, V ) := Znρ(g, V )/Bnρ(g, V ). (3.5)

Note that forn > dimg, we haveHn
ρ (g, V ) = Znρ(g, V ) = Bnρ(g, V ) = 0.
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3.2. Application of cohomology to extensions

In Section 2.3 we gave a definition of extension that is specific to our problem. We will now define extensions in
a more abstract manner. We then show how the cohomology of Lie algebras of Section 3.1 is related to the problem
of classifying extensions. In Section 4 we will return to the more concrete concept of extension, of the form given
in Section 2.3.

Let fi : gi → gi+1 be a collection of Lie algebra homomorphisms,

· · · → gi fi→gi+1
fi+1→ gi+2→ · · · .

The sequencefi is called an exact sequence of Lie algebra homomorphisms if

rangefi = kerfi+1.

Let g, h, anda be Lie algebras. The algebrah is said to be anextensionof g by a if there is a short exact sequence
of Lie algebra homomorphisms

0→ a i→h π→g→ 0. (3.6)

The homomorphismi is an insertion (injection), andπ is a projection (surjection). We shall distinguish brackets in
the different algebras by appropriate subscripts. We also defineτ : g→ h to be a linear mapping such thatπ◦τ = 1|g
(the identity mapping ing). Note thatτ is not unique, since the kernel ofπ is not trivial. Letβ ∈ h, η ∈ a; then

π [β, i η]h = [πβ, π iη]g = 0,

using the homomorphism property ofπ andπ ◦ i = 0, a consequence of the exactness of the sequence. Thus
[β, iη]h ∈ kerπ = rangei, andi a is an ideal inh since [β, iη] ∈ ia. Hence, we can form the quotient algebrah/a,
with equivalence classes denoted byβ + a. By exactnessπ(β + a) = π β, sog is isomorphic toh/a and we write
g = h/a.

Thoughi a is a subalgebra ofh, τ g is not necessarily a subalgebra ofh, for in general

[τα, τβ]h 6= τ [α, β]g,

for α, β ∈ g; that is,τ is not necessarily a homomorphism. The classification problem essentially resides in the
determination of how muchτ differs from a homomorphism. The cohomology machinery of Section 3.1 is the key
to quantifying this difference, and we proceed to show this.

To this end, we use the algebraa as the vector spaceV of Section 3.1, so thatawill be a leftg-module. We define
the left action as

ραη := i−1[τα, iη]h (3.7)

for α ∈ g andη ∈ a. For a to be a leftg-module, we needρ to be a homomorphism, i.e.,ρ must satisfy (3.1).
Therefore consider

[ρα, ρβ ]η= (ραρβ − ρβρα)η = ραi−1[τβ, iη]h − ρβi−1[τα, iη]h

= i−1 [τα, [τβ, iη]h
]
h
− i−1 [τβ, [τα, iη]h

]
h
,

which upon using the Jacobi identity inh becomes
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[ρα, ρβ ]η= i−1 [[τα, τβ]h, iη
]
h
= i−1 [τ [α, β]g, iη

]
h
+ i−1 [([τα, τβ]h − τ [α, β]g

)
, iη

]
h

= ρ[α,β]gη + i−1 [([τα, τβ]h − τ [α, β]g
)
, iη

]
h
. (3.8)

By applyingπ on the expression in parentheses of the last term of (3.8), we see that it vanishes and so is in kerπ ,
and by exactness it is also inia. Thus theh commutator above involves two elements ofia. We defineω : g×g→ a
by

ω(α, β) := i−1 ([τα, τβ]h − τ [α, β]g
)
. (3.9)

The mappingi−1 is well defined onia. Eq. (3.8) becomes

[ρα, ρβ ]η = ρ[α,β]gη + [ω(α, β), η]a. (3.10)

Therefore,ρ satisfies the homomorphism property if either of the following is true:
1. a is Abelian,
2. τ is a homomorphism,

Condition (1) implies [, ]a = 0, while condition (2) means

[τα, τβ]h = τ [α, β]g,

which impliesω ≡ 0. If either of these conditions is satisfied,a with the actionρ is a leftg-module. We treat these
two cases separately in Sections 3.3 and 3.4, respectively.

3.3. Extension by an Abelian Lie Algebra

In this section we assume that the homomorphism condition (1) at the end of Section 3.2 is met. Therefore,
a is a leftg-module, and we can definea-valued cochains ong. In particular,ω defined by (3.9) is a 2-cochain,
ω ∈ C2(g, a), that measures the “failure” ofτ to be a homomorphism. We now show, moreover, thatω is a 2-cocycle,
ω ∈ Z2

ρ(g, a). By using (3.4),

(sω)(α, β, γ )= ραω(β, γ )+ ρβω(γ, α)+ ργ ω(α, β)− ω([α, β]g, γ )− ω([β, γ ]g, α)− ω([γ, α]g, β),

= i−1
([
τα, [τβ, τγ ]h

]
h
+ cyc.perm.

)
+ i−1τ

([
[α, β]g, γ

]
g
+ cyc.perm.

)
= 0.

The first parenthesis vanishes by the Jacobi identity inh, the second by the Jacobi identity ing, and the other terms
were canceled in pairs. Hence,ω is a 2-cocycle.

Two extensionsh andh′ are equivalent if there exists a Lie algebra isomorphismσ such that the diagram

(3.11)

is commutative, that is ifσ ◦ i = i′ andπ = π ′ ◦ σ .
There will be an injectionτ associated withπ and aτ ′ associated withπ ′, such thatπ ◦ τ = 1|g = π ′ ◦ τ ′. The

linear mapν = σ−1τ ′ − τ must be fromg to ia, soi−1ν ∈ C1(g, a). Considerρ andρ′ respectively defined using
τ, i andτ ′, i′ by (3.7). Then
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(ρα − ρ′α)η=i−1[τα, iη]h − i′−1[τ ′α, i′η]h′ ,=i−1[τα, iη]h − i−1[(ν + τ)α, iη]h,=− i−1[να, iη]h=0,

(3.12)

sincea is Abelian. Henceτ andτ ′ define the sameρ. Now consider the 2-cocyclesω andω′ defined fromτ andτ ′

by (3.9). We have

ω′(α, β)− ω(α, β)= i′−1 ([τ ′α, τ ′β]h′ − τ ′[α, β]g
)− i−1 ([τα, τβ]h − τ [α, β]g

)
,

= i−1 ([τα, νβ]h + [να, τβ]h − ν[α, β]g
)
,= ρα(i−1νβ)− ρβ(i−1να)− i−1ν[α, β]g.

Comparing this with (3.3), we see that

ω′ − ω = s(i−1ν), (3.13)

soω andω′ differ by a coboundary. Hence they represent the same element inH 2
ρ (g, a). Equivalent extensions

uniquely define an element of the second cohomology groupH 2
ρ (g, a). Note that this is true in particular for

h = h′, σ = 1, so that the element ofH 2
ρ (g, a) is independent of the choice ofτ .

We are now ready to write down explicitly the bracket inh. We can represent an elementα ∈ h as a two-tuple:
α = (α1, α2) whereα1 ∈ g andα2 ∈ a (h = g ⊕ a as a vector space). The injectioni is theniα2 = (0, α2), the
projectionπ is π(α1, α2) = α1, and since the extension is independent of the choice ofτ we takeτα1 = (α1,0).
By linearity

[α, β]h = [(α1,0), (β1,0)]h + [(0, α2), (0, β2)]h + [(α1,0), (0, β2)]h + [(0, α2), (β1,0)]h.

We know that [(0, α2), (0, β2)]h = 0 sincea is Abelian. By definition of the cocycleω, Eq. (3.9), we have

[(α1,0), (β1,0)]h = [τα1, τβ1]h = iω(α1, β1)+ τ [α1, β1]g = ([α1, β1]g, ω(α1, β1)).

Finally, by the definition ofρ, Eq. (3.7),

[(α1,0), (0, β2)]h = [τα1, iβ2]h = ρα1β2,

and similarly for [(0, α2), (β1,0)]h, with opposite sign. So the bracket is

[α, β]h =
(
[α1, β1]g, ρα1β2− ρβ1α2+ ω(α1, β1)

)
. (3.14)

As a check we work out the Jacobi identity inh:[
α, [β, γ ]h

]
h
= ([α1, [β, γ ]1]g, ρα1[β, γ ]2− ρ[β,γ ]1α2+ ω(α1, [β, γ ]1)

)
=
([
α1, [β1, γ1]g

]
g
, ρα1(ρβ1γ2− ργ1β2+ ω(β1, γ1))− ρ[β1,γ1]gα2+ ω(α1, [β1, γ1]g)

)
.

Upon adding permutations, the first component will vanish by the Jacobi identity ing. We are left with[
α, [β, γ ]h

]
h
+ cyc.perm.= (0, (ρα1ρβ1 − ρβ1ρα1 − ρ[α1,β1]g

)
γ2+ ρα1ω(β1, γ1)− ω([α1, β1]g, γ1)

)
+cyc.perm.,

which vanishes by the the homomorphism property ofρ and the fact thatω is a 2-cocycle, Eq. (3.4).
Eq. (3.14) is the most general form of the Lie bracket for extension by an Abelian Lie algebra. It turns out that

the theory of extension by a non-Abelian algebra can be reduced to the study of extension by the center ofa, which
is Abelian [29]. We will not need this fact here, as the only extensions by non-Abelian algebras we will deal with
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are of the simpler type of Section 3.4. If the actionρ vanishes but the cocycleω does not, the extension is called
central.

We have thus shown that equivalent extensions are enumerated by the second cohomology groupH 2
ρ (g, a). The

coordinate transformationσ used in (3.11) to define equivalence of extensions preserves the form ofg anda as
subsets ofh. However, we have the freedom to choose coordinate transformations which do transform these subsets.
All we require is that the isomorphismσ betweenh andh′ be a Lie algebra isomorphism. We can represent this by
the diagram

0→ a i→ h
π→g→ 0

↓σ
0→ a′ i→ h′ π→g′ → 0.

(3.15)

The primed and the unprimed extensions are not equivalent, but they are isomorphic [50]. Cohomology for us is
not the whole story, since we are interested in isomorphic extensions, but it will guide our classification scheme.
We discuss this point further in Section 4.3.

