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Abstract

We classify Lie—Poisson brackets that are formed from Lie algebra extensions. The problem is relevant because many
physical systems owe their Hamiltonian structure to such brackets. A classification involves reducing all brackets to a set of
normal forms, and is achieved partially through the use of Lie algebra cohomology. For extensions of order less than five,
the number of normal forms is small and they involve no free parameters. We derive a general method of finding Casimir
invariants of Lie—Poisson bracket extensions. The Casimir invariants of all low-order brackets are explicitly computed. We
treat in detail a four field model of compressible reduced magnetohydrodynamics. ©2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

This paper deals with the classification of Lie—Poisson brackets obtained from extensions of Lie algebras. A large
class of finite- and infinite-dimensional dynamical equations admit a Hamiltonian formulation using noncanonical
brackets of the Lie—Poisson type. Finite-dimensional examples include the Euler equations for the rigid body [1]
and the moment reduction of the Kida vortex [2], while infinite-dimensional examples include the Vlasov equation
[3,4] and the Euler equation for the ideal fluid [5-9]. Lie—Poisson brackets naturally define a Poisson structure (i.e.,
a symplectic structure) on the dual of a Lie algebra. For the rigid body, the Lie algebra is the one associated with
the rotation groups$ O(3), while for the Kida vortex moment reduction the underlying grou§dy2,1). For the
two-dimensional ideal fluid, the relevant Lie algebra corresponds to the group of volume-preserving diffeomorphisms
on the fluid domain.

We will classify low-order bracket extensions and find their Casimir invariants. An extension is simply a new Lie
bracket, derived from a base algebra (for examp®(3)), and defined on-tuples of that algebra. We are ruling
out extensions where the brackets that appear are not of the same form as that of the base algebra. We are thus
omitting some brackets [5,10], but the brackets we are considering are amenable to a general classification.
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The method of extension yields interesting and physically relevant algebras. Using this method we can de-
scribe finite-dimensional systems of several variables and infinite- dimensional systems of several fields. For
finite-dimensional systems an example is the two vector model of the heavy top [11]. For infinite-dimensional
systems there are models with two [12—-14], three [12,15,16], and four [17] fields. Knowing the bracket allows one
to find the Casimir invariants of the system [18-20]. These are quantities which commute with every functional on
the Poisson manifold, and thus are conserved by the dynamics for any Hamiltonian. They are useful for analyzing
the constraints in the system [21] and for establishing stability criteria (see for example [22—24] and the reviews
[25] and [26]).

The outline of this paper is as follows. In Section 2, we review the general theory behind Lie—Poisson brackets.
We give examples of physical systems of Lie—Poisson type, both finite- and infinite-dimensional. We introduce the
concept of Lie algebra extensions and derive some of their basic properties. Section 3 is devoted to the more abstract
treatment of extensions through the theory of Lie algebra cohomology [27—29]. We define some terminology and
special extensions such as the semidirect sum and the Leibniz extension. In Section 4, we use the cohomology
techniques to treat the specific type of extension with which we are concerned, bracketduples. We give an
explicit classification of low-order extensions. By classifying we mean reducing — through coordinate changes —
all possible brackets to independent normal forms. We find that the normal forms are relatively few and involve
no free parameters — at least for low-order extensions. In Section 5, we turn to the problem of finding the Casimir
invariants of the brackets, those functionals that commute with every other functional in the algebra. We derive some
general techniques for doing so that apply to extensions of any order. Some explicit examples are derived, including
the Casimir invariants of a particular model of magnetohydrodynamics (MHD). These are also given a physical
interpretation. A formula for the invariants of Leibniz extenions of any order is also derived. Then in Section 6 we
use the classification of Section 4 to derive the Casimir invariants for low-order extensions. Finally in Section 7 we
offer some concluding remarks and discuss future directions.

2. Lie—Poisson brackets

Lie—Poisson brackets define a natural Poisson structure on duals of Lie algebras. Physically, they often arise in the
reductionof a system. For our purposes, a reduction is a mapping of the dynamical variables of a system to a smaller
set of variables, such that the transformed Hamiltonian and bracket depend only on the smaller set of variables. (For
a more detailed mathematical treatment, see for example [30—34].) The simplest example of a reduction is the case
in which a cyclic variable is eliminated, but more generally a reduction exists as a consequence of an underlying
symmetry of the system. For instance, the Lie—Poisson bracket for the rigid body is obtained from a reduction of
the canonical Euler angle description using the rotational symmetry of the system [11]. The Euler equation for the
two-dimensional ideal fluid is obtained from a reduction of the Lagrangian description of the fluid, which has a
relabeling symmetry [26,35-37].

Here, we shall take a more abstract viewpoint: we do not assume that the Lie—Poisson bracket is obtained from a
reduction, though it is always possible to do so by the method of Clebsch variables [26]. Rather we proceed directly
from a given Lie algebra to build a Lie—Poisson bracket. The choice of algebra can be guided by the symmetries of
the system. After deriving the basic theory behind Lie—Poisson brackets in Section 2.1, we will show some explicit
examples in Section 2.2. We then describe general Lie algebra extensions in Section 2.3.

2.1. Lie—Poisson brackets on duals of Lie Algebras

We begin by taking the Lie algebgaassociated with some Lie group. The Lie group might be chosen to reflect
the symmetries of a physical system. There will be a Lie brackefg[%:g — g associated witly. Consider the
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dual g* of g with respect to the pairing, ) : g* x g — R. Then for real-valued functionalg and G, that is,
F,G:g* — R, and¢ € g*, we can define

SF 8G
F,G =+{& | —,— ). 21
(r.61s® =% (5. 3 52 |) @)
The sign choice comes from whether we are considering right invargnor(left invariant &) functions on the

cotangent bundle of the Lie group [9,34], but for our purposes we simply choose the sign as needed. The functional

derivatives F /5¢ is defined by
=: <8£;‘, 8—F> (2.2)
e=0

8¢

We shall refer to the bracket [, ] as the inner bracket and to the brackets the Lie—Poisson bracket. The dual
g* together with the Lie—Poisson bracket is a Poisson manifold; that is, the bfg¢ksta Lie algebra structure
on real-valued functionals that is a derivation in each of its arguments. For finite-dimensional groups, Eq. (2.1) was
first written down by Lie [38] and was rediscovered by Berezin [39]; it is also closely related to work of Arnold
[40], Kirillov [41], Kostant [42], and Souriau [43].

The bracket irg is the same as the adjoint actiongbn itself: [x, 8] = ad, 8, wherea, 8 € g. From this we

define the coadjoint action gcbf gong* by

d
SF[&:88] := —F[§ + €bE]

(adlz. ) = (&, ad,p). 2.3)
where¢ € g*. We also define the coadjoint bracketJ[,:]g x g* — g* by o, S]T = adj:g, so that

(o €17, 8) = (. [0, B); (2.4)

the bracket,[]Jr satisfies the identity

(e 61T, 8) = —(18. 1T, o).

Since the inner bracket is Lie, it satisfies the Jacobi identity, and consequently the form given by (2.1) for the
Lie—Poisson bracket will automatically satisfy the Jacobi identity ([44], p. 614).
Given a HamiltoniarH : g* — R, the equation of motion fof € g* is

T t
. 0H 0H oH

whereA is a Kronecker or Dirac delta, or a combination of both for an infinite-dimensional system of several fields.
2.2. Examples of Lie—Poisson systems

We will say that a physical systems can be described by a given Lie—Poisson bracket and Hamiltonian if its
equations of motion can be written as (2.5); the system is then said to be Hamiltonian of the Lie—Poisson type. We give
four examples: the firstis finite-dimensional (the free rigid body, Section 2.2.1) and the second is infinite-dimensional
(Euler’s equation for the ideal fluid, Section 2.2.2). The third and fourth examples are also infinite-dimensional and
serve to introduce the concept of extension. They are low—beta reduced magnetohydrodynamics (MHD) in Section
2.2.3 and compressible reduced MHD in Section 2.2.4. These last two examples are meant to illustrate the physical
relevance of Lie algebra extensions.
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2.2.1. The free rigid body
The classic example of a Lie—Poisson bracket is obtained by takingtfar Lie algebra of the rotation group
SO(3). If the &y denote a basis af = so(3), the Lie bracket is given by
(&), &j)] = < &w

wherecf‘j = ¢;jx are the structure constants of the algebra, in this case the totally antisymmetric symbol. Using as
a pairing the usual contraction between upper and lower indices, with (2.1) we are led to the Lie—Poisson bracket

af dg

k
ol = —ck g — ==
{f. 8} =—¢j; YT

where the three-vectdris in g*, and we have chosen the minus sign in (2.1). The coadjoint bracket is obtained
using (2.3),

8.0 = —c B/ .

If we use this coadjoint bracket and insert the Hamiltonian
H=3U"hH7e¢;

in (2.5) we obtain
n = {tm, H} = ¢y, ("N i €.

Notice how the moment of inertia tensbiplays the role of a metric—it allows us to build a quadratic form (the
Hamiltonian) from two elements gf. If we takel = diag(/1, I2, I3), we recover Euler’s equations for the motion
of the free rigid body

and cyclic permutations of 1,2,3. Theare the angular momenta about the axes and} thie the principal moments
of inertia. This result is naturally appealing because we expect the rigid body equations to be invariant under the
rotation group, hence the choice $(3) for G.

2.2.2. The two-dimensional ideal fluid

Consider now an ideal fluid with the flow taking place over a two- dimensional dofaihet g be the
infinite-dimensional Lie algebra associated with the Lie group of volume-preserving diffeomorphisihsliof
two spatial dimensions this is the same as the group of canonical transformatighsTdre bracket irg is the
canonical bracket

[a,b] = — — — — — . (2.6)
We formally identifyg andg* and use as the pairing) the usual integral over the fluid domain,
(F,G) = / F(x) G(x) d?x,
2

wherex := (x, y). For infinite-dimensional spaces, there are functional analytic issues about whether we can make
this identification, and takg** = g. We will assume here that these relationships hold formally. See Marsden et al.
[32] for references on this subject and the book by Audin [45] for a treatment of the identificaticanofy™*.
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Assuming appropriate boundary conditions for simplicity, we geiL[;] — [,] from (2.4). (Otherwise the
coadjoint bracket would involve extra boundary terms.) Take the vorticég the field variablé and write for the
Hamiltonian

Hlo] = —3(0, V"?0),

where
(V2w)(X) 1= f K XX o(X) d?x’,
2

andK is Green'’s function for the Laplacian. The Green'’s function plays the role of a metric since it maps an element
of g* (the vorticityw) into an element of to be used in the right slot of the pairing. This relationship is only weak:
the mappingX is not surjective, and thus the metric cannot formally be inverted (it is caldkly nondegenerate

When we have identifieg andg* we shall often drop the comma in the pairing and write

Hlo] = —3(0¢) = 5(IVe[),
wherew = V2¢ defines the streamfunctign We work out the evolution equation farexplicitly:

S (X) §H 2./ _ ’ vy ’ 2.7
()’ &o(x’)}d X _/Qw(x)[a(x X), —p(x)]d“x

o(X) = (w, H) = / 0 (X) [
2

Z/Qé(x—X/)[w(X/)AZﬁ(X/)]O'2 "= [0X), p(X)].

This is Euler’s equation for a two-dimensional ideal fluid. We could also have written this result down directly from
(2.5) using [1T = —[.1.

2.2.3. Low—beta reduced MHD

This example will illustrate the concept of a Lie algebra extension, the main topic of this paper. Essentially, the
idea is to use an algebraeftuples, which we call an extension, to describe a physical system with more than one
dynamical variable. As in Section 2.2.2 we consider a flow taking place over a two-dimensional deniEie
Lie algebrag is again taken to be that of volume-preserving diffeomorphism& phut now we consider also the
vector spacé of real-valued functions of2 (an Abelian Lie algebra under addition). Teemidirect sunof g and
V is a new Lie algebra whose elements are two-tuples) with a bracket defined by

[(Ol, v), (/37 w)] = ([Ol, :3]’ [Ol, w] - [:39 U]), (27)

wherea andg € g, v andw € V. This is a Lie algebra, so we can use the prescription of Section 2.1 to build a
Lie—Poisson bracket,

B 5F G SF 5G| [5G 8F\\
wo=[ ([ ] (TRl w])

Letw = V2¢, whereg is the electric potentialy is the magnetic flux, and = V2y is the current. (We use the
same symbol for the electric potential as for the streamfunction of Section 2.2.2 since they play a similar role.) The
pairing used is a dot product of the vectors followed by an integral over the fluid domain (again idengifymag

g* as in Section 2.2.2). The Hamiltonian

Hlol =5 [ (190R +190P?) s
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with the above bracket leads to the equations of motion

o=[w, ¢+, J], ¥ =[y, ¢l

This is a model for low-beta reduced MHD [12,46,47]. It is obtained by an expansion in the inverse aspect ratio

of a tokamak, withe small. This is called low beta since the plasma beta (the ratio of plasma pressure to magnetic

pressure) is of orde. With a strong toroidal magnetic field, the dynamics are then approximately two-dimensional.
Benjamin [13] used a system with a similar Lie—Poisson structure, but for waves in a density-stratified fluid.

Semidirect sum structures are ubiquitous in advective systems: one variable (in this exgrfghiegs” the others

along [21].

2.2.4. Compressible reduced MHD

In general there are other, more general ways to extend Lie algebras besides the semidirect sum. The model
derived by Hazeltine et al. [17,48] for two-dimensional compressible reduced MHD (CRMHD) is an example. This
model has four fields, and as for the system in Section 2.2.3 it is also obtained from an expansion in the inverse
aspect ratio of a tokamak. It includes compressibility and finite ion Larmor radius effects. The Hamiltonian is

— 28 x)2
Hiw.v.p.v) = 5 [ (19024 024 =20

whereuv is the parallel ion velocityp the pressure, angl is a parameter that measures compressibility. The other
variables are as in Section 2.2.3. The coordingp@ints outward from the center of the tokamak in the horizontal
plane andy is the vertical coordinate. The motion is made two-dimensional by the strong toroidal magnetic field.
The bracket we will use is

F Gy / 8F 6G1,  ([8F 8G7 [8F 8G]\, ([8F 5G7  [8F 6G
) = (O e e v o 0 o o 0 o o 0 o o 0 o
o \“ |50 30 S S 50 3w |) TP\ 5w 5p 5p’ dw

SF 3G [8F G ([8F G  [8F 8G )
(sl el - (G 5] 5 5]) e @

Together, this bracket and the Hamiltonian (2.8) lead to the equations

a):[a),¢]+[1/r, J]+2[p7x]7 UZ[U7¢]+[W7P]+213:[XJ//]’ P=[P’¢]+ﬂz[1/f, U], W=[1/f7¢],

which reduce to the example of Section 2.2.3 in the limie p = 8; = 0 (when compressibility effects are
unimportant).

Itis far from clear that the Jacobi identity for (2.9) is satisfied. A direct verification is straightforward (if tedious),
but we shall see in Section 2.3 that there is an easier way.

+ |wf|2) d2x, (2.8)

2.3. General algebra extensions
We wish to generalize the types of bracket used in Sections 2.2.3 and 2.2.4. We build an algebra extension by
forming ann-tuple of elements of a single Lie algelya
o= (a1,...,q), (2.10)

wherew; € g. The most general bracket on thiguple space obtained from a linear combination of the ong in
has components

[Ol, ﬂ]k: Z W){LV [O[;u ﬂv], A=1...,n, (211)
n,v=1
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where theW){“ are constants. (From now on we will assume that repeated indices are summed unless otherwise
noted.) Since the bracket inis antisymmetric théV’s must be symmetric in their upper indices,

Wi = wk (2.12)
This bracket must also satisfy the Jacobi identity

[Ol, [ﬂ» y]])n + [ﬂ» [yv a]])» + [V’ [O(, ﬁ]])» =0, A=1...,n

The first term can be written as

[o, [B, y1ln = WT Wi [, [Bu. vl

which when added to the other two gives

W)i” W#v([arv [IBM’ Vv]] + [,Brv [Vuv Ofv]] + [Vrv [Olu, ,Bv]]) =0.

We cannot yet make use of the Jacobi identitg:ithe subscripts ok, 8, andy are different in each term so they
represent different elements @fWe first relabel the sums and then make use of the Jacobi identjtoinbtain

(WZTWE — W7 Wi e, [Bus oIl + (W) W™ — WY Wik [Bye, [yw, ]l = 0.
This identity is satisfied if and only if

WPt WEY = WYY Wik, (2.13)
which together with (2.12) implies that the quantiyf * W5 is symmetric in all three free upper indices. If we

write the W’s asn matricesW ") with rows labeled by. and columns by,

[WW)]’: = W, (2.14)

then (2.13) says that those matrices pairwise commute:
w®» w@ — we) (2.15)

Egs. (2.12) and (2.15) form a necessary and sufficient condition: a setafinmuting matrices of size x n
satisfying the symmetry given by (2.12) can be used to make a good Lie algebra bracket. From this Lie bracket we
can build a Lie—Poisson bracket using the prescription of (2.1) to obtain

n
SF 3G
_ ny A o 7Y
(F.Gle®)=+ ) W <s : [w, 5€V]>.
A, u,v=1
We now return to the two extension examples of Sections 2.2.3 and 2.2.4 and examine them in light of the general

extension concept introduced here.

2.3.1. Low-beta reduced MHD
For this example we havwg?, £1) = (w, ¥), with

10 00
© _ @ _
w2 (i)

The reason why we start labeling at 0 will become clearer in Section 4.4. Th&fWocommute sincév @ = |,
the identity. The tensoW also satisfies the symmetry property (2.12). Hence, the bracket is a good Lie algebra
bracket.
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2.3.2. Compressible reduced MHD
We haven = 4 and take£9, £1, £2, £3) = (w, v, p, ¥), So the tensoW is given by

1000 000 O
0100 100 0
O _ @D _
Y =looz1ol" " Tlooo of
000 1 00 -8 O
00 00O 0 00O
00 00O 0000
2 _ 3 _
=110 ool " Tloooo (2.16)
0 -8 00O 1000

Itis easy to verify that these matrices commute and that the téWisatisfies the symmetry property (2.12), so that
the Lie—Poisson bracket given by (2.9) satisfies the Jacobi identity. (See Section 4.4 for an explanation of why the
labeling is chosen to begin at zero.)

3. Extension of a Lie algebra

In this section we review the theory of Lie algebra cohomology and its application to extensions. This is useful
for shedding light on the methods used in Section 4 for classifying extensions. However, the mathematical details
presented in this section can be skipped without seriously compromising the flavor of the classification scheme of
Section 4.

3.1. Cohomology of Lie algebras

We now introduce the abstract formalism of Lie algebra cohomology. Historically there were two different reasons
for the development of this theory. One, known as the Chevalley—Eilenberg formulation [27], was developed from
de Rham cohomology. de Rham cohomology concerns the relationship between exact and closed differential forms,
which is determined by the global properties (topology) of a differentiable manifold. A Lie group is a differentiable
manifold and so has an associated de Rham cohomology. If invariant differential forms are used in the computation,
one is led to the cohomology of Lie algebras presented in this section [28,29,49]. The second motivation is the one
that concerns us: we will show in Section 3.2 that the extension problem —the problem of enumerating extensions
of a Lie algebra— can be related to the cohomology of Lie algebras.

Let g be a Lie algebra, and let the vector spdtever the fieldK (which we take to be the real numbers later)
be a leftg-module! that is, there is an operatpr: g x V — V such that

Pa(+ V)= pa v+ pa Vs Pata’V = Pa¥ + ParVs  Plaa]V = [Pas o]V, (3.1)

for o, @’ € gandv, v’ € V. The operatop is known as a left action. -module gives a representationgbn V.
An n-dimensionalV -valued cochaim, for g, or justn-cochain for short, is a skew-symmetridinear mapping
n

<«~n—
wplgxXgXxX...xg—> V.

1WhenV is a rightg-module, we havey, o1 = —[pa. po]. The results of this section can be adapted to a right action by changing the sign
every time a commutator appears.
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Cochains are Lie algebra cohomology analogues of differential forms on a manifold. Addition and scalar multipli-
cation ofn-cochains are defined in the obvious manner by

(wy + w;,)(alv s y) =wp(an, ..., ) + w;(ala s o), (awp)(a, ... ap) I=awp(al, ..., o),

whereas, ... ,a, € ganda € K. The set of allz-cochains thus forms a vector space over the fiéldnd is
denoted byC” (g, V). The 0-cochains are defined to be just the elements ab thatC%(g, V) = V.
The coboundary operator is the map between cochains,

5.1 C' (g, V) — C" (g, V),

defined by
n+1
. i+1 ~
(sn0n) (@1, -+ s @np1) = Y () Ppgon@r, ... & ong1)

i=1

n+1

ik R R
+ Z (_)/+ wn([aj’ak]7al7 .. ,(Xj, L] 9ak7 .. ,(Xn+]_),
Jj.k=1
j<k

where the caret means an argument is omitted. We shall often dropgtbscript ons,,, deducing it from the
dimension of the cochain on whighacts.
We shall make use mostly of the first few cases:

(swo)(a1) = pay wo, (3.2)

(sw1) (a1, 2) = Po; w1(002) — payw1(err) — wi([eer, a2]), (3.3)

(s w2) (a1, @2, a3) = Pg,w2(2, A3) + P, W2(A3, 1) + Pog w2(A1, €2)

—w2([or1, @], 3) — wa([ar2, 3], 1) — wa([a3, 1], 2). (3.4)

It is easy to verify thatw, defines anin 4+ 1)-cochain, and it is straightforward (if tedious) to show thatys, =
52 = 0. For this to be true, the homomorphism property @ crucial.

An n-cocycle is an element,, of C" (g, V) such thak,w,, = 0. Ann-coboundaryocepis an elementof” (g, V)
for which there exists an element,_; of C"~1(g, V) such thatweop = sw,_1. Note that all coboundaries are
cocycles, but not vice versa.

Let

ZZ(g, V) = kers,
be the vector subspace of alicocycles,Z7 (g, V) C C"(g, V), and let
By (g, V) := ranges,_1

be the vector subspace of alicoboundariesB) (g, V) C C"(g, V). Thenth cohomology group of with coeffi-
cients inV is defined to be the quotient vector space:

H'(g. V) = Z%(g. V)/B' (. V). (3.5)

Note that fomm > dimg, we haveH[;(g, V)=12Z3(g,V)=B;(g V)=0.
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3.2. Application of cohomology to extensions

In Section 2.3 we gave a definition of extension that is specific to our problem. We will now define extensions in
a more abstract manner. We then show how the cohomology of Lie algebras of Section 3.1 is related to the problem
of classifying extensions. In Section 4 we will return to the more concrete concept of extension, of the form given
in Section 2.3.