3.4. Semidirect and direct extensions

Assume now thatω defined by (3.9) is a coboundary. By (3.13) there exists an equivalent extension withω ≡ 0.
For that equivalent extension,τ is a homomorphism and condition (ii) at the end of Section 3.2 is satisfied. Thus
the sequence

h
τ←g← 0

is an exact sequence of Lie algebra homomorphisms, as well as the sequence given by (3.6). We then say that
the extension is a semidirect extension (or a semidirect sum of algebras) by analogy with the group case. More
generally, we say thath splits if it is isomorphic to a semidirect sum, which corresponds toω being a coboundary,
not necessarily zero. Ifa is not Abelian, then (3.12) is not satisfied and two equivalent extensions (or two different
choices ofτ ) do not necessarily lead to the sameρ.

Representing elements ofh as 2-tuples, as in Section 3.3, we can derive the bracket inh for a semidirect sum,

[α, β]h =
(
[α1, β1]g, ρα1β2− ρβ1α2+ [α2, β2]a

)
, (3.16)

where we have not assumeda Abelian. Verifying Jacobi for (3.16) we find theρ must also satisfy

ρα1[β2, γ2]a = [ρα1β2, γ2]a + [β2, ρα1γ2]a,

which is trivially satisfied ifa is Abelian, but in general this condition states thatρα is a derivation ona.
Now consider the case wherei−1 is a homomorphism and keri−1 = rangeτ . Then the sequence

0 
 ai
−1


h τ
g
 0

is exact in both directions and, hence, bothi andπ = τ−1 are bijections. The action ofg ona is

ραη = i−1[τα, iη]h = [i−1τα, η]a = 0,

since by exactnessi−1◦τ = 0. This is called a direct sum. Note that in this case the role ofg anda is interchangeable
and they are both ideals inh. The bracket inh is easily obtained from (3.16) by lettingρ = 0,

[α, β]h =
(
[α1, β1]g, [α2, β2]a

)
. (3.17)
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Semidirect and direct extensions play an important role in physics. A simple example of a semidirect extension
structure is wheng is the Lie algebraso(3) associated with the rotation groupSO(3) anda isR3. Their semidirect
sum is the algebra of the six parameter Euclidean group of rotations and translations. That algebra can be used
in a Lie–Poisson bracket to describe the dynamics of the heavy top (see for example [11,51]). We have already
discussed the semidirect sum in Section 2.2.3. The bracket (2.7) is a semidirect sum, withg the algebra of the group
of volume-preserving diffeomorphisms anda the Abelian Lie algebra of functions onR2. The action is just the
adjoint actionρα v := [α, v] obtained by identifyingg anda.

A Lie–Poisson bracket built from a direct extension is just a sum of the separate brackets. The interaction between
the variables can only come from the Hamiltonian or from constitutive equations. For example in the baroclinic
instability model of two superimposed fluid layers with different potential vorticities the two layers are coupled
through the potential vorticity relation [14].

4. Classification of extensions of a Lie algebra

In this section we return to the main problem introduced in Section 2.3: the classification of algebra extensions
built by formingn-tuples of elements of a single Lie algebrag. The elements of this Lie algebrah are written as
α := (α1, . . . , αn), αi ∈ g, with a bracket defined by

[α, β]λ = Wµν
λ [αµ, βν ], (2.11)

whereWµν
λ are constants. We will calln theorderof the extension. Recall (see Section 2.3) theW ’s are symmetric

in their upper indices,

W
µν
λ = Wνµ

λ , (2.12)

and commute,

W(ν)W(σ) = W(σ)W(ν), (2.15)

where then× nmatricesW(ν) are defined by [W(ν)]µλ := Wνµ
λ . Since theW ’s are 3-tensors we can also represent

their elements by matrices obtained by fixing the lower index,

W(λ) := [W(λ)]
µν := Wµν

λ , (4.1)

which are symmetric but do not commute. Either collection of matrices, (2.14) or (4.1), completely describes the
Lie bracket, and which one we use will be understood by whether the parenthesized index is up or down.

What do we mean by a classification? A classification is achieved if we obtain a set of normal forms for the
extensions that are independent, that is, not related by linear transformations. We use linear transformations because
they preserve the Lie–Poisson structure — they amount to transformations of theW tensor. We thus begin by
assuming the most generalW possible.

We first show in Section 4.1 how an extension can be broken down into a direct sum of degenerate subblocks
(degenerate in the sense that the eigenvalues have multiplicity greater than unity). The classification scheme is thus
reduced to the study of a single degenerate subblock. In Section 4.2 we couch our particular extension problem in
terms of the Lie algebra cohomology language of Section 3.2 and apply the techniques therein. The limitations of
this cohomology approach are investigated in Section 4.3, and we look at other coordinate transformations that do
not necessarily preserve the extension structure of the algebra, as expressed in diagram (3.15). In Section 4.5 we
introduce a particular type of extension, called the Leibniz extension, which is in a sense the “maximal” extension.
Finally, in Section 4.6 we give an explicit classification of solvable extensions up to order four.



J.-L. Thiffeault, P.J. Morrison / Physica D 136 (2000) 205–244 219

4.1. Direct sum structure

A set of commuting matrices can be put into simultaneous block-diagonal form by a coordinate transformation,
each block corresponding to a degenerate eigenvalue [52]. Let us denote the change of basis by a matrixMᾱ

β , with

inverse
(
M−1

)β
ᾱ
, such that the matrix̃W(ν), whose components are given by

W̃ ᾱν

β̄
= (M−1)λ

β̄
W
µν
λ Mᾱ

µ,

is in block-diagonal form for allν. However,Wµν
λ is a 3-tensor and so the third index is also subject to the coordinate

change:

W̄
ᾱγ̄

β̄
= W̃ ᾱν

β̄
Mγ̄
ν .

This last step adds linear combinations of theW̃ (ν)’s together, so theW̃ (ν)’s and theW̄ (γ̄ )’s have the same
block-diagonal structure. Note that thēW tensors are still symmetric in their upper indices, since this property
is preserved by a change of basis. So from now on we just assume that we are working in a basis where theW(ν)’s
are block-diagonal and symmetric in their upper indices; this symmetry means that if we look at aW as a cube, then
in the block-diagonal basis it consists of smaller cubes along the main diagonal. This is the 3-tensor equivalent of
a block-diagonal matrix.

Block-diagonalization is the first step in the classification: each block ofW is associated with an ideal (hence,
a subalgebra) in the fulln-tuple algebrag. Hence, by the definition of Section 3.4 the algebrag is a direct sum of
the subalgebras associated with each block. Each of these subalgebras can be studied independently, so from now
on we assume that we haven commuting matrices, each withn-fold degenerate eigenvalues. The eigenvalues can,
however, be different for each matrix.

Such a set of commuting matrices can be put into lower-triangular form by a coordinate change, and again the
transformation of the third index preserves this structure (though it changes the eigenvalue of each matrix). The
eigenvalue of each matrix lies on the diagonal; we denote the eigenvalue ofW(µ) byΛ(µ). The matrixW(1), which
as prescribed by (4.1) consists of the first row of the lower-triangular matricesW(µ), is given by

W(1) =



Λ(1) 0 0 · · · 0
Λ(2) 0 0 · · · 0
...

...

Λ(n) 0 0 · · · 0


 .

Evidently, the symmetry ofW(1) requires

Λ(ν) = θδν1,
that is, all the matricesW(µ) are nilpotent (their eigenvalues vanish) except forW(1) whenθ 6= 0. If this first
eigenvalue is nonzero then it can be scaled toθ = 1 by the coordinate transformationMᾱ

ν = θ−1δᾱν . We will use
the symbolθ to mean a variable that can take the value 0 or 1.

4.2. Connection to cohomology

We now bring together the abstract notions of Section 3 with then-tuple extensions of Section 2.3. It is shown
in Section 4.2.1 that we need only classify the case ofθ = 0. This case will be seen to correspond to solvable
extensions, which we classify in Section 4.2.2.
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4.2.1. Preliminary splitting
Assume we are in the basis described at the end of Section 4.1, and for now, supposeθ = 1. The set of elements

of the formβ = (0, β2, . . . , βn) is a nilpotent ideal inh that we denote bya (a is thus a solvable subalgebra [53]).
Hence, we can construct the algebrag = h/a, so thath is an extension ofg by a. If g is semisimple, thena is the
radical ofh (the maximal solvable ideal). It is easy to see that the elements ofg are of the formα = (α1,0, . . . ,0).
We will now see thath splits; that is, there exist coordinates in whichh is manifestly the semidirect sum ofg and
the (in general non-Abelian) algebraa.

In Appendix A we give a lower-triangular coordinate transformation that makesW(1) = I , the identity matrix.
Assuming we have effected this transformation, the mappingsi, π , andτ of Section 3.2 are given by

i : a→ h, i(α2, . . . , αn) = (0, α2, . . . , αn),

π : h→ g, π(α1, α2, . . . , αn) = α1,

τ : g→ h, τ (α1) = (α1,0, . . . ,0),

and the cocycle of (3.9) is

iω(α, β) = [τα, τβ]h − τ [α, β]g = [(α1,0, . . . ,0), (β1,0, . . . ,0)]h − ([α1, β1],0, . . . ,0) = 0.

Sinceω ≡ 0, the extension is a semidirect sum (see Section 3.4). The coordinate transformation that madeW(1) = I
removed a coboundary, making the above cocycle vanish identically. For the case whereg is finite-dimensional and
semisimple, we have an explicit demonstration of the Levi decomposition theorem: any finite-dimensional2 Lie
algebrah (of characteristic zero) with radicala is the semidirect sum of a semisimple Lie algebrag anda [53].