Let f; : g; — gi+1 be a collection of Lie algebra homomorphisms,

i fir1
> i g+l > 8i42 >
The sequencg; is called an exact sequence of Lie algebra homomorphisms if

rangef; = ker fi;1.

Letg, b, anda be Lie algebras. The algebijas said to be aextensiorof g by a if there is a short exact sequence
of Lie algebra homomorphisms

0— a—i>b1>g — 0. (3.6)

The homomorphismis an insertion (injection), and is a projection (surjection). We shall distinguish brackets in
the different algebras by appropriate subscripts. We also defige—  to be alinear mapping suchthast = 1,4
(the identity mapping iry). Note thatr is not unique, since the kernel ofis not trivial. Letg € b, n € a; then

7-[[:3?1’7]{] = [ﬂﬁsﬂi’?]g = 01

using the homomorphism property afandz o i = 0, a consequence of the exactness of the sequence. Thus
[B.in]y € kerm = rangei, andi a is an ideal inh since B, in] < ia. Hence, we can form the quotient algebya,
with equivalence classes denoted®y- a. By exactness (8 + a) = 7 8, sog is isomorphic tdy/a and we write
g="bh/a.

Thoughi a is a subalgebra df, T g is not necessarily a subalgebrahoffor in general

[Tav Tﬂ]h # T[Ol, ﬁ]gv

for o, B € g; that is, is not necessarily a homomorphism. The classification problem essentially resides in the
determination of how much differs from a homomorphism. The cohomology machinery of Section 3.1 is the key
to quantifying this difference, and we proceed to show this.

To this end, we use the algebras the vector spadé of Section 3.1, so thatwill be a leftg-module. We define
the left action as

pan =i Yra, inly (3.7)

fora € gandn € a. Fora to be a leftg-module, we neeg to be a homomorphism, i.eo, must satisfy (3.1).
Therefore consider

[P, 0811 = (Papp — PpLIN = pui 1B, inly — ppi Hra, inly
=i1 [ra, [z8, in]h]h —i71 [1:/3, [te, in]h]h ,

which upon using the Jacobi identity rbecomes
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[, opIn =i~ [zer, tBly, in]y = it [ele, Blg in]y +i~*[([ve, 1Bl — tle, Blg) . in],
= Plaplgn + i [([re, tBly — Tl Blg) s im] - (3.8)

By applyingz on the expression in parentheses of the last term of (3.8), we see that it vanishes and soris in ker
and by exactness it is alsoiin. Thus theh commutator above involves two elements@fWe definev : gx g — a

by
w(a, B) =it ([ra, thly — tla, Blg) - (3.9)

The mapping 1 is well defined oria. Eq. (3.8) becomes

(o, pplN = pla.plgn + [w(a, B), n]a. (3.10)

Therefore o satisfies the homomorphism property if either of the following is true:
1. ais Abelian,
2. t is a homomorphism,

Condition (1) implies []q = 0, while condition (2) means

[ra. 7]y = tle, Blg.

which impliesw = 0. If either of these conditions is satisfiedwith the actiorp is a leftg-module. We treat these
two cases separately in Sections 3.3 and 3.4, respectively.

3.3. Extension by an Abelian Lie Algebra

In this section we assume that the homomorphism condition (1) at the end of Section 3.2 is met. Therefore,
a is a leftg-module, and we can definevalued cochains og. In particular,w defined by (3.9) is a 2-cochain,
w € C%(g, a), that measures the “failure” efto be a homomorphism. We now show, moreover, dhiata 2-cocycle,
w € Z2(g, a). By using (3.4),

(sw)(@, B, y) = paw (B, y) + ppo (v, &) + pyo(a, B) — o([a, Blg, v) — o([B, ¥]g, @) — o([y, alg, B),
=it ([Ta, [7B. Tv1p], + cye. Derm) it ([[“’ Bla.v]g +cve perm) =0

The first parenthesis vanishes by the Jacobi identity the second by the Jacobi identitygnand the other terms
were canceled in pairs. Heneejs a 2-cocycle.
Two extensiong andh’ are equivalent if there exists a Lie algebra isomorphissuch that the diagram

0—a v g—0
NP
b’ (3.11)
is commutative, thatisi# oi =i’ andn =7’ o 0.

There will be an injectiorr associated witlr and ar’ associated withr’, such thatr o 7 = 13 =7’ o /. The
linear mapy = o ~1¢’ —  must be fromg to ia, soi v € C1(g, a). Considerp andp’ respectively defined using
7,i andt’, i’ by (3.7). Then
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(P — ' In=i ra, inly — i’ Mo, i'nly, =i Hra,inly — i + e, inly, = — i [ve, in]y=0,
(3.12)

sincea is Abelian. Hence andt’ define the samg. Now consider the 2-cocyclesandw’ defined fromr andt’
by (3.9). We have

o' (o, B) — (., B)=i"" ([T, T'Bly — T'[er. Blg) — i+ ([rer, T8l — Tler. Bly) .
=i~ ([ver, vBly + [ver, Bl — vla, Blg) » = puli~VB) — pp(i~ver) =i~ v, Blg.
Comparing this with (3.3), we see that
o —w=si"t), (3.13)

sow andw’ differ by a coboundary. Hence they represent the same eleméhjdgl, a). Equivalent extensions
uniquely define an element of the second cohomology grﬁﬁpg, a). Note that this is true in particular for
h =b,0 =1, so that the element (Hg(g, a) is independent of the choice of

We are now ready to write down explicitly the bracketjinWe can represent an element § as a two-tuple:
o = (a1, ap) wherew; € gandas € a (h = g ® a as a vector space). The injectibiis theniay = (0, a2), the
projectionr is 7 (x1, @2) = a1, and since the extension is independent of the choieeved takera; = (a1, 0).
By linearity

[o, By = [(a1, 0), (B1, O]y + [(O, @2), (O, B2)]y + [(1, 0), (O, B2)] + [(O, @x2), (B1, O)]p-
We know that {0, a2), (0, B2)]y = 0 sincea is Abelian. By definition of the cocycle, Eq. (3.9), we have
[(e1,0), (B1, O]y = [raa, Th1]y = iw(aa, B1) + tlaa, B1lg = ([0, Bilg. w (a1, B1)).
Finally, by the definition o, Eq. (3.7),
[(a1,0), (0, B2)]y = [rea, iB2ly = pay B2
and similarly for [0, a2), (81, 0)], with opposite sign. So the bracket is
[o, By = ([o1. Bilg. por B2 — P2 + w (a1, B1)) - (3.14)
As a check we work out the Jacobi identityfn
[, [B. V]b]h = ([o1. [B. v11lg: parlB. ¥]2 — pipylie2 + w(aa, [B. ¥]1))
= ([Ot1, [B1, J/1]g]g s Py (V2 — Py B2 + @ (B1, Y1) — P[1.y] @2 + @ (a1, [B1, Vl]g)) -

Upon adding permutations, the first component will vanish by the Jacobi identityile are left with

[a, (B, V]b]h + CyC.perm = (0, (:0061:0/31 — PB1Pay — p[al,ﬂl]g) Y2 + Pay @ (B1, Y1) — @([a1, ﬂl]gv Vl))
+cyc. perm,

which vanishes by the the homomorphism property ahd the fact thab is a 2-cocycle, Eq. (3.4).

Eq. (3.14) is the most general form of the Lie bracket for extension by an Abelian Lie algebra. It turns out that
the theory of extension by a non-Abelian algebra can be reduced to the study of extension by the agwieichf
is Abelian [29]. We will not need this fact here, as the only extensions by non-Abelian algebras we will deal with
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are of the simpler type of Section 3.4. If the actjpwanishes but the cocycle does not, the extension is called
central

We have thus shown that equivalent extensions are enumerated by the second cohomolog!sgggomp The
coordinate transformatiom used in (3.11) to define equivalence of extensions preserves the fograrafa as
subsets ofj. However, we have the freedom to choose coordinate transformations which do transform these subsets.
All we require is that the isomorphismbetweerf) and}’ be a Lie algebra isomorphism. We can represent this by
the diagram

00— a—i> b 1>g -0
I (3.15)
0>d> K Sg—o.
The primed and the unprimed extensions are not equivalent, but they are isomorphic [50]. Cohomology for us is

not the whole story, since we are interested in isomorphic extensions, but it will guide our classification scheme.
We discuss this point further in Section 4.3.

3.4. Semidirect and direct extensions

Assume now thab defined by (3.9) is a coboundary. By (3.13) there exists an equivalent extensiaon with
For that equivalent extension,is a homomorphism and condition (ii) at the end of Section 3.2 is satisfied. Thus
the sequence

b<T—g<—O

is an exact sequence of Lie algebra homomorphisms, as well as the sequence given by (3.6). We then say that
the extension is a semidirect extension (or a semidirect sum of algebras) by analogy with the group case. More
generally, we say thdi splits if it is isomorphic to a semidirect sum, which corresponds teing a coboundary,
not necessarily zero. if is not Abelian, then (3.12) is not satisfied and two equivalent extensions (or two different
choices ofr) do not necessarily lead to the same

Representing elements bfas 2-tuples, as in Section 3.3, we can derive the brackefdna semidirect sum,

[, By = ([o1. Bilg. por B2 — ppy2 + [z, B2la) (3.16)

where we have not assumed\belian. Verifying Jacobi for (3.16) we find themust also satisfy

Par[B2, V2la = [Pay B2, v2la + [B2, puyV2las

which is trivially satisfied ifa is Abelian, but in general this condition states thais a derivation oru.
Now consider the case wheie! is a homomorphism and ker! = ranger. Then the sequence

i1

T
O=a=h=g=0
is exact in both directions and, hence, botindz = t 1 are bijections. The action gfona is
pen =i Hra,inly = [i tra, n]a =0,

since by exactnesslor = 0. Thisis called a direct sum. Note that in this case the rogeamida is interchangeable
and they are both ideals in The bracket irf) is easily obtained from (3.16) by letting= 0,

[, Bl = ([o1. Balg. [e2, B2]a) - (3.17)
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Semidirect and direct extensions play an important role in physics. A simple example of a semidirect extension
structure is when is the Lie algebrao(3) associated with the rotation gro§® (3) anda is R3. Their semidirect

sum is the algebra of the six parameter Euclidean group of rotations and translations. That algebra can be used
in a Lie—Poisson bracket to describe the dynamics of the heavy top (see for example [11,51]). We have already
discussed the semidirect sum in Section 2.2.3. The bracket (2.7) is a semidirect sugitheigtigebra of the group

of volume-preserving diffeomorphisms andhe Abelian Lie algebra of functions d&?. The action is just the

adjoint actionp,, v := [«, v] obtained by identifyingy anda.

A Lie—Poisson bracket built from a direct extension is just a sum of the separate brackets. The interaction between
the variables can only come from the Hamiltonian or from constitutive equations. For example in the baroclinic
instability model of two superimposed fluid layers with different potential vorticities the two layers are coupled
through the potential vorticity relation [14].