4.2.2. Solvable extensions
Above we assumed the eigenvalueθ of the first matrix was unity; however, if this eigenvalue vanishes, then we

have a solvable algebra ofn-tuples to begin with. Sincen is arbitrary we can study these two solvable cases together.
Thus, we now supposeh is a solvable Lie algebra ofn-tuples (we reuse the symbolsh, g, anda to parallel the

notation of Section 3.1), where all of the theW(µ)’s are lower-triangular with zeros along the diagonal. Note that
W(n) = 0, so the set of elements of the formα = (0, . . . ,0, αn) forms an Abelian subalgebra ofh. In fact, this
subalgebra is an ideal. Now assumeh contains an Abelian ideal of ordern−m (the order of this ideal is at least 1),
which we denote bya. The elements ofa can always be cast in the form

α = (0, . . . ,0, αm+1, . . . , αn)

via a coordinate transformation that preserves the lower-triangular, nilpotent form of theW(µ).
We also denote byg the algebra ofm-tuples with the bracket

[(α1, . . . , αm), (β1, . . . , βm)]gλ =
m∑

µ,ν=1

W
µν
λ [αµ, βν ], λ = 1, . . . , m.

It is trivial to show thatg = h/a, so thath is an extension ofg by a. Sincea is Abelian we can use the formalism
of Section 3.1 (the other case we used above was fora non-Abelian but where the extension was semidirect). The
injection and projection maps are given by

2 The inner bracket can be infinite dimensional, but the order of the extension is finite.
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i : a→ h, i(αm+1, . . . , αn) = (0, . . . ,0, αm+1, . . . , αn),

π : h→ g, π(α1, α2, . . . , αn) = (α1, . . . , αm),

τ : g→ h, τ (α1, . . . , αm) = (α1, . . . , αm,0, . . . ,0).

From the definition of the action, (3.7), we have forα ∈ g andη ∈ a,

iραη= [τα, iη]h = [(α1, . . . , αm,0, . . . ,0), (0, . . . ,0, ηm+1, . . . , ηn)]h

=
m∑
µ=1

n−1∑
ν=m+1

(0, . . . ,0,Wµν
m+2[αµ, ην ], . . . ,W

µν
n [αµ, ην ]). (4.2)

In addition to the action, the solvable extension is also characterized by the cocycle defined in (3.9),

iω(α, β)= [τα, τβ]h − τ [α, β]g = [(α1, . . . , αm,0, . . . ,0), (β1, . . . , βm,0, . . . ,0)]h

−τ [(α1, . . . , αm), (β1, . . . , βm)]g =
m∑

µ,ν=1

(0, . . . ,0,Wµν
m+1[αµ, βν ], . . . ,W

µν
n [αµ, βν ]).

(4.3)

We can illustrate which parts of theW ’s contribute to the action and which to the cocycle by writing

W(λ) = , λ = m+ 1, . . . , n, (4.4)

where thewλ’s arem×m symmetric matrices that determine the cocycleω and therλ’s arem× (n−m)matrices
that determine the actionρ. The(n−m)× (n−m) zero matrix on the bottom right of theW(λ)’s is a consequence
of a being Abelian.

The algebrag is completely characterized by theW(λ),λ = 1, . . . , m. Hence we can look for the maximal Abelian
ideal ofg and repeat the procedure we used for the fullh. It is straightforward to show that although coordinate
transformations ofgmight change the cocycleω and the actionρ, they will not alter theformof Eq. (4.4).

Recall that in Section 3.1 we defined 2-coboundaries as 2-cocycles obtained from 1-cochains by the coboundary
operator,s. The 2-coboundaries turned out to be removable obstructions to a semidirect sum structure. Here the
coboundaries are associated with the parts of theW(λ) that can be removed by (a restricted class of) coordinate
transformations, as shown below.

Let us explore the connection between 1-cochains and coboundaries in the present context. Since a 1-cochain is
just a linear mapping fromg to a, for α = (α1, . . . , αm) ∈ g we can write this as

ω(1)µ (α) = −
m∑
λ=1

kλµαλ, µ = m+ 1, . . . , n, (4.5)

where thekλµ are arbitrary constants. To find the form of a 2-coboundary we act on the 1-cochain (4.5) with the
coboundary operator; using (3.3) and (4.2) we obtain

ωcob
λ (α, β)= (sω(1))(α, β) = ραω(1)(β)+ ρβω(1)(α)− ω(1)([α, β]g),

=
m∑
µ=1

n∑
ν=m+1

W
µν
λ

[
αµ, ω

(1)
ν (β)

]
−

m∑
µ=1

n∑
ν=m+1

W
µν
λ

[
βµ, ω

(1)
ν (α)

]
+

m∑
µ,ν,σ=1

kσλW
µν
σ [αµ, βν ]. (4.6)

After inserting (4.5) into (4.6) and relabeling, we obtain the general form of a 2-coboundary
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ωcob
λ (α, β) =

m∑
µ,ν=1

V
µν
λ [αµ, βν ], λ = m+ 1, . . . , n,

where

V
µν
λ :=

m∑
τ=1

kτλW
µν
τ −

n∑
σ=m+1

(kµσ W
νσ
λ + kνσWµσ

λ ). (4.7)

To see how coboundaries are removed, consider the lower-triangular coordinate transformation

[Mτ̄
σ ] = ,

whereσ labels rows. This transformation subtractsV(λ) fromW(λ) for λ > m and leaves the firstm of theW(λ)’s
unchanged. In other words, if̄W is the transformedW ,

W̄(λ) =



W(λ), λ = 1, . . . , m,

, λ = m+ 1, . . . , n.

(4.8)

We have also included in this transformation an arbitrary scale factorc. Since by (4.3) the block in the upper-left char-
acterizes the cocycle, we see that the transformed cocycle is the cocycle characterized bywλ minus the coboundary
characterized byVλ.

The special case we will encounter most often is when the maximal Abelian ideal ofh simply consists of elements
of the form(0, . . . ,0, αn). For this casem = n−1, and the action vanishes sinceWµn

n = 0 (the extension is central).
The cocycleω is entirely determined byW(n). The form of the coboundary is reduced to

V µνn =
n−1∑
τ=1

kτnW
µν
τ , (4.9)

that is, a linear combinations of the first(n−1)matrices. Thus it is easy to see at a glance which parts of the cocycle
characterizedW(n) can be removed by lower-triangular coordinate transformations.

4.3. Further coordinate transformations

In the previous section we restricted ourselves to lower-triangular coordinate transformations, which in gen-
eral preserve the lower-triangular structure of theW(µ). But when the matrices are relatively sparse, there exist
non-lower-triangular coordinate transformations that nonetheless preserve the lower-triangular structure. As al-
luded to in Section 3.3, these transformations are outside the scope of cohomology theory, which is restricted to
transformations that preserve the exact form of the action and the algebrasg anda, as shown by (4.8). In other
words, cohomology theory classifies extensionsgiveng, a, andρ. We need not obey this restriction. We can al-
low non-lower-triangular coordinate transformations as long as they preserve the lower-triangular structure of the
W(µ)’s.

We now discuss a particular class of such transformations that will be useful in Section 4.6. Consider the case where
both the algebra of(n− 1)-tuplesg and that of 1-tuplesa are Abelian. Then the possible (solvable) extensions, in
lower-triangular form, are characterized byW(λ) = 0, λ = 1, . . . , n−1, withW(n) arbitrary (except forWµn

n = 0).
Let us apply a coordinate change of the form

M = ,
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wherem is an(n − 1) × (n − 1) nonsingular matrix andc is again a nonzero scale factor. Denoting byW̄ the
transformedW , we have

W̄(λ) =



0, λ = 1, . . . , n− 1,

, λ = n.
(4.10)

This transformation does not change the lower-triangular form of the extension, even ifm is not lower-triangular.
The manner in whichwn is transformed byM is very similar to that of a (possibly singular) metric tensor: it can
be diagonalized and rescaled such that all its eigenvalues are 0 or±1. We can also change the overall sign of the
eigenvalues usingc (something that cannot be done for a metric tensor). Hence, we shall order the eigenvalues such
that the+1’s come first, followed by the−1’s, and finally by the 0’s. We will show in Section 4.6 how the negative
eigenvalues can be eliminated to harmonize the notation.

4.4. Appending a semisimple part

In Section 4.2 we showed that because of the Levi decomposition theorem we only needed to classify the solvable
part of the extension for a given degenerate block. Most physical applications have a semisimple part (θ = 1); when
this is so, we shall label the matrices byW(0),W(1), . . . ,W(n), where they are now of sizen + 1 andW(0) is the
identity.3 Thus the matrices labeled byW(1), . . . ,W(n) will always form a solvable subalgebra. This explains the
labeling in Sections 2.3.1 and 2.3.2.

If the extension has a semisimple part (θ = 1, or equivalentlyW(0) = I ), we shall refer to it assemidirect. This
was the case treated in Section 4.2.1. If the extension is not semidirect, then it is solvable (and containsn matrices
instead ofn+ 1).

Given a solvable algebra ofn-tuples we can carry out in some sense the inverse of the Levi decomposition and
append a semisimple part to the extension. Effectively, this means that then×nmatricesW(1), . . . ,W(n) are made
n+ 1× n+ 1 by adding a row and column of zeros. Then we simply append the matrixW(0) = I to the extension.
In this manner we construct a semisimple extension from a solvable one. This is useful since we will be classifying
solvable extensions, and afterwards we will want to recover their semidirect counterpart.

The extension obtained by appending a semisimple part to the completely Abelian algebra ofn-tuples will be
calledpure semidirect. It is characterized byW(0) = I , andWµν

λ = 0 forµ, ν > 0.

4.5. Leibniz extension

A particular extension that we shall consider is called the Leibniz extension [54]. For the solvable case this
extension has the form

W(1) := N =




0
1 0

1 0
· · · · · ·

1 0


 (4.11)

3 The term semisimple is not quite precise: if the base algebra is not semisimple then neither is the extension. However, we will use the term
to distinguish the different cases.
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or Wµ1
λ = δµλ−1, λ > 1; i.e. the first matrix is ann × n Jordan block. In this case the other matrices, in order to

commute withW(1), must be in striped lower-triangular form [52]. After using the symmetry of the upper indices
the matrices can be reduced to

W(ν) = (N)ν, (4.12)

where on the right-hand side theν denotes an exponent, not a superscript. An equivalent way of characterizing the
Leibniz extension is

W
µν
λ = δµ+νλ , µ, ν, λ = 1, . . . , n. (4.13)

The tensorδ is an ordinary Kronecker delta. Note that neither (4.12) nor (4.13) are covariant expressions, reflecting
the coordinate-dependent nature of the Leibniz extension.

The Leibniz extension is in some sense a “maximal” extension: it is the only extension that hasW(λ) 6= 0 for all
λ = 2, . . . , n (up to coordinate transformations). Its uniqueness will become clear in Section 4.6, and is discussed
in Thiffeault [55].

To construct the semidirect Leibniz extension, we appendW(0) = I , a square matrix of sizen+1, to the solvable
Leibniz extension above, as described in Section 4.4.

4.6. Low-order extensions

We now classify the algebra extensions of low order. As demonstrated in Section 4.2 we only need to classify
solvable algebras, which means thatW(n) = 0 for all cases. We will do the classification up to ordern = 4. For
each case we first write down the most general set of lower-triangular matricesW(ν) (we have already used the
fact that a set of commuting matrices can be lower-triangularized) with the symmetryW

µν
λ = Wνµ

λ built in. Then
we look at what sort of restrictions the commutativity of the matrices places on the elements. Finally, we eliminate
coboundaries for each case by the methods of Sections 4.2 and 4.3. This requires coordinate transformations, but
we usually will not bother using new symbols and just assume the transformation was effected.

Note that, due to the lower-triangular structure of the extensions, the classification found for anm-tuple algebra
applies to the firstm elements of ann-tuple algebra,n > m. Thus,W(n) is the cocycle that contains all of the new
information not included in the previousm = n − 1 classification. These comments will become clearer as we
proceed.

We shall call an ordern extensiontrivial if W(n) ≡ 0, so that the cocycle appended to the ordern− 1 extension
contributes nothing to the bracket.

4.6.1. n=1
This case is Abelian, with the only possible elementW11

1 = 0.

4.6.2. n=2
The most general lower-triangular form for the matrices is

W(1) =
(

0 0
W11

2 0

)
, W(2) =

(
0 0
0 0

)
.

If W11
2 6= 0, then we can rescale it to unity. Hence we letW11

2 := θ1, whereθ1 = 0 or 1. The caseθ1 = 0 is the
Abelian case, while forθ = 1 we have then = 2 Leibniz extension (Section 4.5). Thus forn = 2 there are only
two possible algebras. The cocycle which we have added at this stage is characterized byθ1.
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4.6.3. n=3
Using the result of Section 4.6.2, the most general lower-triangular form is

W(1) =

 0 0 0
θ1 0 0
W11

3 W21
3 0


 , W(2) =


 0 0 0

0 0 0
W21

3 W22
3 0


 ,

andW(3) = 0. These satisfy the symmetry condition (2.12), and the requirement that the matrices commute leads
to the condition

θ1W
22
3 = 0.

The symmetric matrix representing the cocycle is

W(3) =



W11

3 W21
3 0

W21
3 W22

3 0

0 0 0


 . (4.14)

If θ1 = 1, thenW22
3 must vanish. Then, by (4.9) we can remove fromW(3) a multiple ofW(2), and therefore we

may assumeW11
3 vanishes. A suitable rescaling allows us to writeW21

3 = θ2, whereθ2 = 0 or 1. The cocycle for
the caseθ1 = 1 is thus

W(3) =

 0 θ2 0
θ2 0 0
0 0 0


 .

For θ2 = 1 we have the Leibniz extension (Section 4.5).
If θ1 = 0, we have the case discussed in Section 4.3. For this case we can diagonalize and rescaleW(3) such that

W(3) =

 λ1 0 0

0 λ2 0
0 0 0


 ,

where(λ1, λ2) can be(1,1), (1,0), (0,0), or (1,−1). This last case, as alluded to at the end of Section 4.3, can be
transformed so that it corresponds toθ1 = 0, θ2 = 1. The choice(1,0) can be transformed to theθ1 = 1, θ2 = 0
case. Finally for(λ1, λ2) = (1,1) we can use the complex transformation

ξ1→ 1√
2

(
ξ1+ ξ2

)
, ξ2→− i√

2

(
ξ1− ξ2

)
, ξ3→ ξ3,

to transform to theθ1 = 0, θ2 = 1 case.
We allow complex transformations in our classification because we are chiefly interested in finding Casimir

invariants for Lie–Poisson brackets. If we disallow complex transformations, the final classification would contain
a few more members. The use of complex transformations will be noted as we proceed.

There are thus four independent extensions forn = 3, corresponding to

(θ1, θ2) ∈ {(0,0), (0,1), (1,0), (1,1)}.
These will be referred to as Cases 1–4, respectively. Cases 1 and 3 haveθ2 = 0, and so are trivial (W(3) = 0). Case
2 is the solvable part of the compressible reduced MHD bracket (Section 2.3.2). Case 4 is the solvable Leibniz
extension.
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4.6.4. n=4
Proceeding as before and using the result of Sections 4.6.2 and 4.6.3, we now know that we need only write

W(4) =



W11

4 W21
4 W31

4 0

W21
4 W22

4 W32
4 0

W31
4 W32

4 W33
4 0

0 0 0 0


 . (4.15)

The matricesW(1),W(2), andW(3) are given by theirn = 3 analogues padded with an extra row and column of zeros
(owing to the lower-triangular form of the matrices). The requirement that the matricesW(1) · · ·W(4) commute
leads to the conditions

θ2W
33
4 = 0, θ2W

31
4 = θ1W22

4 , θ2W
32
4 = 0, θ1W

32
4 = 0. (4.16)

There are four cases to look at, corresponding to the possible values ofθ1 andθ2.

Case 1(θ1 = 0, θ2 = 0). This is the unconstrained case discussed in Section 4.3, that is, all the commutation
relations (4.16) are automatically satisfied. We can diagonalize to give

W(4) =



λ′1 0 0 0
0 λ′2 0 0
0 0 λ′3 0
0 0 0 0


 ,

where

(λ′1, λ
′
2, λ
′
3) ∈ {(1,1,1), (1,1,0), (1,0,0), (0,0,0), (1,1,−1), (1,−1,0)},

so there are six distinct cases. The exact form of the transformation is unimportant, but the(1,1,0) extension can
be mapped to Case 2 (the transformation is complex,(1,0,0) can be mapped to Case 3(a), and(1,−1,0) can be
mapped to Case 2. Finally the(1,1,1) extension can be mapped to the(1,1,−1) case by a complex transformation.
After transforming that(1,1,−1) case, we are left with

W(4) =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0


 .

These will be called Cases 1(a) and 1(b).

Case 2(θ1 = 0, θ2 = 1). The commutation relations (4.16) reduce toW31
4 = W32

4 = W33
4 = 0, and we have

W(4) =



W11

4 W21
4 0 0

W21
4 W22

4 0 0

0 0 0 0
0 0 0 0


 .

We can removeW21
4 because it is a coboundary (in this case a multiple ofW(3)). We can also rescale appropriately

to obtain four possible extensions:W(4) = 0, and
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W(4) =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 ,




1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


 .

Again, the form of the transformation is unimportant, but it turns out that the first of the above extensions can be
mapped to Case 3(c), and the second and third to Case 3(b). This last transformation is complex. Thus there is only
one independent possibility, the trivial extensionW(4) = 0.

Case 3(θ1 = 1, θ2 = 0). We can removeW11
4 using a coordinate transformation. From the commutation require-

ment (4.16) we obtainW22
4 = W32

4 = 0. We are left withW(3) = 0 and

W(4) =




0 W21
4 W31

4 0

W21
4 0 0 0

W31
4 0 W33

4 0
0 0 0 0


 .

Using the fact that elements of the form(0, α2,0, α4) are an Abelian ideal of this bracket, we find thatW33
4 W31

4 = 0.
Using an upper-triangular transformation we can also makeW21

4 W31
4 = 0. After suitable rescalings we find there

are five cases. One of these,

W(4) =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 ,

may be mapped to Case 4 (below) withθ3 = 0. We are thus left with four cases: the trivial extensions,W(4) = 0,
and

W(4) =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 ,




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 ,




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0


 .

We will refer to these four extensions as Cases 3(a)–(d), respectively (Case 3(a) is the trivial extension).

Case 4(θ1 = 1, θ2 = 1). The elementsW11
4 andW21

4 are coboundaries that can be removed by a coordinate
transformation. From (4.16) we haveW33

4 = W32
4 = 0,W22

4 = W31
4 =: θ3, so that

W(4) =




0 0 θ3 0
0 θ3 0 0
θ3 0 0 0
0 0 0 0


 .

For θ3 = 1 we have the Leibniz extension. The two cases will be referred to as Case 4(a) forθ3 = 0 and 4(b) for
θ3 = 1.

Table 1 summarizes the results. There are are total of nine independentn = 4 extensions, four of which are trivial
(W(4) = 0). As noted in Section 4.5 only the Leibniz extension, Case 4(b), has nonvanishingW(i) for all 1< i ≤ n.

The surprising fact is that even to order four the normal forms of the extensions involve no free parameters: all
entries in the coefficients of the bracket are either zero or one. There is no obvious reason this should hold true if
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Table 1
Enumeration of the independent extensions up ton = 4 (we haveW(1) = 0 for all the cases, and we have left out a row and a column of zeros
at the end of each matrix; we have also omitted cases 1–4(a), for whichW(4) = 0)

Case W(2) W(3) W(4)

b c d

1 (0)

(
0 0
0 0

) 
 0 0 1

0 1 0
1 0 0




2 (0)

(
0 1
1 0

)

3 (1)

(
0 0
0 0

) 
 0 0 0

0 0 0
0 0 1





 0 0 1

0 0 0
1 0 0





 0 1 0

1 0 0
0 0 1




4 (1)

(
0 1
1 0

) 
 0 0 1

0 1 0
1 0 0




we try to classify extensions of ordern > 4. It would be interesting to find out, but the classification scheme used
in this paper becomes prohibitive at such high order. The problem is that some of the transformations used to relate
extensions cannot be systematically derived and were obtained by educated guessing.