4. Classification of extensions of a Lie algebra

In this section we return to the main problem introduced in Section 2.3: the classification of algebra extensions
built by forming n-tuples of elements of a single Lie algelyrarhe elements of this Lie algebhaare written as
a = (a1,...,0,),®; € g, with a bracket defined by

[, 11 = W} [, B, (2.11)

whereW){“’ are constants. We will cail the order of the extension. Recall (see Section 2.3) #is are symmetric
in their upper indices,

W = wk, (2.12)
and commute,
WMwe) — w@w, (2.15)

where then x n matricesw ") are defined byW ]} := W,;*. Since theW’s are 3-tensors we can also represent
their elements by matrices obtained by fixing the lower index,

Waoy = [W()\)]lw = W){w, 4.1)

which are symmetric but do not commute. Either collection of matrices, (2.14) or (4.1), completely describes the
Lie bracket, and which one we use will be understood by whether the parenthesized index is up or down.

What do we mean by a classification? A classification is achieved if we obtain a set of normal forms for the
extensions that are independent, that is, not related by linear transformations. We use linear transformations because
they preserve the Lie—Poisson structure —they amount to transformations @f teasor. We thus begin by
assuming the most genenal possible.

We first show in Section 4.1 how an extension can be broken down into a direct sum of degenerate subblocks
(degenerate in the sense that the eigenvalues have multiplicity greater than unity). The classification scheme is thus
reduced to the study of a single degenerate subblock. In Section 4.2 we couch our particular extension problem in
terms of the Lie algebra cohomology language of Section 3.2 and apply the techniques therein. The limitations of
this cohomology approach are investigated in Section 4.3, and we look at other coordinate transformations that do
not necessarily preserve the extension structure of the algebra, as expressed in diagram (3.15). In Section 4.5 we
introduce a particular type of extension, called the Leibniz extension, which is in a sense the “maximal” extension.
Finally, in Section 4.6 we give an explicit classification of solvable extensions up to order four.
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4.1. Direct sum structure

A set of commuting matrices can be put into simultaneous block-diagonal form by a coordinate transformation,
each block corresponding to a degenerate eigenvalue [52]. Let us denote the change of basis byv%mmtﬂix

inverse(M‘l)g, such that the matrix/ "), whose components are given by

W = (M~H5W," My,
is in block-diagonal form for afb. However,Wk‘” is a 3-tensor and so the third index is also subject to the coordinate
change:

T Tav v

WEV = Wg" M.
This last step adds linear combinations of #é")’s together, so théV("’s and theW")’s have the same
block-diagonal structure. Note that tf tensors are still symmetric in their upper indices, since this property
is preserved by a change of basis. So from now on we just assume that we are working in a basis Whebésthe
are block-diagonal and symmetric in their upper indices; this symmetry means that if we lodkad a cube, then
in the block-diagonal basis it consists of smaller cubes along the main diagonal. This is the 3-tensor equivalent of
a block-diagonal matrix.

Block-diagonalization is the first step in the classification: each blodi a associated with an ideal (hence,

a subalgebra) in the full-tuple algebrgy. Hence, by the definition of Section 3.4 the algefpia a direct sum of
the subalgebras associated with each block. Each of these subalgebras can be studied independently, so from now
on we assume that we haveeommuting matrices, each withfold degenerate eigenvalues. The eigenvalues can,
however, be different for each matrix.

Such a set of commuting matrices can be put into lower-triangular form by a coordinate change, and again the
transformation of the third index preserves this structure (though it changes the eigenvalue of each matrix). The
eigenvalue of each matrix lies on the diagonal; we denote the eigenvali‘oby A*). The matrixW(q,, which
as prescribed by (4.1) consists of the first row of the lower-triangular mafiiéey is given by

AD 0 0 --- 0
A®@ 0 0 --- 0
W(l) = . .
AW 0 0 ... 0

Evidently, the symmetry oW () requires
AW =082,

that is, all the matrice$¥V ™) are nilpotent (their eigenvalues vanish) exceptWor when6 = 0. If this first
eigenvalue is nonzero then it can be scaled te 1 by the coordinate transformatidd® = 6-15%. We will use
the symbob to mean a variable that can take the value 0 or 1.

4.2. Connection to cohomology
We now bring together the abstract notions of Section 3 withithegple extensions of Section 2.3. It is shown

in Section 4.2.1 that we need only classify the casé ef 0. This case will be seen to correspond to solvable
extensions, which we classify in Section 4.2.2.
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4.2.1. Preliminary splitting

Assume we are in the basis described at the end of Section 4.1, and for now, sippds& he set of elements
of the formg = (0, B2, ... , By) is a nilpotent ideal irj that we denote by (a is thus a solvable subalgebra [53]).
Hence, we can construct the algelgre= h/a, so thath is an extension of by a. If g is semisimple, then is the
radical ofp (the maximal solvable ideal). It is easy to see that the elementaif of the formx = (1,0, ... , 0).
We will now see thap splits; that is, there exist coordinates in whicks manifestly the semidirect sum gfand
the (in general non-Abelian) algebsa

In Appendix A we give a lower-triangular coordinate transformation that mékes = 1, the identity matrix.
Assuming we have effected this transformation, the mappingsandz of Section 3.2 are given by

la_)ha i(a2?‘-"an)=(0’a2?‘-"a}‘l)a
77[)_>91 n(alva21"'val’l):alv

T:g—> b, t(a1) = (@1,0,...,0),
and the cocycle of (3.9) is
io(a, B) = [ta, tBly — tla, Blg = [(@1,0,...,0), (B1,0,...,0]y — ([@1, $1].0,... ,0) = 0.

Sincew = 0, the extension is a semidirect sum (see Section 3.4). The coordinate transformation thatfaee
removed a coboundary, making the above cocycle vanish identically. For the casgughi@m#e-dimensional and
semisimple, we have an explicit demonstration of the Levi decomposition theorem: any finite-dimehdi@nal
algebrah (of characteristic zero) with radicalis the semidirect sum of a semisimple Lie algependa [53].

4.2.2. Solvable extensions

Above we assumed the eigenvaluef the first matrix was unity; however, if this eigenvalue vanishes, then we
have a solvable algebramftuples to begin with. Sinceis arbitrary we can study these two solvable cases together.

Thus, we now suppodeis a solvable Lie algebra af-tuples (we reuse the symbdjsg, anda to parallel the
notation of Section 3.1), where all of the th&*)’s are lower-triangular with zeros along the diagonal. Note that
W@ = 0, so the set of elements of the foem= (0, ... , 0, o,) forms an Abelian subalgebra bf In fact, this
subalgebra is an ideal. Now assueontains an Abelian ideal of order— m (the order of this ideal is at least 1),
which we denote by. The elements of can always be cast in the form

a=@0,...,0, 0p41,-..,0)

via a coordinate transformation that preserves the lower-triangular, nilpotent form wfthe
We also denote by the algebra ofz-tuples with the bracket

[1. o am). (B Blg = D Wil Bl A=1....m.

w,v=1

It is trivial to show thatg = h/a, so thath is an extension of by a. Sincea is Abelian we can use the formalism
of Section 3.1 (the other case we used above was fam-Abelian but where the extension was semidirect). The
injection and projection maps are given by

2The inner bracket can be infinite dimensional, but the order of the extension is finite.
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i:a_)hs i(am+19--- 1an):(os~-- 7Osam+la-" 9al‘l)9
77[]_)9’ ﬂ(ala(XZa"- 7an)=(ala'~' 7am)7
T:g— b, (a1, ..., 0p) = (@1, ... ,0m, 0,...,0).

From the definition of the action, (3.7), we have foe g andn € q,

l/Oa’? = ['L'Ol, lr)]h = [(alv ey ams 0’ ce O)v (07 cee O’ 77m+1, RER L | nﬂ)]b

m n—1
= Z Z (01 ey 07 Wli‘:’j—z[aﬂ’ r]U]? R} W#v[aﬂi nv])~ (42)
u=1 v=m+1

In addition to the action, the solvable extension is also characterized by the cocycle defined in (3.9),
io(a, ) =[ta, 1Bly — tla, Blg = [(e1, ... , @, 0,...,0),(B1,... ., Bn,0,..., 0]y

_T[(Oll, tee C(m), (IBL R lgm)]g = Z (07 R 07 W,ﬁ:_l:_l[a,uv :311]’ R W#v[a/ln ,Bv])
n,v=1

(4.3)

We can illustrate which parts of tH&’s contribute to the action and which to the cocycle by writing

W()L) :(w—i’ﬂ), k=m+1, , n, (44)
l'A_O

where thew,’s arem x m symmetric matrices that determine the cocyelend ther;’s arem x (n — m) matrices
that determine the actign The(n — m) x (n — m) zero matrix on the bottom right of th&,,’s is a consequence
of a being Abelian.

The algebra is completely characterized by thg,), A = 1, ... , m. Hence we can look for the maximal Abelian
ideal of g and repeat the procedure we used for the fjullt is straightforward to show that although coordinate
transformations off might change the cocycle and the actiom, they will not alter thformof Eq. (4.4).

Recall that in Section 3.1 we defined 2-coboundaries as 2-cocycles obtained from 1-cochains by the coboundary
operator,s. The 2-coboundaries turned out to be removable obstructions to a semidirect sum structure. Here the
coboundaries are associated with the parts ofitlyg that can be removed by (a restricted class of) coordinate
transformations, as shown below.

Let us explore the connection between 1-cochains and coboundaries in the present context. Since a 1-cochain is

just a linear mapping frog to a, fora = (a1, ... , ) € g We can write this as
m
a)l(Ll)(a) = —Zkﬁak, u=m+1 ..., n, (4.5)
r=1

where thekﬁ are arbitrary constants. To find the form of a 2-coboundary we act on the 1-cochain (4.5) with the
coboundary operator; using (3.3) and (4.2) we obtain

wf%(a, B) = (s D) (@, B) = peP (B) + ppP (@) — 0P ([a, Bl),

=33 W o ®] -3 Y W [ e @]+ Y KWL, A (46)

u=lv=m+1 pn=lv=m+1 w,v,0=1

After inserting (4.5) into (4.6) and relabeling, we obtain the general form of a 2-coboundary
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m
wab(oe, B) = Z Vk’w[aﬂ, Bl, A=m+1 ..., n,
w,v=1

where

m n

VIV = Y KW = KW+ kW), (4.7)
=1 o=m+1

To see how coboundaries are removed, consider the lower-triangular coordinate transformation

[M§]=(f{ 01)

whereo labels rows. This transformation subtraglg, from W,, for A > m and leaves the first of the W;)’s
unchanged. In other words, W is the transformed,

Wi, A=1...,m,

W(A) = (C—I(WA—VA) r;,) (48)

T 0
o , A=m+1 ..., n.

We have also included in this transformation an arbitrary scale facgdnce by (4.3) the block in the upper-left char-
acterizes the cocycle, we see that the transformed cocycle is the cocycle charactengzedibys the coboundary
characterized by;..

The special case we will encounter most often is when the maximal Abelian idgesioply consists of elements
ofthe form(0, ... , 0, o). For this case: = n—1, and the action vanishes siri#&” = 0 (the extension is central).
The cocyclew is entirely determined by,. The form of the coboundary is reduced to

n—1
VI =Y kW, (4.9)
=1

thatis, a linear combinations of the fiat— 1) matrices. Thus it is easy to see at a glance which parts of the cocycle
characterizedv,) can be removed by lower-triangular coordinate transformations.