5. Casimir invariants for extensions

In this section we will use the bracket extensions of Section 4 to make Lie–Poisson brackets, following the
prescription of Section 2. In Section 5.1 we write down the general form of the Casimir condition (the condition
under which a functional is a Casimir invariant) for a general class of inner brackets. Then in Section 5.2 we see
how the Casimirs separate for a direct sum of algebras, the case discussed in Section 4.1. Section 5.3 discusses the
particular properties of Casimirs of solvable extensions. In Section 5.4 we give a general solution to the Casimir
problem and introduce the concept ofcoextension. Finally, in Section 5.5 we work out the Casimir invariants for
some specific examples, including CRMHD and the Leibniz extension.

5.1. Casimir condition

A generalized Casimir invariant (or Casimir for short) is a functionC : g∗ → R for which

{F,C} ≡ 0,

for all F : g∗ → R. Using (2.1) and (2.4), we can write this as

〈
ξ,

[
δF

δξ
,
δC

δξ

]〉
= −

〈[
δC

δξ
, ξ

]†
,
δF

δξ

〉
.

Since this vanishes for allF we conclude[
δC

δξ
, ξ

]†
= 0. (5.1)
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To figure out the coadjoint bracket corresponding to (2.11), we write

〈ξ, [α, β]〉 = 〈ξλ,Wµν
λ [αµ, βν ]〉,

which after using the coadjoint bracket ofg becomes

〈[β, ξ ]†, α〉 =
〈
W
µν
λ

[
βν, ξ

λ
]†
, αµ

〉

so that

[β, ξ ]†ν = Wµν
λ

[
βµ, ξ

λ
]†
.

We can now write the Casimir condition (5.1) for the bracket by extension as

W
µν
λ

[
δC

δξµ
, ξλ

]†
= 0, ν = 0, . . . , n. (5.2)

We now specialize the bracket to the case of most interested to us, where the inner bracket is of canonical form (2.6).
As we saw in Section 2, this is the bracket for 2D fluid flows. The construction we give here has a finite-dimensional
analogue, where one uses the Cartan–Killing form to map vectors to covectors, but we will not pursue this here (see
[55]). Further, we assume that the form of the Casimir invariants is

C[ξ ] =
∫
Ω

C(ξ(x))d2x, (5.3)

and thus, sinceC does not contain derivatives ofξ , functional derivatives ofC can be written as ordinary partial
derivatives ofC. We can then rewrite (5.2) as

W
µν
λ

∂2C

∂ξµ∂ξσ

[
ξσ , ξλ

] = 0, ν = 0, . . . , n. (5.4)

In the canonical case where the inner bracket is like (2.6) the
[
ξσ , ξλ

]
are independent and antisymmetric inλ and

σ . Thus a necessary and sufficient condition for the Casimir condition to be satisfied is

W
µν
λ

∂2C

∂ξµ∂ξσ
= Wµν

σ

∂2C

∂ξµ∂ξλ
, (5.5)

for λ, σ, ν = 0, . . . , n. Sometimes we shall abbreviate this as

W
µν
λ C,µσ = Wµν

σ C,µλ, (5.6)

that is, any subscriptµ onC following a comma indicates differentiation with respect toξµ. (5.6) is trivially satisfied
whenC is a linear function of theξ ’s. That solution usually follows from special cases of more general solutions,
and we shall only mention it in Section 5.4.2 where it is the only solution.

An important result is immediate from (5.6) for a semidirect extension. Whenever the extension is semidirect
we shall label the variablesξ0, ξ1, . . . , ξn, because the subsetξ1, . . . , ξn then forms a solvable subalgebra (see
Section 4.4 for terminology). For a semidirect extension,W(0) is the identity matrix, and thus (5.6) gives

δ
µ
λ C,µσ = δµσ C,µλ, C,λσ = C,σλ,

which is satisfied because we can interchange the order of differentiation. Hence,ν = 0 does not lead to any
conditions on the Casimir. However, the variablesµ, λ, σ still take values from 0 ton in (5.6).
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5.2. Direct sum

For the direct sum we found in Section 4.1 that if we look at the 3-tensorW as a cube, then it “blocks out” into
smaller cubes, or subblocks, along its main diagonal, each subblock representing a subalgebra. We denote each
subblock ofWµν

λ byWµν
iλ , i = 1, . . . , r, wherer is the number of subblocks. We can rewrite (2.1) as

{A,B} =
r∑
i=1

〈
ξλi ,W

µν
iλ

[
δA

δξ
µ
i

,
δB

δξνi

]〉
=:

r∑
i=1

{A,B}i ,

where i labels the different subblocks and the greek indices run over the size of theith subblock. Each of
the subbrackets{, }i depends on different fields. In particular, if the functionalC is a Casimir, then, for any
functionalF

{F,C} =
r∑
i=1

{F,C}i = 0⇒ {F,C}i = 0, i = 1, . . . , r.

The solution for this is

C[ξ ] = C1[ξ1] + · · · + Cr [ξr ], where{F,Ci}i = 0, i = 1, . . . , r,

that is, the Casimir is just the sum of the Casimir for each subbracket. Hence, the question of finding the Casimirs can
be treated separately for each component of the direct sum. We thus assume we are working on a single degenerate
subblock, as we did for the classification in Section 4, and henceforth we drop the subscripti.

There is a complication when a single (degenerate) subblock has more than one simultaneous eigenvector. By
this we meank vectorsu(a), a = 1, . . . , k, such that

W
µ(ν)
λ u(a)µ = Λ(ν)u(a)λ .

Note that lower-triangular matrices always have at least the simultaneous eigenvectoruµ = δnµ. Letη(a) := u(a)ρ ξρ ,
and consider a formC(η(1), . . . , η(k)) for the Casimir. Then

W
µ(ν)
λ

∂2C

∂ξµ∂ξσ
= Wµ(ν)

λ

k∑
a,b=1

u(a)µ u(b)σ
∂2C

∂η(a)∂η(b)
= Λ(ν)

k∑
a,b=1

u
(a)
λ u(b)σ

∂2C

∂η(a)∂η(b)
.

Because the eigenvalueΛ(ν) does not depend ona (the block was assumed to have degenerate eigenvalues), the
above expression is symmetric inλ andσ . Hence, the Casimir condition (5.5) is satisfied.

The reason this is introduced here is that if a degenerate block splits into a direct sum, then it will have several
simultaneous eigenvectors. The Casimir invariantsC(a)

(
η(a)

)
andC(b)

(
η(b)

)
corresponding to each eigenvector,

instead of adding asC(a)
(
η(a)

)+C(b) (η(b)), will combine into one function,C
(
η(a), η(b)

)
, a more general functional

dependence. However, these situations with more than one eigenvector are not limited to direct sums. For instance,
they occur in semidirect sums. In Section 6 we will see examples of both cases.

5.3. Local Casimirs for solvable extensions

In the solvable case, when all theW(µ)’s are lower-triangular with vanishing eigenvalues, a special situation
occurs. If we consider the Casimir condition (5.4), we notice that derivatives with respect toξn do not occur at all,
sinceW(n) = 0. Hence the functional

C[ξ ] =
∫
Ω

ξn(x′)δ(x − x′)d2x′ = ξn(x)
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is conserved. The variableξn(x) is locally conserved. It cannot have any dynamics associated with it. This holds
true for any other simultaneous null eigenvectors the extension happens to have, but for the solvable caseξn is
always such a vector (provided the matrices have been put in lower-triangular form, of course).

Hence there are at mostn− 1 dynamical variables in an ordern solvable extension. An interesting special case
occurs when the only nonvanishingW(µ) is forµ = n. Then the Lie–Poisson bracket is

{F,G} =
n−1∑
µ,ν=1

Wµν
n

∫
Ω

ξn(x)
[

δF

δξµ(x)
,
δG

δξν(x)

]
d2x,

whereξn(x) is some function of our choosing. This bracket is not what we would normally call Lie–Poisson because
ξn(x) is not dynamical. It gives equations of motion of the form

ξ̇ ν = Wνµ
n

[
δH

δξµ
, ξn

]
,

which can be used to model, for example, advection of scalars in a specified flow given byξn(x). This bracket
occurs naturally when a Lie–Poisson bracket is linearized [26,34].

5.4. Solution of the Casimir problem

We now proceed to find the solution to (5.4). We assume that all theW(µ),µ = 0, . . . , n, are in lower-triangular
form, and that the matrixW(0) is the identity matrix. Although this is the semidirect form of the extension, we will
see that we can also recover the Casimir invariants of the solvable part. We assumeν > 0 in (5.4), sinceν = 0 does
not lead to a condition on the Casimir (Section 5.1). ThereforeWnν

λ = 0. Thus, we separate the Casimir condition
into a part involving indices ranging from 0, . . . , n− 1 and a part that involves onlyn. The condition

n∑
µ,σ,λ=0

W
µν
λ C,µσ

[
ξλ, ξσ

] = 0, ν > 0,

becomes

n∑
λ=0


 n−1∑
µ,σ=0

W
µν
λ C,µσ

[
ξλ, ξσ

]+ n−1∑
µ=0

W
µν
λ C,µn

[
ξλ, ξn

] = 0,

where we have usedWnν
λ = 0 to limit the sum onµ. Separating the sum onλ gives

n−1∑
λ=0


 n−1∑
µ,σ=0

W
µν
λ C,µσ

[
ξλ, ξσ

]+ n−1∑
µ=0

W
µν
λ C,µn

[
ξλ, ξn

]

+
n−1∑
µ,σ=0

Wµν
n C,µσ [ξn, ξσ ] +

n−1∑
µ=0

Wµν
n C,µn[ξ

n, ξn] = 0.

The last sum vanishes because [ξn, ξn] = 0. Now we separate the condition into semisimple and solvable parts,
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n−1∑
µ=1


 n−1∑
λ,σ=0

W
µν
λ C,µσ

[
ξλ, ξσ

]− n−1∑
σ=0

Wµν
σ C,µn[ξ

n, ξσ ] +
n−1∑
σ=0

Wµν
n C,µσ [ξn, ξσ ]




+
n−1∑
λ,σ=0

W0ν
λ C,0σ

[
ξλ, ξσ

] −
n−1∑
σ=0

W0ν
σ C,0n[ξ

n, ξσ ] +
n−1∑
σ=0

W0ν
n C,0σ [ξn, ξσ ] = 0.