4.3. Further coordinate transformations

In the previous section we restricted ourselves to lower-triangular coordinate transformations, which in gen-
eral preserve the lower-triangular structure of #i€". But when the matrices are relatively sparse, there exist
non-lower-triangular coordinate transformations that nonetheless preserve the lower-triangular structure. As al-
luded to in Section 3.3, these transformations are outside the scope of cohomology theory, which is restricted to
transformations that preserve the exact form of the action and the algebraka, as shown by (4.8). In other
words, cohomology theory classifies extensigheng, a, andp. We need not obey this restriction. We can al-
low non-lower-triangular coordinate transformations as long as they preserve the lower-triangular structure of the
W) s,

We now discuss a particular class of such transformations that will be useful in Section 4.6. Consider the case where
both the algebra ofn — 1)-tuplesg and that of 1-tuples are Abelian. Then the possible (solvable) extensions, in
lower-triangular form, are characterized Wy;) = 0, . = 1, ... ,n — 1, with W, arbitrary (except foi,;," = 0).

Let us apply a coordinate change of the form

(i)
M= ,
0c
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wherem is an(n — 1) x (n — 1) nonsingular matrix and is again a nonzero scale factor. Denoting Wythe
transformed¥, we have

0, A=1...,n—1,
Wiy = (c’lmTW,\m 0) (4.10)
0 0/ r=n.

This transformation does not change the lower-triangular form of the extension, exds ifot lower-triangular.
The manner in whichwv,, is transformed by is very similar to that of a (possibly singular) metric tensor: it can
be diagonalized and rescaled such that all its eigenvalues are-0.M/e can also change the overall sign of the
eigenvalues using(something that cannot be done for a metric tensor). Hence, we shall order the eigenvalues such
that the+1's come first, followed by the-1’s, and finally by the 0’s. We will show in Section 4.6 how the negative
eigenvalues can be eliminated to harmonize the notation.

4.4. Appending a semisimple part

In Section 4.2 we showed that because of the Levi decomposition theorem we only needed to classify the solvable
part of the extension for a given degenerate block. Most physical applications have a semisimglespBrtWhen
this is so, we shall label the matrices B9, W, ..., W™ where they are now of size+ 1 andW© is the
identity.3 Thus the matrices labeled By @, ..., W will always form a solvable subalgebra. This explains the
labeling in Sections 2.3.1 and 2.3.2.

If the extension has a semisimple part£ 1, or equivalentiy © = 1), we shall refer to it asemidirect This
was the case treated in Section 4.2.1. If the extension is not semidirect, then it is solvable (and eondittes
instead ofz + 1).

Given a solvable algebra eftuples we can carry out in some sense the inverse of the Levi decomposition and
append a semisimple part to the extension. Effectively, this means thakthenatricesw @, ..., W are made
n+ 1 x n + 1 by adding a row and column of zeros. Then we simply append the n¥tfix= I to the extension.
In this manner we construct a semisimple extension from a solvable one. This is useful since we will be classifying
solvable extensions, and afterwards we will want to recover their semidirect counterpart.

The extension obtained by appending a semisimple part to the completely Abelian algektgptefs will be
calledpure semidirectlt is characterized by @ = 7, andWw!*" = 0 for s, v > 0.

4.5. Leibniz extension

A particular extension that we shall consider is called the Leibniz extension [54]. For the solvable case this
extension has the form

0
1

= o

3 The term semisimple is not quite precise: if the base algebra is not semisimple then neither is the extension. However, we will use the term
to distinguish the different cases.
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or Wfl = 8‘;71, A > 1;i.e. the first matrix is am x n Jordan block. In this case the other matrices, in order to
commute withw @, must be in striped lower-triangular form [52]. After using the symmetry of the upper indices

the matrices can be reduced to
w® = (N), (4.12)

where on the right-hand side thelenotes an exponent, not a superscript. An equivalent way of characterizing the
Leibniz extension is

W Z 8 uva=1.. . (4.13)

The tensos is an ordinary Kronecker delta. Note that neither (4.12) nor (4.13) are covariant expressions, reflecting
the coordinate-dependent nature of the Leibniz extension.

The Leibniz extension is in some sense a “maximal” extension: it is the only extension tHéphas O for all
A= 2,...,n (up to coordinate transformations). Its uniqueness will become clear in Section 4.6, and is discussed
in Thiffeault [55].

To construct the semidirect Leibniz extension, we app&f = I, a square matrix of size+ 1, to the solvable
Leibniz extension above, as described in Section 4.4.

4.6. Low-order extensions

We now classify the algebra extensions of low order. As demonstrated in Section 4.2 we only need to classify
solvable algebras, which means th@f” = 0 for all cases. We will do the classification up to ordes 4. For
each case we first write down the most general set of lower-triangular mawi¢eégwe have already used the
fact that a set of commuting matrices can be lower-triangularized) with the symWé‘f’ry: W; * puilt in. Then
we look at what sort of restrictions the commutativity of the matrices places on the elements. Finally, we eliminate
coboundaries for each case by the methods of Sections 4.2 and 4.3. This requires coordinate transformations, but
we usually will not bother using new symbols and just assume the transformation was effected.

Note that, due to the lower-triangular structure of the extensions, the classification foundifduple algebra
applies to the first: elements of am-tuple algebrag > m. Thus, W, is the cocycle that contains all of the new
information not included in the previous = n — 1 classification. These comments will become clearer as we
proceed.

We shall call an order extensiortrivial if W(,) = 0, so that the cocycle appended to the ovder1 extension
contributes nothing to the bracket.

4.6.1. n=1
This case is Abelian, with the only possible elem@éftt = 0.

4.6.2. n=2
The most general lower-triangular form for the matrices is

0 0 00
@ _ @ _
v=(hg o) 7= (0 o)

If W31 0, then we can rescale it to unity. Hence weWe}! := 61, whered; = 0 or 1. The casé; = 0 is the
Abelian case, while fo# = 1 we have the: = 2 Leibniz extension (Section 4.5). Thus for= 2 there are only
two possible algebras. The cocycle which we have added at this stage is characteéized by
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4.6.3. n=3
Using the result of Section 4.6.2, the most general lower-triangular form is
0 0 0 0 0 0
wh=1e o0 o], w@=|0 o0 0],
wit wit o Wi wz? 0

andW® = 0. These satisfy the symmetry condition (2.12), and the requirement that the matrices commute leads
to the condition

91W322=0.
The symmetric matrix representing the cocycle is
wit wit o
W =| wit w22 o]. (4.14)
0 0 0

If 61 = 1, thenW2? must vanish. Then, by (4.9) we can remove fréiify) a multiple of W), and therefore we
may assuméVv ;! vanishes. A suitable rescaling allows us to witg* = 6,, whered, = 0 or 1. The cocycle for
the cas#1 = 1 is thus

0O 06 0
Wa =6 0 O
0O 0 O

For6, = 1 we have the Leibniz extension (Section 4.5).
If 61 = 0, we have the case discussed in Section 4.3. For this case we can diagonalize andifgssatd that

M 0 O
Wa =0 X 0],
0O 0O O

where(L1, A2) can be(l, 1), (1, 0), (0, 0), or (1, —1). This last case, as alluded to at the end of Section 4.3, can be
transformed so that it correspondstto= 0, 62 = 1. The choicg1, 0) can be transformed to thtg = 1,6, = 0
case. Finally fo(A1, A2) = (1, 1) we can use the complex transformation

1 1 /1, .2 2 [ (1 2 3 .3
o S 48), 2o s (58 -8). £o8
to transform to th&; = 0, 6, = 1 case.

We allow complex transformations in our classification because we are chiefly interested in finding Casimir
invariants for Lie—Poisson brackets. If we disallow complex transformations, the final classification would contain
a few more members. The use of complex transformations will be noted as we proceed.

There are thus four independent extensions:fer 3, corresponding to

(01,62) € {(0,0),(0,1), (1,0, (1, D}

These will be referred to as Cases 1-4, respectively. Cases 1 and & hawk and so are triviall{s) = 0). Case
2 is the solvable part of the compressible reduced MHD bracket (Section 2.3.2). Case 4 is the solvable Leibniz
extension.
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4.6.4. n=4
Proceeding as before and using the result of Sections 4.6.2 and 4.6.3, we now know that we need only write

wit w2 owit o
w2 wzZ w32 o
wit w2 owE oo
o 0 0 0

W = (4.15)

The matriced¥ (1), W(2), andW(3, are given by thein = 3 analogues padded with an extra row and column of zeros
(owing to the lower-triangular form of the matrices). The requirement that the matiéts - - W@ commute
leads to the conditions

W3R =0, W=0W22 0 W2=0 aWi=0. (4.16)

There are four cases to look at, corresponding to the possible valdgando,.

Case 1(1 = 0,62 = 0). This is the unconstrained case discussed in Section 4.3, that is, all the commutation
relations (4.16) are automatically satisfied. We can diagonalize to give

Ay 0 0 O
O 2, 0 O
Wy = 2 ,
0 0 A; O
0O 0 O O
where

(M7, A5 45 € {(1,1,1),(1,1,0),(1,0,0),(0,0,0), (1,1, -1), (1, -1, 0)},

so there are six distinct cases. The exact form of the transformation is unimportant, Gutith@ extension can
be mapped to Case 2 (the transformation is comglex), 0) can be mapped to Case 3(a), &id—1, 0) can be
mapped to Case 2. Finally tlig, 1, 1) extension can be mapped to iie 1, —1) case by a complex transformation.
After transforming thatl, 1, —1) case, we are left with

0 00O 0010
w._|0 000 0100
@~=1o0 o0oo0o0|'l1 000

0 00O 0 00O

o
Q)

These will be calle

Case 2(61 = 0,62 =

ases 1(a) and 1(b).

=

). The commutation relations (4.16) reduceitg® = W32 = w23 = 0, and we have

wit wit 0 o0
w2l w22 0 0
0O 0 00
O 0 00

Wa =

We can removvel because it is a coboundary (in this case a multipl#’gf). We can also rescale appropriately
to obtain four possible extensiond4 = 0, and
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100 0 100 0 10 00
w._|0 000 0100 0 -1 00
@~10 o o0 o0|'looo0o0|’'lOO 00O

0 00O 00 0O 00 00

Again, the form of the transformation is unimportant, but it turns out that the first of the above extensions can be
mapped to Case 3(c), and the second and third to Case 3(b). This last transformation is complex. Thus there is only
one independent possibility, the trivial extensidp) = 0.

Case 3(91 = 1,62, = 0). We can removevj1 using a coordinate transformation. From the commutation require-
ment (4.16) we obtaifv?2 = W32 = 0. We are left withWs = 0 and

o w2 wio
w2t o o0 0
wr o wE o
o 0 0 ©

W =

Using the fact that elements of the for) a2, 0, s) are an Abelian ideal of this bracket, we find thigf> w3 = 0.
Using an upper-triangular transformation we can also mggéw 1 = 0. After suitable rescalings we find there
are five cases. One of these,

1 00

0
1 000
Y@=10 0 0 ol
0 00O
may be mapped to Case 4 (below) with= 0. We are thus left with four cases: the trivial extensidiig,) = 0,

and

0 00O 0010 0100
w._|0 000 0000 100 0
@~=10 0 10|'l1000|'lOO0T10
0 00O 0 00O 0 00O

We will refer to these four extensions as Cases 3(a)—(d), respectively (Case 3(a) is the trivial extension).