UsingW0ν
σ = δνσ , we can separate the conditions into a part forν = n and one for 0< ν < n. Forν = n, the only

term that survives is the last sum

n−1∑
σ=0

C,0σ [ξn, ξσ ] = 0.

Since the commutators are independent, we have the conditions,

C,0σ = 0, σ = 0, . . . , n− 1. (5.7)

and for 0< ν < n,

n−1∑
µ=1


 n−1∑
λ,σ=1

W
µν
λ C,µσ

[
ξλ, ξσ

]− n−1∑
σ=1

Wµν
σ C,µn[ξ

n, ξσ ] +
n−1∑
σ=1

Wµν
n C,µσ [ξn, ξσ ]


− C,0n[ξn, ξν ] = 0,

where we have used (5.7). Using independence of the inner brackets gives

W̃
µν
λ C,µσ = W̃µν

σ C,µλ, (5.8)

gνµC,µσ = W̃ νµ
σ C,µn + δνσC,0n, (5.9)

for 0< σ, λ, ν, µ < n. From now on in this section repeated indices are summed, and all greek indices run from 1
to n− 1 unless otherwise noted. We have written a tilde over theW ’s to stress the fact that the indices run from 1
to n− 1, so that theW̃ represent a solvable order(n− 1) subextension ofW . This subextension does not include
W(n). We have also made the definition

gµν := Wµν
n . (5.10)

Eq. (5.8) is a Casimir condition: it says thatC is also a Casimir ofW̃ . We now proceed to solve (5.9) for the case
whereg is nonsingular. In Section 5.4.2 we will solve the singularg case. We will see that in both cases (5.8) follows
from Eq. (5.9).

5.4.1. Nonsingularg
The simplest case occurs wheng has an inverse, which we will callgµν . Then (5.8) has the solution

C,τσ = AµτσC,µn + gτσC,0n, (5.11)

where

Aµτσ := gτνW̃ νµ
σ . (5.12)

It is easily verified thatAµτσ = Aµστ , as required by the symmetry of the left-hand side of (5.11).
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In (5.11), it is clear that thenth variable is “special”; this suggests that we try the following form for the Casimir:

C(ξ0, ξ1, . . . , ξn) =
∑
i≥0

D(i)(ξ0, ξ1, . . . , ξn−1)fi(ξ
n), (5.13)

wheref is arbitrary andfi is theith derivative off with respect to its argument. One immediate advantage of this
form is that (5.8) follows from (5.9). Indeed, taking a derivative of (5.8) with respect toξλ, inserting (5.13), and
equating derivatives off leads to

gνµD(i),µσλ = W̃ νµ
σ D

(i+1)
,µλ ,

where we have used (5.7). Since the left-hand side is symmetric inλ andσ then so is the right-hand side, and (5.8)
is satisfied.

Now, inserting the form of the Casimir (5.13) into the solution (5.11), we can equate derivatives off to obtain,
for τ, σ = 1, . . . , n− 1,

D(0),τσ = 0, τ, σ = 1, . . . , n− 1, (5.14)

D(i),τσ = AµτσD(i−1)
,µ + gτσD(i−1)

,0 , i ≥ 1. (5.15)

The first condition, together with (5.7), says thatD(0) is linear inξ0, . . . , ξn−1. There are no other conditions on
D(0), so we can obtainn independent solutions by choosing

D(0)ν = ξν, ν = 0, . . . , n− 1. (5.16)

The equation forD(1)ν is

D(1)ν,τσ =
{
gτσ , ν = 0,
Aντσ , ν = 1, . . . , n− 1.

(5.17)

ThusD(1)ν is a quadratic polynomial (the arbitrary linear part does not yield an independent Casimir, so we set it to
zero). Note thatD(1)ν does not depend onξ0 sinceτ, σ = 1, . . . , n− 1. Hence, fori > 1 we can drop theD(i−1)

,0
term in (5.14). Taking derivatives of (5.14), we obtain

D(i)ν,τ1τ2...τ(i+1)
= Aµ1

τ1τ2
Aµ2
µ1τ3
· · ·Aµ(i−1)

µ(i−2)τiD
(1)ν
,µ(i−1)τ(i+1)

. (5.18)

We know the series will terminate because theW̃ (µ), and hence theA(µ), are nilpotent. The solution to (5.18) is

D(i)ν = 1

(i + 1)!
D(i)ντ1τ2...τ(i+1)

ξ τ1ξτ2 · · · ξτ(i+1) , i > 1, (5.19)

where the constantsD are defined by

D(i)ντ1τ2...τ(i+1)
:= Aµ1

τ1τ2
Aµ2
µ1τ3
· · ·Aµ(i−1)

µ(i−2)τiD
(1)ν
,µ(i−1)τ(i+1)

. (5.20)

In summary, theD(i)’s of (5.13) are given by (5.16), (5.17) and (5.19).
Because the left-hand side of (5.18) is symmetric in all its indices, we require

AµτσA
ν
µλ = AµτλAνµσ , i > 1. (5.12)

This is automatically satisfied for the nonsingularg case [55]. Comparing this to (2.13), we see that theA’s satisfy
all the properties of an extension, except with the dual indices. Thus we call theA’s the coextensionof W̃ with
respect tog. Essentiallyg serves the role of a metric that allows us to raise and lower indices.
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For a solvable extension we simply restrictν > 0 and the above treatment still holds. We conclude that the
Casimirs of the solvable part of a semidirect extension are Casimirs of the full extension. We have also shown, for
the case of nonsingularg, that the number of independent Casimirs is equal to the order of the extension.

5.4.2. Singularg
In general,g is singular and thus has no inverse. However, it always has a (symmetric and unique) pseudoinverse

gµν such that

gµσ g
στ gτν = gµν, (5.22)

gµσ gστ g
τν = gµν. (5.23)

The pseudoinverse is also known as the strong generalized inverse or the Moore–Penrose inverse [56]. It follows
from (5.22) and (5.23) that the matrix operator

P ντ := gνκgκτ
projects onto the range ofg. The system (5.9) only has a solution if the following solvability condition is satisfied:

P ντ (W̃
τµ
σ C,µn + δτσC,0n) = W̃ νµ

σ C,µn + δνσC,0n, (5.24)

that is, the right-hand side of Eq. (5.9) must live in the range ofg.
If C,0n 6= 0, the quantityW̃ νµ

σ C,µn+δνσC,0n has rank equal ton, because the quantitỹWνµ
σ C,µn is lower-triangular

(it is a linear combination of lower-triangular matrices). Hence the projection operator must also have rankn. But
then this implies thatg has rankn and so is nonsingular, which contradicts the hypothesis of this section. Hence,
C,0n = 0 for the singularg case, which together with (5.7) means that a Casimir that depends onξ0 can only be
of the formC = f (ξ0). However, sinceξ0 is not an eigenvector of theW(µ)’s, the only possibility isC = ξ0, the
trivial linear case mentioned in Section 5.1.

The solvability condition (5.24) can thus be rewritten as

(P ντ W̃
τµ
σ − W̃ νµ

σ )C,µn = 0. (5.25)

An obvious choice would be to requireP ντ W̃
τµ
σ = W̃ νµ

σ , but this is too strong. We will derive a weaker requirement
shortly.

By an argument similar to that of Section 5.4.1, we now assumeC is of the form

C(ξ1, . . . , ξn) =
∑
i≥0

D(i)(ξ1, . . . , ξn−1)fi(ξ
n), (5.26)

where againfi is theith derivative off with respect to its argument. As in Section 5.4.1, we only need to show
(5.9) and (5.8) will follow. The number of independent solutions of (5.9) is equal of the rank ofg. The choice

D(0)ν = P νρ ξρ, ν = 1, . . . , n− 1, (5.27)

provides the right number of solutions because the rank ofP is equal to the rank ofg. It also properly specializes
to (5.16) wheng is nonsingular, for thenP νρ = δνρ .

The solvability condition (5.25) with this form for the Casimir becomes

(P ντ W̃
τµ
σ − W̃ νµ

σ )D(i)ν,µ = 0, i ≥ 0. (5.28)

For i = 0 the condition can be shown to simplify to

P ντ W̃
τµ
σ = W̃ ντ

σ P
µ
τ ,
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or to the equivalent matrix form

P W̃(σ) = W̃(σ)P , (5.29)

sinceP is symmetric [56].
Eq. (5.9) becomes

gκµD(0)ν,µσ = 0, gκµD(i)ν,µσ = W̃ κµ
σ D

(i−1)ν
,µ , i > 0.

If (5.25) is satisfied, we know this has a solution given by

D(i)ν,λσ = gλρW̃ρµ
σ D

(i−1)ν
,µ + (δµλ − gλρgρµ)E (i−1)ν

µσ , i > 0,

whereE is arbitrary, and(δµλ −gλρgρµ) projects onto the null space ofg. The left-hand side is symmetric inλ andσ ,
but not the right-hand side. We can symmetrize the right-hand side by an appropriate choice of the null eigenvector,

E (i)νλσ := gσρW̃ρµ
λ D

(i)ν
,µ , i ≥ 0,

in which case

D(i)ν,λσ = AµλσD(i−1)ν
,µ , i > 0,

where

Aνλσ := gσρW̃ρν
λ + gλρW̃ρν

σ − gλρgσκgρµW̃ κν
µ , (5.30)

which is symmetric inλ andσ . Eq. (5.30) also reduces to (5.12) wheng is nonsingular, for then the null eigenvector
vanishes. The full solution is thus given in the same manner as (5.18) by

D(i)ν = 1

(i + 1)!
D(i)ντ1τ2...τ(i+1)

ξ τ1ξτ2 · · · ξτ(i+1) , i > 0, (5.31)

where the constantsD are defined by

D(i)ντ1τ2...τ(i+1)
:= Aµ1

τ1τ2
Aµ2
µ1τ3
· · ·Aµ(i−1)

µ(i−2)τiA
µi
µ(i−1)τ(i+1)

P νµi , (5.32)

andD(0) is given by (5.27).
TheA’s must still satisfy the coextension condition (5.12). Unlike the nonsingular case this condition does not

follow directly and is an extra requirement in addition to the solvability condition (5.28). Note that only thei = 0
case, Eq. (5.29), needs to be satisfied, for then (5.28) follows. Both these conditions are coordinate-dependent, and
this is a drawback. Nevertheless, we have found in obtaining the Casimir invariants for the low-order brackets that
if these conditions are not satisfied, then the extension is a direct sum and the Casimirs can be found by the method
of Section 5.2. However, this has not been proven rigorously.