Case 4(91 = 1,6, = 1). The elements¥}! and W2 are coboundaries that can be removed by a coordinate
transformation. From (4.16) we haVé® = W22 = 0, W22 = W3l =: 65, so that

0 0 63 0
0 63 0 0
W = 63 0 0 O
0 0 0 O

For63 = 1 we have the Leibniz extension. The two cases will be referred to as Case Ha)=d and 4(b) for
03 = 1.
Table 1 summarizes the results. There are are total of nine indepengdefextensions, four of which are trivial
(W4 = 0). As noted in Section 4.5 only the Leibniz extension, Case 4(b), has nonvanighjrigrall 1 < i < n.
The surprising fact is that even to order four the normal forms of the extensions involve no free parameters: all
entries in the coefficients of the bracket are either zero or one. There is no obvious reason this should hold true if
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Table 1
Enumeration of the independent extensions up e 4 (we haveW ;) = 0 for all the cases, and we have left out a row and a column of zeros
at the end of each matrix; we have also omitted cases 1-4(a), for Whigh= 0)

Case W) W) W)
b c d
0 0 1
1 (0) (8 8) 010
1 00
01
2 ©) (1 O)
0 0 0 0O 0 0 1 010
3 Q) (O O) 0 0O 0 0O 1 00
0 0 1 1 00 0 0 1
0 01
4 1) (2 é) 010
1 00

we try to classify extensions of order> 4. It would be interesting to find out, but the classification scheme used
in this paper becomes prohibitive at such high order. The problem is that some of the transformations used to relate
extensions cannot be systematically derived and were obtained by educated guessing.

5. Casimir invariants for extensions

In this section we will use the bracket extensions of Section 4 to make Lie—Poisson brackets, following the
prescription of Section 2. In Section 5.1 we write down the general form of the Casimir condition (the condition
under which a functional is a Casimir invariant) for a general class of inner brackets. Then in Section 5.2 we see
how the Casimirs separate for a direct sum of algebras, the case discussed in Section 4.1. Section 5.3 discusses the
particular properties of Casimirs of solvable extensions. In Section 5.4 we give a general solution to the Casimir
problem and introduce the conceptaafextensionFinally, in Section 5.5 we work out the Casimir invariants for
some specific examples, including CRMHD and the Leibniz extension.

5.1. Casimir condition

A generalized Casimir invariant (or Casimir for short) is a functibng* — R for which
{F.C}=0,

forall F : g* — R. Using (2.1) and (2.4), we can write this as

[ --(Bee) %)

Since this vanishes for all we conclude

+
5C
[E’ s;] =0. (5.1)
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To figure out the coadjoint bracket corresponding to (2.11), we write
(& Lo, B1) = (6", Wil B

which after using the coadjoint bracketgpbecomes
(6.€1T. ) = <W{” (661", au>

so that

18,617 = W [B., €]

We can now write the Casimir condition (5.1) for the bracket by extension as

T

T
,[8C
w/ [55_#’5}} =0, v=0,...,n. (5.2)

We now specialize the bracket to the case of most interested to us, where the inner bracket is of canonical form (2.6).
As we saw in Section 2, this is the bracket for 2D fluid flows. The construction we give here has a finite-dimensional
analogue, where one uses the Cartan—Killing form to map vectors to covectors, but we will not pursue this here (see
[55]). Further, we assume that the form of the Casimir invariants is

Cle] = fg CEX) b, (5.3)

and thus, sinc€ does not contain derivatives 6f functional derivatives o€ can be written as ordinary partial
derivatives ofC. We can then rewrite (5.2) as
w 9%
boggmgEe

[£7,6*]=0, v=0,...,n. (5.4)

In the canonical case where the inner bracket is like (2.6@31’135*] are independent and antisymmetric.iand
o. Thus a necessary and sufficient condition for the Casimir condition to be satisfied is

8%C 82C
. = W : (5.5)
QENQET QEHIEN
fori,o,v=0,...,n. Sometimes we shall abbreviate this as
WIC e = WHC L, (5.6)

thatis, any subscript onC following a comma indicates differentiation with respect to (5.6) is trivially satisfied
when( is a linear function of thé’s. That solution usually follows from special cases of more general solutions,
and we shall only mention it in Section 5.4.2 where it is the only solution.

An important result is immediate from (5.6) for a semidirect extension. Whenever the extension is semidirect
we shall label the variables’, £1, ... | ", because the subsgt, ... , £” then forms a solvable subalgebra (see
Section 4.4 for terminology). For a semidirect extensi®t® is the identity matrix, and thus (5.6) gives

"
6A C,,lw = 8#0,;4)” C,Mr = C,O’)u

which is satisfied because we can interchange the order of differentiation. Heree) does not lead to any
conditions on the Casimir. However, the variables., o still take values from 0O ta in (5.6).
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5.2. Direct sum

For the direct sum we found in Section 4.1 that if we look at the 3-teWisas a cube, then it “blocks out” into
smaller cubes, or subblocks, along its main diagonal, each subblock representing a subalgebra. We denote each

subblock ofW;"” by W/",i = 1,..., r, wherer is the number of subblocks. We can rewrite (2.1) as

d .| 8A SB 4
{A,B}=Z<§;\,Wi’; [55_#55_”]>= > (A, B,

i=1 i=1
wherei labels the different subblocks and the greek indices run over the size athttmubblock. Each of

the subbracket$, }; depends on different fields. In particular, if the functioialis a Casimir, then, for any
functional F

{F,C}=Z{F,C},- =0={F,C}; =0, i=1...,r
i=1
The solution for this is

Cl¢]l = Cil&] + - -+ Cr[&], wherdF,Ci}; =0, i=1,...,r,

thatis, the Casimir is just the sum of the Casimir for each subbracket. Hence, the question of finding the Casimirs can
be treated separately for each component of the direct sum. We thus assume we are working on a single degenerate
subblock, as we did for the classification in Section 4, and henceforth we drop the subscript

There is a complication when a single (degenerate) subblock has more than one simultaneous eigenvector. By
this we meark vectorsu®,a =1, ... , k, such that

W)lf(v)ul(f) = A(”)u;a).

Note that lower-triangular matrices always have at least the simultaneous eigenyeetay, . Letn@ := uﬁj‘)gp,

and consider a forrd(n?, ... , n®) for the Casimir. Then
2
n(v) 9°C u(v) (@,,(b) AW (@), (b) °C
Wi Senoee — Z “o 3,7<a>a,,(b> Z”k Yo gn@on®

Because the eigenvalu&™ does not depend am (the block was assumed to have degenerate eigenvalues), the
above expression is symmetricirando. Hence, the Casimir condition (5.5) is satisfied.

The reason this is introduced here is that if a degenerate block splits into a direct sum, then it will have several
simultaneous eigenvectors. The Casimir invariats (@) andC® (n®)) corresponding to each eigenvector,
instead of adding a&“ (@) +c® (n®), will combine into one functiorC (n@, ®), amore general functional
dependence. However, these situations with more than one eigenvector are not limited to direct sums. For instance,
they occur in semidirect sums. In Section 6 we will see examples of both cases.

5.3. Local Casimirs for solvable extensions

In the solvable case, when all té“)’s are lower-triangular with vanishing eigenvalues, a special situation
occurs. If we consider the Casimir condition (5.4), we notice that derivatives with resg&ctitonot occur at all,
sinceW ™ = 0. Hence the functional

C[¢] = /Qé”(x/)é(x —x)d%x' = £"(x)
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is conserved. The variabl (x) is locally conserved. It cannot have any dynamics associated with it. This holds
true for any other simultaneous null eigenvectors the extension happens to have, but for the solvafilescase
always such a vector (provided the matrices have been put in lower-triangular form, of course).

Hence there are at most— 1 dynamical variables in an ordersolvable extension. An interesting special case
occurs when the only nonvanishifg, is for u = n. Then the Lie—Poisson bracket is

n—1
OF 5G
F,G) = wHY | gn , dx,
(F.G)= 3 W, ff (X)[asﬂm as%x)] *

n,v=1

whereg" (x) is some function of our choosing. This bracket is not what we would normally call Lie—Poisson because
£"(x) is not dynamical. It gives equations of motion of the form

Vo v §H n
‘5;: _WnMI:SE_Hss i|’

which can be used to model, for example, advection of scalars in a specified flow giixdy This bracket
occurs naturally when a Lie—Poisson bracket is linearized [26,34].

5.4. Solution of the Casimir problem

We now proceed to find the solution to (5.4). We assume that aWitte, © = 0, ... , n, are in lower-triangular
form, and that the matri¥ ( is the identity matrix. Although this is the semidirect form of the extension, we will
see that we can also recover the Casimir invariants of the solvable part. We assuthim (5.4), sincev = 0 does
not lead to a condition on the Casimir (Section 5.1). Therefgfé = 0. Thus, we separate the Casimir condition
into a part involving indices ranging from 0.. , n — 1 and a part that involves onhy The condition

3 WC [84.67]=0, v>0,
w,0,.=0
becomes
n n—1 n—1
S S wivC . [h 6]+ Y wie m [E7. 6" | =0,

2=0 \u,0=0 n=0

where we have use@;"” = 0 to limit the sum onu. Separating the sum dngives

n—1 n—1 n—1
S DS WC o [ER 67+ Y WC [E 8]
2=0 \p,0=0 u=0
n—1 n—1
+ ) WHC u6[E" 871+ > WIC unlE" E" = 0.
w,o0=0 u=0

The last sum vanishes becausg, "] = 0. Now we separate the condition into semisimple and solvable parts,
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n—1 n—1 n—1 n—1
Dol Do WC e [E €] = D WEC wlE" &1+ ) WC o€ €°]
n=1 \r,0=0 =0 o=0
n—1 n—1 n—1
+ ) WrCoo [£4,87] =) WXCalE" E1+ Y W CorlE",57] =0.
r,0=0 o=0 o=0

Using WB” = §,, we can separate the conditions into a partfes n and one for O< v < n. Forv = n, the only
term that survives is the last sum

n—1

Y Cole". £1=0.

o=0

Since the commutators are independent, we have the conditions,
Co =0, o0=0,...,n—1 (5.7)

and forO< v < n,

n—1 n—1 n—1 n—1
Dol D Wi Cuo [EM 6] = Y WEC wlE" €T+ Y WiCuol€" 57T | — Conl€" £ =0,
n=1 \ir,o=1 o=1 o=1

where we have used (5.7). Using independence of the inner brackets gives
WIC e = WEC s, (5.8)
8"C o = WYHC pin + 85 C.on, (5.9)

for 0 < o, A, v, u < n. From now on in this section repeated indices are summed, and all greek indices run from 1
ton — 1 unless otherwise noted. We have written a tilde oveit'®to stress the fact that the indices run from 1
ton — 1, so that the¥ represent a solvable ordér — 1) subextension of¥. This subextension does not include
W). We have also made the definition

" (5.10)

Eq. (5.8) is a Casimir condition: it says thais also a Casimir of¥. We now proceed to solve (5.9) for the case
whereg is nonsingular. In Section 5.4.2 we will solve the singglaase. We will see that in both cases (5.8) follows
from Eq. (5.9).

5.4.1. Nonsingulag
The simplest case occurs whegtas an inverse, which we will cadl,,. Then (5.8) has the solution

C,ra = A'ggc,un + ng,on, (5.11)
where
Al = g WY, (5.12)

It is easily verified thatd?, = A%, as required by the symmetry of the left-hand side of (5.11).
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In (5.11), itis clear that theth variable is “special”; this suggests that we try the following form for the Casimir:

CE% & .. em =) DOE%E, . e M, (5.13)
i>0
wheref is arbitrary andf; is theith derivative off with respect to its argument. One immediate advantage of this
form is that (5.8) follows from (5.9). Indeed, taking a derivative of (5.8) with respegt tinserting (5.13), and
equating derivatives of leads to

(@) 7 (i+1)
gUMD,;urA = W(]T)MD,;LA ’

where we have used (5.7). Since the left-hand side is symmetriamulo then so is the right-hand side, and (5.8)
is satisfied.