5.5. Examples

We now illustrate the methods developed for finding Casimirs with a few examples. First we treat our prototypical
case of CRMHD, and give a physical interpretation of invariants. Then, we derive the Casimir invariants for Leibniz
extensions of arbitrary order. Finally, we give an example involving a singularg.
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5.5.1. Compressible reduced MHD
TheW tensors representing the bracket for CRMHD (see Section 2.2.4) were given in Section 2.3.2. We have

n = 3, so from (5.10) we get

g =
(

0 −βi
−βi 0

)
, g−1 =

(
0 −β−1

i

−β−1
i 0

)
.

In this case, the coextension is trivial: all three matricesA(ν) defined by (5.12) vanish. Using (5.13) and (5.16), with
ν = 1 and 2, the Casimirs for the solvable part are

C1 = ξ1g(ξ3) = vg(ψ), C2 = ξ2h(ξ3) = ph(ψ),
and the Casimir associated with the eigenvectorξ3 is

C3 = k(ξ3) = k(ψ).
Sinceg is nonsingular we also get another Casimir from the semidirect sum part,

C0 = ξ0f (ξ3)− 1

βi
ξ1ξ2f ′(ξ3) = ωf (ψ)− 1

βi
pvf ′(ψ).

The physical interpretation of the invariantC3 is given in Morrison [24] and Thiffeault and Morrison [21].
This invariant implies the preservation of contours ofψ , so that the valueψ0 on a contour labels that contour
for all times. This is a consequence of the lack of dissipation and the divergence-free nature of the velocity.
SubstitutingC3(ψ) = ψk we also see that all the moments of the magnetic flux are conserved. By choosingC3(ψ) =
2(ψ(x) − ω0), a heavyside function, and inserting into (5.3), it follows that the area inside of anyψ-contour is
conserved.

To understand the CasimirsC1 andC2, we also letg(ψ) = 2(ψ − ψ0) in C1. In this case, we have

C1[v;ψ ] =
∫
Ω

v g(ψ)d2x =
∫
ψ0

v(x)d2x,

whereΨ0 represents the (not necessarily connected) region ofΩ enclosed by the contourψ = ψ0 and∂Ψ0 is
its boundary. By the interpretation we gave ofC3, the contour∂Ψ0 moves with the fluid. So the total value ofv
inside of aψ-contour is conserved by the flow. The same is true of the pressurep. (See Thiffeault and Morrison
[21] for an interpretation of these invariants in terms of relabeling symmetries, and a comparison with the rigid
body.)

The total pressure and parallel velocity inside of anyψ-contour are preserved. To understandC4, we use the fact
thatω = ∇2φ and integrate by parts to obtain

C4[w, v, p,ψ ] = −
∫
Ω

(
∇φ · ∇ψ + vp

βi

)
f ′(ψ)d2x.

The quantity in parentheses is thus invariant inside of anyψ-contour. It can be shown that this is a remnant of the
conservation by the full MHD model of the cross helicity,

V =
∫
Ω

v · B d2x,

at second order in the inverse aspect ratio, while the conservation ofC1[v;ψ ] is a consequence of preservation of
this quantity at first order. HereB is the magnetic field. The quantitiesC3[ψ ] andC2[p;ψ ] they are, respectively,
the first and second order remnants of the preservation of helicity,
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W =
∫
Ω

A · B d2x,

whereA is the magnetic vector potential.

5.5.2. Leibniz extension
We first treat the nilpotent case. The Leibniz extension of Section 4.5 can be characterized by

W
µν
λ = δµ+νλ , µ, ν, λ = 1, . . . , n, (4.13)

where the tensorδ is the ordinary Kronecker delta. Upon restricting the indices to run from 1 ton − 1 (the tilde
notation of Section 5.4), we have

gµν = W̃µν
n = δµ+νn , µ, ν = 1, . . . , n− 1.

The matrixg is nonsingular with inverse equal to itself:gµν = δnµ+ν . The coextension of̃W is thus

Aµτσ =
n−1∑
ν=1

gτνW̃
νµ
σ =

n−1∑
ν=1

δnτ+νδ
ν+µ
σ = δµ+nτ+σ .

Eq. (5.20) becomes

D(i)ντ1τ2...τ(i+1)
=Aµ1

τ1τ2
Aµ2
µ1τ3
· · ·Aµ(i−1)

µ(i−2)τiA
ν
µ(i−1)τ(i+1)

= δµ1+n
τ1+τ2δ

µ2+n
µ1+τ3 · · · δ

µ(i−1)+n
µ(i−2)+τi δ

ν+n
µ(i−1)+τ(i+1)

= δν+inτ1+τ2+···+τ(i+1)
, ν = 1, . . . , n− 1,

which, as required, is symmetric under interchage of theτi . Using (5.13), (5.16), (5.17) and (5.19) we obtain the
n− 1 Casimir invariants

Cν(ξ1, . . . , ξn) =
∑
i≥0

1

(i + 1)!
δν+inτ1+τ2+···+τ(i+1)

ξ τ1 · · · ξτ(i+1)f νi (ξ
n), (5.33)

for ν = 1, . . . , n− 1. The superscriptν onf indicates that the arbitrary function is different for each Casimir, and
recall the subscripti denotes theith derivative with respect toξn. Thenth invariant is simplyCν(ξn) = f n(ξn),
corresponding to the null eigenvector in the system. Thus there aren independent Casimirs, as stated in Section
5.4.1.

For the Leibniz semidirect sum case, sinceg is nonsingular, there will be an extra Casimir given by (5.33) with
ν = 0, and theτi sums run from 0 ton−1. This is the same form as theν = 1 Casimir of the order(n+1) nilpotent
extension.

For theith term in (5.33), the maximal value of anyτj is achieved when all but one (say,τ1) of theτj are equal
to n− 1, their maximum value. In this case we have

τ1+ τ2+ · · · + τi+1 = τ1+ i(n− 1) = ν + in,
so thatτ1 = i+ν. Hence, theith term depends only on(ξν+i , . . . , ξn), and theνth Casimir depends on(ξν, . . . , ξn).
Also,

max(τ1+ · · · + τi+1) = (i + 1)(n− 1) = ν + in,
which leads to maxi = n − ν − 1. Thus the sum Eq. (5.33) terminates, as claimed in Section 5.4.1. We rewrite
(5.33) in the more complete form
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Table 2
Casimir invariants for Leibniz extensions up to ordern = 5 (ν = 1) (the primes denote derivatives)

n Invariant

1 f (ξ1)

2 ξ1f (ξ2)

3 ξ1f (ξ3)+ 1
2(ξ

2)2f ′(ξ3)

4 ξ1f (ξ4)+ ξ2ξ3f ′(ξ4)+ 1
3! (ξ

3)3f ′′(ξ4)

5 ξ1f (ξ5)+ (ξ2ξ4 + 1
2(ξ

3)2)f ′(ξ5)+ 1
2ξ

3(ξ4)2f ′′(ξ5)+ 1
4! (ξ

4)4f ′′ ′(ξ5)

Cν(ξν, . . . , ξn) =
n−ν∑
k=1

1

k!
δ
ν+(k−1)n
τ1+τ2+···+τk ξ

τ1 · · · ξτkf νk−1(ξ
n),

for ν = 0, . . . , n. Table 2 gives theν = 1 Casimirs up to ordern = 5.

5.5.3. Singularg
Now considern = 4 extension from Section 4.6.4, Case 3(c). We have

W̃(2) =

 1 0 0

0 0 0
0 0 0


 , g =


 0 0 1

0 0 0
1 0 0


 ,

with W̃(1) = W̃(3) = 0. The pseudo inverse ofg is g−1 = g and the projection operator is

P ντ := gνκgκτ =

 1 0 0

0 0 0
0 0 1


 .

The solvability condition (5.29) is obviously satisfied. We build the coextension given by (5.30), which in matrix
form is

A(ν) = W̃ (ν)g−1+ (W̃ (ν)g−1)T − g−1gW̃ (ν)g−1,

to obtain

A(1) =

 0 0 0

0 0 1
0 1 0


 , A(2) = A(3) = 0.

These are symmetric and obviously satisfy (5.12), so we have a good coextension. Using (5.26), (5.27), (5.31) and
(5.32) we can write, forν = 1 and 3,

C1 = ξ1f (ξ4)+ ξ2ξ3f ′(ξ4), C3 = ξ3g(ξ4).

This extension has two null eigenvectors, so from Section 5.2 we also have the Casimirh(ξ2, ξ4). The functionsf ,
g, andh are arbitrary, and the prime denotes differentiation with respect to argument.

6. Casimir invariants for low-order extensions

Using the techniques developed so far, we now find the Casimir invariants for the low-order extensions classified
in Section 4.6. We first find the Casimir invariants for the solvable extensions, since these are also invariants for the
semidirect sum case. Then, we obtain the extra Casimir invariants for the semidirect case, when they exist.
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Table 3
Casimir invariants for solvable extensions of ordern = 3

Case Invariant

1 C(ξ1, ξ2, ξ3)

2 ξ1f (ξ3)+ ξ2g(ξ3)+ h(ξ3)

3 ξ1f (ξ2)+ g(ξ2, ξ3)

4 ξ1f (ξ3)+ 1
2(ξ

2)2f ′(ξ3)+ ξ2g(ξ3)+ h(ξ3)

6.1. Solvable extensions

Now we look for the Casimirs of solvable extensions. As mentioned in Section 5.3, the Casimirs associated with
null eigenvectors (the only kind of eigenvector for solvable extensions) are actually conserved locally. We shall
still write them in the formC = f (ξn), whereC is as in (5.3), so they have the correct form as invariants for the
semidirect case of Section 6.2 (for which they are no longer locally conserved).