Now, inserting the form of the Casimir (5.13) into the solution (5.11), we can equate derivatiyes abtain,
fort,o=1,...,n—1,

0
D,(r<)7=0, r,o=1...,n—1, (5.14)
DO = AL DI 4 g, DE, i >0 (5.15)
The first condition, together with (5.7), says tt is linear in£%, ... , £*~1. There are no other conditions on

DO so we can obtain independent solutions by choosing
DOV —¢v y=0,...,n—1 (5.16)

The equation foD is

v _ 810> V=0,
D’”’_{A" v=1...,n—1

70’

(5.17)

ThusDW" is a quadratic polynomial (the arbitrary linear part does not yield an independent Casimir, so we set it to
zero). Note thaDV¥ does not depend asf sincer,o = 1,... ,n — 1. Hence, foi > 1 we can drop thé?fg_l)
term in (5.14). Taking derivatives of (5.14), we obtain

v _ AML AM2 . pAMGE-D @v
DJlTZn-T(iJrl) - Aflszulfa A#(f*Z)TiD,#(i—l)T(iJrl)' (5.18)

We know the series will terminate because W&V, and hence thd,,), are nilpotent. The solution to (5.18) is

. 1 : . .
P = ml}g&){‘;“.r(iﬂ)gflsrg S gD g > ], (5.19)

where the constan® are defined by

(i)v i AML AM2 . pAMG-D Dv
Dflf2~-f<f+1) T Aflszmrs Aﬂ(i*Z)riDyM(i—l)T(i+l)’ (5'20)

In summary, thed®’s of (5.13) are given by (5.16), (5.17) and (5.19).
Because the left-hand side of (5.18) is symmetric in all its indices, we require

AlAY =AM AN P> L (5.12)

This is automatically satisfied for the nonsingufazase [55]. Comparing this to (2.13), we see thatAhesatisfy
all the properties of an extension, except with the dual indices. Thus we call'shtae coextensiorof W with
respect tqz. Essentiallyg serves the role of a metric that allows us to raise and lower indices.
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For a solvable extension we simply restrict> 0 and the above treatment still holds. We conclude that the
Casimirs of the solvable part of a semidirect extension are Casimirs of the full extension. We have also shown, for
the case of nonsingular, that the number of independent Casimirs is equal to the order of the extension.

5.4.2. Singularg
In generalg is singular and thus has no inverse. However, it always has a (symmetric and unique) pseudoinverse
guv such that

8uo8”" gev = guv, (5.22)
g goeg™ = g"". (5.23)
The pseudoinverse is also known as the strong generalized inverse or the Moore—Penrose inverse [56]. It follows
from (5.22) and (5.23) that the matrix operator
Py = 8" g
projects onto the range gf The system (5.9) only has a solution if the following solvability condition is satisfied:
PY(WIHCpun + 85C.0n) = WIHCopun + 85C.0n. (5.24)

that is, the right-hand side of Eq. (5.9) must live in the rangg. of

If C.o, # O, the quantity,*C_ ., +5"C.0, has rank equal to, because the quanti®y,”“C_,,, is lower-triangular
(itis a linear combination of lower-triangular matrices). Hence the projection operator must also haveBahk
then this implies thag has rank: and so is nonsingular, which contradicts the hypothesis of this section. Hence,
C.o, = O for the singularg case, which together with (5.7) means that a Casimir that depengfs can only be
of the formC = £(£9). However, since&? is not an eigenvector of th (*’s, the only possibility i = £°, the
trivial linear case mentioned in Section 5.1.

The solvability condition (5.24) can thus be rewritten as

(PYWIH — WYMC = 0. (5.25)

An obvious choice would be to require’ We" = Wy*, but this is too strong. We will derive a weaker requirement
shortly.
By an argument similar to that of Section 5.4.1, we now asstiiseof the form

CEL ... g =) DOE, ... & fEM, (5.26)

i>0
where againf; is theith derivative of f with respect to its argument. As in Section 5.4.1, we only need to show
(5.9) and (5.8) will follow. The number of independent solutions of (5.9) is equal of the ragnKldfe choice

DOV = prer y=1... ,n-1, (5.27)
i3

provides the right number of solutions because the rank &fequal to the rank of. It also properly specializes
to (5.16) wherg is nonsingular, for the®) = 3,.
The solvability condition (5.25) with this form for the Casimir becomes

(PYWI — WDl =0,  i>0. (5.28)
Fori = 0 the condition can be shown to simplify to

PYW = WP,
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or to the equivalent matrix form
P W) = WP, (5.29)

sinceP is symmetric [56].
Eq. (5.9) becomes

gD =0, DU = Wwirpizbr i > 0.
If (5.25) is satisfied, we know this has a solution given by
DSy = & WP DG + O = 21,8"EY i > 0,

where¢ is arbitrary, ands)’ — g;,,g”*) projects onto the null space gf The left-hand side is symmetric inando,
but not the right-hand side. We can symmetrize the right-hand side by an appropriate choice of the null eigenvector,

EN = g WMDY, i >0,

in which case

DYy = Al DG >0,
where
Ay = 8opW{" + 810 W} — 8108018 WS, (5.30)

which is symmetric irkh ando . Eg. (5.30) also reduces to (5.12) wheis nonsingular, for then the null eigenvector
vanishes. The full solution is thus given in the same manner as (5.18) by

: 1 ; . .
pi= le('llzf‘;...r(Hl)grlgrz S gD, i >0, (5.31)

where the constant® are defined by

Dgll)f‘;u-f(wl) = A;TLlszAﬁifs T Aﬁié:;iriAﬁii—l)T(iJrl) Plfi’ (5.32)

andDWO is given by (5.27).
The A’s must still satisfy the coextension condition (5.12). Unlike the nonsingular case this condition does not

follow directly and is an extra requirement in addition to the solvability condition (5.28). Note that only=tH
case, Eqg. (5.29), needs to be satisfied, for then (5.28) follows. Both these conditions are coordinate-dependent, and
this is a drawback. Nevertheless, we have found in obtaining the Casimir invariants for the low-order brackets that
if these conditions are not satisfied, then the extension is a direct sum and the Casimirs can be found by the method
of Section 5.2. However, this has not been proven rigorously.

5.5. Examples

We now illustrate the methods developed for finding Casimirs with a few examples. First we treat our prototypical
case of CRMHD, and give a physical interpretation of invariants. Then, we derive the Casimir invariants for Leibniz
extensions of arbitrary order. Finally, we give an example involving a singular
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5.5.1. Compressible reduced MHD
The W tensors representing the bracket for CRMHD (see Section 2.2.4) were given in Section 2.3.2. We have
n = 3, so from (5.10) we get

_ 0 —Bi -1 _ 0 —ﬂl._l
g_(—ﬂi 0 ) § ‘(—/3,-1 0 )

In this case, the coextension is trivial: all three matri¢€3 defined by (5.12) vanish. Using (5.13) and (5.16), with
v = 1 and 2, the Casimirs for the solvable part are

=g} =ve(y),  CP=£%E®) = ph(y),
and the Casimir associated with the eigenvegfais
C3 = k(€% = k().

Sinceg is nonsingular we also get another Casimir from the semidirect sum part,

1 12 p7,63 1 /
—EE° [ E) =wf (Y) — pvf ().
Bi Bi
The physical interpretation of the invaria@i is given in Morrison [24] and Thiffeault and Morrison [21].
This invariant implies the preservation of contoursyof so that the valua/g on a contour labels that contour
for all times. This is a consequence of the lack of dissipation and the divergence-free nature of the velocity.
Substituting?3(y) = y* we also see that all the moments of the magnetic flux are conserved. By ch6@ing=
O (X) — wp), a heavyside function, and inserting into (5.3), it follows that the area inside ofatgntour is
conserved.
To understand the Casimi€s andC?, we also letg(¥) = © (¥ — %) in CL. In this case, we have

CO=e% 3 —

CHv; vl =fvg(1/f)d2x =/ v(x) d?x,
2 Yo

where Yy represents the (not necessarily connected) regiaf? @inclosed by the contouf = v andd¥y is
its boundary. By the interpretation we gave@® the contourd¥, moves with the fluid. So the total value of
inside of ay-contour is conserved by the flow. The same is true of the pregsy®ee Thiffeault and Morrison
[21] for an interpretation of these invariants in terms of relabeling symmetries, and a comparison with the rigid
body.)
The total pressure and parallel velocity inside of gngontour are preserved. To understafidwe use the fact
thatw = V2¢ and integrate by parts to obtain

vp
Bi

The quantity in parentheses is thus invariant inside ofargontour. It can be shown that this is a remnant of the
conservation by the full MHD model of the cross helicity,

V=/V-Bd2x,
2

at second order in the inverse aspect ratio, while the conservatioH of /] is a consequence of preservation of
this quantity at first order. Herg is the magnetic field. The quantiti€s[y] and C?[p; v] they are, respectively,
the first and second order remnants of the preservation of helicity,

C4[w’ v, p, 1/f] = _/ <V¢ : V“/I + > f’(W) dzx‘
2
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W= / A . Bd%x,
2
whereA is the magnetic vector potential.

5.5.2. Leibniz extension
We first treat the nilpotent case. The Leibniz extension of Section 4.5 can be characterized by

WS Z 8 v a=1....n, (4.13)

where the tensof is the ordinary Kronecker delta. Upon restricting the indices to run fromril+tol (the tilde
notation of Section 5.4), we have

g“”:Wf”:S#H, w,v=1 ..., n—1
The matrixg is nonsingular with inverse equal to itsedf;, = &),,,. The coextension o is thus
n—1 n—1
- VI _ n v _ qtn
Aro - Zgl’vWa - 25r+v80 - 8t+<7'
v=1 v=1
Eq. (5.20) becomes
DY — AML AM2 . AMGED g _ glatngnotn | GlG-Din gvin
TIT2..T(i+1) — *T1T2° M1T3 K- T -1 Ti+1) — T2 pH1+T3 M(i—2)FTi G- T T +1)
—gutin v=1...,n—1,

T1+T2+"'+T(,‘+1) ?

which, as required, is symmetric under interchage ofithéJsing (5.13), (5.16), (5.17) and (5.19) we obtain the
n — 1 Casimir invariants

1 ; .
Cv(sl’ s 8 = ng‘f)ﬂ?ererrml)gn e ETED fR(E), (5.33)
i>0
forv =1,...,n — 1. The superscript on f indicates that the arbitrary function is different for each Casimir, and

recall the subscript denotes théth derivative with respect t§". Thenth invariant is simplyC¥ (") = f"(§"),
corresponding to the null eigenvector in the system. Thus there m@ependent Casimirs, as stated in Section
5.4.1.

For the Leibniz semidirect sum case, sicis nonsingular, there will be an extra Casimir given by (5.33) with
v = 0, and ther; sums run from O ta — 1. This is the same form as the= 1 Casimir of the orde¢z + 1) nilpotent
extension.

For theith term in (5.33), the maximal value of amy is achieved when all but one (say) of thez; are equal
ton — 1, their maximum value. In this case we have

n+n+-+rp=nut+in—1)=v+in,

sothatr; = i+v. Hence, théth term depends only ag’*, . .. , &), and theoth Casimir depends oi§ ", . .. , £").
Also,

max(ty + -+ ti41) = (i + D(n — 1) = v +in,

which leads to max = n — v — 1. Thus the sum Eg. (5.33) terminates, as claimed in Section 5.4.1. We rewrite
(5.33) in the more complete form
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Table 2
Casimir invariants for Leibniz extensions up to ordet 5 (v = 1) (the primes denote derivatives)
n Invariant
1 fEY
2 ELf(E?)
3 ELFES + D2 (D)
4 ELFED +E23FED + FEDEY
5 ELFED) + B2+ JEDDLED) + FE3EDED) + FEHED)
n—v l
k—1
CU(EY,... &) = Fa:ﬁtﬁ)aus” o ETRY L ET),
k=1""
forv=0,...,n. Table 2 gives the = 1 Casimirs up to ordet = 5.

5.5.3. Singulag
Now considen = 4 extension from Section 4.6.4, Case 3(c). We have

100 001
Wo=[0 0 of. ¢g=|0 0 0],
000 100

1

with W(l) = W(g) = 0. The pseudo inverse gfis g~ = g and the projection operator is

1 00
P =g"ge:=[(0 0 O
0 0 1

The solvability condition (5.29) is obviously satisfied. We build the coextension given by (5.30), which in matrix
formis

A(v) — W(v)gfl + (W(u)gfl)T _ gflgW(u)gfl’

to obtain
0 0O
AD=10 0 1], A@=4® —0.
010

These are symmetric and obviously satisfy (5.12), so we have a good coextension. Using (5.26), (5.27), (5.31) and
(5.32) we can write, for = 1 and 3,

ct=elreEh 2831 h, d=g%Eh.

This extension has two null eigenvectors, so from Section 5.2 we also have the Gagfmi*). The functionsf,
g, andh are arbitrary, and the prime denotes differentiation with respect to argument.

6. Casimir invariants for low-order extensions

Using the techniques developed so far, we now find the Casimir invariants for the low-order extensions classified
in Section 4.6. We first find the Casimir invariants for the solvable extensions, since these are also invariants for the
semidirect sum case. Then, we obtain the extra Casimir invariants for the semidirect case, when they exist.
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Table 3

Casimir invariants for solvable extensions of ordet 3

Case Invariant

1 C(g €2, €%)

2 ELf(E%) +E28(E%) + h(£®)

3 ELf(ED) + (6%, 8%

4 ELfED) + 3ED2F(E3) + £2(E%) + h(ED)

6.1. Solvable extensions

Now we look for the Casimirs of solvable extensions. As mentioned in Section 5.3, the Casimirs associated with
null eigenvectors (the only kind of eigenvector for solvable extensions) are actually conserved locally. We shall
still write them in the formC = f ("), whereC is as in (5.3), so they have the correct form as invariants for the
semidirect case of Section 6.2 (for which they are no longer locally conserved).

6.1.1. n=1
Since the bracket is Abelian, any functién= C(£1) is a Casimir.

6.1.2. n=2
For the Abelian case we hade= C(£1, £2). The only other case is the Casimir of the Leibniz extension,

CEL %) = £1F(E%) + g(£?).

6.1.3. n=3

As shown in Section 4.6.3, there are four cases. Case 1 is the Abelian case, for which any fGinetion
C(g1, £2,£%) is a Casimir. Case 2 is essentially the solvable part of the CRMHD bracket, which we treated in
Section 5.5.1. Case 3 is a direct sum of the Leibniz extensiom fo12, which has the bracket

[(er1, @2), (B1, B2)] = (O, [er1, B1),

with the Abelian algebrad, 83] = 0. Hence, the Casimir invariant is the same as fomthe?2 Leibniz extension
with the extras3 dependence of the arbitrary function (see Section 5.2). Finally, Case 4 is the Leibniz Casimir.
These results are summarized in Table 3.

Cases 1 and 3 are trivial extensions, that is, the cocycle appendedite=tteecase vanishes. The procedure of
then adding” dependence to the arbitrary function works in general.

6.1.4. n=4

As shown in Section 4.6.4, there are nine cases to consider. We shall proceed out of order, to group together
similar Casimir invariants.

Cases 1(a), 2, 3(a), and 4(a) are trivial extensions, and as mentioned in Section 6.1.3 they involve only addition
of £¢* dependence to their = 3 equivalents. Case 3(b) is a direct sum of twe= 2 Leibniz extensions, so the
Casimirs add.

Case 3(c) isthe semidirect sum of the- 2 Leibniz extension with an Abelian algebra defineddog[ «4), (83, B4)] =
(0, 0), with action given by

P(ay,a2) (ﬂ3’ ﬂ4) = (Os [als :33])

The Casimir invariants for this extension were derived in Section 5.5.3.
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Table 4

Casimir invariants for solvable extensions of ordet 4

Case Invariant

1(a) C(gt, €2, &3 &%)

1(b) ELF(EY + £28(EY) + £3h(EY) + k(EY

2 ELF(E3) +E29(E%) + h(E3, £%)

3(a) ELf (€Y + g(5%,£5, 8%

3(b) ELF(E2) +£3g(8% + h(E2, &%

3(c) ELFEY + 823/ (5% + £3g (6% + h(E% £Y
3(d) ELFEN + 3ED2FEY + 3 (EY + E2h(EY) + k(ED
4(a) ELF(ED + 3ED2 /(%) +£28(E3) + h(£3, &%
4(b) ELFEH + 8231 EH + FEDI 1 EY

+£2¢(EM + FED2 Y + E3hE +k(EY

Case 3(d) has a nonsingularso the techniques of Section 5.4.1 can be applied directly.
Finally, Case 4(b) is the = 4 Leibniz extension, the Casimir invariants of which were derived in Section 5.5.2.
The invariants are all summarized in Table 4.

6.2. Semidirect extensions

Now that we have derived the Casimir invariants for solvable extensions, we look at extensions involving the
semidirect sum of an algebra with these solvable extensions. We label the new variable (the one which acts on the
solvable part) by:?. In Section 5.4.1 we showed that the Casimirs of the solvable part were also Casimirs of the
full extension. We also concluded that a necessary condition for obtaining a new Casimir (other than the linear case
C(&% = £9) from the semidirect sum was that dé&t,) # 0. We go through the solvable cases and determine the
Casimirs associated with the semidirect extension, if any exist.

6.2.1. n=1
There is only one solvable extension, so upon appending a semidirect part we have

10 01
W“’):(o o)’ W<1’:<1 o)‘

Since detW(1) # 0, we expect another Casimir. In fact this extension is of the semidirect Leibniz type and has the
same Casimir form as the= 2 solvable Leibniz (Section 5.5.2) extension. Thus, the new Casimir isJugt ).

6.2.2. n=2
Of the two possible extensions only the Leibniz one satisfie$iggt# 0. The Casimir is thus

Csa=£0£ (6% + 3(EHZF' (D).
6.2.3. n=3
Cases 2 and 4 have a nonsingukg,. The Casimir for Case 2 is
Csa= &2 (£ + £16% 1/ (£°),
and for Case 4 it is of the Leibniz form

1
Csa=E0£ (€3 +&162 /(%) + 5(52)3f”(53).
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Table 5

Casimir invariants for semidirect extensions of ordet 5 (these extensions also possess the corresponding Casimir invariants in Table 4)
Case Invariant

1b EOF (€% + (E'€3 + 2(EDD (€Y

3d EOFEN + EE+3EDHFED + %(SZ)Sf”(S“)

4b EOF(E) + (B85 4+ 3(EDD f/(EY + E2ED2 " ED + HEDH 7 EY
6.2.4. n=4

Cases 1(b), 3(d), and 4(b) have a nonsinglfas;. The Casimirs are shown in Table 5.

7. Discussion

Using the tools of Lie algebra cohomology, we have classified low-order extensions. We found that there were
only a few normal forms for the extensions, and that they involved no free parameters. This is not expected to carry
over to higher ordersi(> 4). The classification includes the Leibniz extension, which is the maximal extension.
One of the normal forms is the bracket appropriate to compressible reduced MHD [17,48].

We then developed techniques for finding the Casimir invariants of Lie—Poisson brackets formed from Lie algebra
extensions. We introduced the concept of coextension, which allows one to explicitly write down the solution of the
Casimirs. The coextension for the Leibniz extension can be found for arbitrary order, so that we were able obtain
the corresponding Casimirs in general.

It would be interesting to generalize the classification scheme presented here to a completely general form of
extension bracket [5,10]. Certainly the type of coordinate transformations allowed would be more limited, and
perhaps one cannot go any futher than cohomology theory allows.

The interpretation of the Casimir invariants can be pushed further, both in a mathematical and a physical sense.
Mathematically, a precise geometrical relation between cocycles and the form of the Casimirs could be formulated.
The cocycle and Casimirs should yield information about the holonomy of the system. For this one must study the
extensions in the framework of their principal bundle description [29]. Physically we would like to attach a more
precise physical meaning to these conserved quantities. The invariants associated with simultaneous eigenvectors
can be regarded as constraining the associated field variable to move with the fluid elements [24]. The field variable
can also be interpreted as partially labeling a fluid element. Some attempt has been made at formulating the Casimir
invariants of brackets in such a manner [6,21], and an interpretation of cocycles in the context of dynamical
accessiblity has been offered [55].

Sufficient conditions for stability can be obtained via the energy—Casimir method [22,24,25], or the related
technique of dynamical accessibility [26,57]. In both these case, we can make use of the coextension to derive the
stability conditions for Lie—Poisson bracket extensions and a large class of Hamiltonians [55].
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Appendix A. Proof of W& = |

Out goal is to demonstrate that through a series of lower-triangular coordinate transformations we can make
w® (which has am-fold degenerate eigenvalue equal to unity) equal to the identity matrix, while preserving the
lower-triangular nilpotent form o @, ..., w®,

We first show that we can always make a series of coordinate transformations td¥jtakes?. First note that
if the coordinate transformatioM is of the formM = I + L, wherel is the identity and. is lower-triangular
nilpotent, ther @ = M~1w® p still has eigenvalue 1, and for> 1theW ) = pM—1w @ M are still nilpotent.

Fori > 1 we have

A—-1
Wit =W+ WLl =wit+ > whel+ L}, (A1)
v=2

where we use(ﬁ/A“ = 1. Owing to the triangular structure of the set of (A.1) we can always solve fotiche
make W vanish. This proves the first part.

We now show by induction that 1 = s1, as proved above, thei? is the identity matrix. Fok = 1 the
result is trivial. Assume thawl}” =4, for u < A. Setting two of the free indices to one, Eq. (2.13) can be written
as

mwlyrdo _ ywMo yrdl oy ol oy
W, W, =W, W, =W;"65, =W,
SinceW W is lower-triangular the index runs from 2 tox (since we are assuming> 1):

A

nly,lo lo
ZWA Wu - A
u=2

and this can be rewritten, for < 2,
A—1
S witwl =o.
n=2
Finally, we use the inductive hypothesis
A—1
2wt =wit=0,
n=2

which is valid foro < 1. Hence, W1 = 8¢ and we have proved the resultv{! must be equal to one since it lies
on the diagonal and we have already assumed degeneracy of eigenvalues.)
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