6.1.1. n=1
Since the bracket is Abelian, any functionC = C(ξ1) is a Casimir.

6.1.2. n=2
For the Abelian case we haveC = C(ξ1, ξ2). The only other case is the Casimir of the Leibniz extension,

C(ξ1, ξ2) = ξ1f (ξ2)+ g(ξ2).

6.1.3. n=3
As shown in Section 4.6.3, there are four cases. Case 1 is the Abelian case, for which any functionC =
C(ξ1, ξ2, ξ3) is a Casimir. Case 2 is essentially the solvable part of the CRMHD bracket, which we treated in
Section 5.5.1. Case 3 is a direct sum of the Leibniz extension forn = 2, which has the bracket

[(α1, α2), (β1, β2)] = (0, [α1, β1]),

with the Abelian algebra [α3, β3] = 0. Hence, the Casimir invariant is the same as for then = 2 Leibniz extension
with the extraξ3 dependence of the arbitrary function (see Section 5.2). Finally, Case 4 is the Leibniz Casimir.
These results are summarized in Table 3.

Cases 1 and 3 are trivial extensions, that is, the cocycle appended to then = 2 case vanishes. The procedure of
then addingξn dependence to the arbitrary function works in general.

6.1.4. n=4
As shown in Section 4.6.4, there are nine cases to consider. We shall proceed out of order, to group together

similar Casimir invariants.
Cases 1(a), 2, 3(a), and 4(a) are trivial extensions, and as mentioned in Section 6.1.3 they involve only addition

of ξ4 dependence to theirn = 3 equivalents. Case 3(b) is a direct sum of twon = 2 Leibniz extensions, so the
Casimirs add.

Case 3(c) is the semidirect sum of then = 2 Leibniz extension with an Abelian algebra defined by [(α3, α4), (β3, β4)] =
(0,0), with action given by

ρ(α1,α2)(β3, β4) = (0, [α1, β3]).

The Casimir invariants for this extension were derived in Section 5.5.3.
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Table 4
Casimir invariants for solvable extensions of ordern = 4

Case Invariant

1(a) C(ξ1, ξ2, ξ3, ξ4)

1(b) ξ1f (ξ4)+ ξ2g(ξ4)+ ξ3h(ξ4)+ k(ξ4)

2 ξ1f (ξ3)+ ξ2g(ξ3)+ h(ξ3, ξ4)

3(a) ξ1f (ξ2)+ g(ξ2, ξ3, ξ4)

3(b) ξ1f (ξ2)+ ξ3g(ξ4)+ h(ξ2, ξ4)

3(c) ξ1f (ξ4)+ ξ2ξ3f ′(ξ4)+ ξ3g(ξ4)+ h(ξ2, ξ4)

3(d) ξ1f (ξ4)+ 1
2(ξ

2)2f ′(ξ4)+ ξ3g(ξ4)+ ξ2h(ξ4)+ k(ξ4)

4(a) ξ1f (ξ3)+ 1
2(ξ

2)2f ′(ξ3)+ ξ2g(ξ3)+ h(ξ3, ξ4)

4(b) ξ1f (ξ4)+ ξ2ξ3f ′(ξ4)+ 1
3! (ξ

3)3f ′′(ξ4)

+ξ2g(ξ4)+ 1
2(ξ

3)2g′(ξ4)+ ξ3h(ξ4)+ k(ξ4)

Case 3(d) has a nonsingularg, so the techniques of Section 5.4.1 can be applied directly.
Finally, Case 4(b) is then = 4 Leibniz extension, the Casimir invariants of which were derived in Section 5.5.2.

The invariants are all summarized in Table 4.

6.2. Semidirect extensions

Now that we have derived the Casimir invariants for solvable extensions, we look at extensions involving the
semidirect sum of an algebra with these solvable extensions. We label the new variable (the one which acts on the
solvable part) byξ0. In Section 5.4.1 we showed that the Casimirs of the solvable part were also Casimirs of the
full extension. We also concluded that a necessary condition for obtaining a new Casimir (other than the linear case
C(ξ0) = ξ0) from the semidirect sum was that detW(n) 6= 0. We go through the solvable cases and determine the
Casimirs associated with the semidirect extension, if any exist.

6.2.1. n=1
There is only one solvable extension, so upon appending a semidirect part we have

W(0) =
(

1 0
0 0

)
, W(1) =

(
0 1
1 0

)
.

Since detW(1) 6= 0, we expect another Casimir. In fact this extension is of the semidirect Leibniz type and has the
same Casimir form as then = 2 solvable Leibniz (Section 5.5.2) extension. Thus, the new Casimir is justξ0f (ξ1).

6.2.2. n=2
Of the two possible extensions only the Leibniz one satisfies detW(2) 6= 0. The Casimir is thus

Csd= ξ0f (ξ2)+ 1
2(ξ

1)2f ′(ξ2).

6.2.3. n=3
Cases 2 and 4 have a nonsingularW(3). The Casimir for Case 2 is

Csd= ξ0f (ξ3)+ ξ1ξ2f ′(ξ3),

and for Case 4 it is of the Leibniz form

Csd= ξ0f (ξ3)+ ξ1ξ2f ′(ξ3)+ 1

3!
(ξ2)3f ′′(ξ3).
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Table 5
Casimir invariants for semidirect extensions of ordern = 5 (these extensions also possess the corresponding Casimir invariants in Table 4)

Case Invariant

1b ξ0f (ξ4)+ (ξ1ξ3 + 1
2(ξ

2)2)f ′(ξ4)

3d ξ0f (ξ4)+ (ξ1ξ2 + 1
2(ξ

3)2)f ′(ξ4)+ 1
3! (ξ

2)3f ′′(ξ4)

4b ξ0f (ξ4)+ (ξ1ξ3 + 1
2(ξ

2)2)f ′(ξ4)+ 1
2ξ

2(ξ3)2f ′′(ξ4)+ 1
4! (ξ

3)4f ′′ ′(ξ4)

6.2.4. n=4
Cases 1(b), 3(d), and 4(b) have a nonsingularW(4). The Casimirs are shown in Table 5.

7. Discussion

Using the tools of Lie algebra cohomology, we have classified low-order extensions. We found that there were
only a few normal forms for the extensions, and that they involved no free parameters. This is not expected to carry
over to higher orders (n > 4). The classification includes the Leibniz extension, which is the maximal extension.
One of the normal forms is the bracket appropriate to compressible reduced MHD [17,48].

We then developed techniques for finding the Casimir invariants of Lie–Poisson brackets formed from Lie algebra
extensions. We introduced the concept of coextension, which allows one to explicitly write down the solution of the
Casimirs. The coextension for the Leibniz extension can be found for arbitrary order, so that we were able obtain
the corresponding Casimirs in general.

It would be interesting to generalize the classification scheme presented here to a completely general form of
extension bracket [5,10]. Certainly the type of coordinate transformations allowed would be more limited, and
perhaps one cannot go any futher than cohomology theory allows.

The interpretation of the Casimir invariants can be pushed further, both in a mathematical and a physical sense.
Mathematically, a precise geometrical relation between cocycles and the form of the Casimirs could be formulated.
The cocycle and Casimirs should yield information about the holonomy of the system. For this one must study the
extensions in the framework of their principal bundle description [29]. Physically we would like to attach a more
precise physical meaning to these conserved quantities. The invariants associated with simultaneous eigenvectors
can be regarded as constraining the associated field variable to move with the fluid elements [24]. The field variable
can also be interpreted as partially labeling a fluid element. Some attempt has been made at formulating the Casimir
invariants of brackets in such a manner [6,21], and an interpretation of cocycles in the context of dynamical
accessiblity has been offered [55].

Sufficient conditions for stability can be obtained via the energy–Casimir method [22,24,25], or the related
technique of dynamical accessibility [26,57]. In both these case, we can make use of the coextension to derive the
stability conditions for Lie–Poisson bracket extensions and a large class of Hamiltonians [55].
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Appendix A. Proof ofW(1) = IW(1) = IW(1) = I

Out goal is to demonstrate that through a series of lower-triangular coordinate transformations we can make
W(1) (which has ann-fold degenerate eigenvalue equal to unity) equal to the identity matrix, while preserving the
lower-triangular nilpotent form ofW(2), . . . ,W(n).

We first show that we can always make a series of coordinate transformations to makeW11
λ = δ1

λ. First note that
if the coordinate transformationM is of the formM = I + L, whereI is the identity andL is lower-triangular
nilpotent, thenW̃ (1) = M−1W(1)M still has eigenvalue 1, and forµ > 1 theW̃ (µ) = M−1W(µ)M are still nilpotent.

Forλ > 1 we have

W̄11
λ = W̃11

λ + W̃1ν
λ L

1
ν = W̃11

λ +
λ−1∑
ν=2

W̃1ν
λ L

1
ν + L1

λ, (A.1)

where we usedW̃1λ
λ = 1. Owing to the triangular structure of the set of (A.1) we can always solve for theL1

λ to
makeW̄11

λ vanish. This proves the first part.
We now show by induction that ifW11

λ = δ1
λ, as proved above, thenW(1) is the identity matrix. Forλ = 1 the

result is trivial. Assume thatW1ν
µ = δνµ, for µ < λ. Setting two of the free indices to one, Eq. (2.13) can be written

as

W
µ1
λ W1σ

µ = Wµσ
λ W11

µ = Wµσ
λ δ1

µ = W1σ
λ .

SinceW(1) is lower-triangular the indexµ runs from 2 toλ (since we are assumingλ > 1):

λ∑
µ=2

W
µ1
λ W1σ

µ = W1σ
λ ,

and this can be rewritten, forσ < λ,

λ−1∑
µ=2

W
µ1
λ W1σ

µ = 0.

Finally, we use the inductive hypothesis

λ−1∑
µ=2

W
µ1
λ δσµ = Wσ1

λ = 0,

which is valid forσ < λ. Hence,Wσ1
λ = δσλ and we have proved the result. (Wλ1

λ must be equal to one since it lies
on the diagonal and we have already assumed degeneracy of eigenvalues.)
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