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Magnetic field lines typically do not behave as described in the symmetrical situations treated in
conventional physics textbooks. Instead, they behave in a chaotic manner; in fact, magnetic field
lines are trajectories of Hamiltonian systems. Consequently the quest for fusion energy has
interwoven, for 50 years, the study of magnetic field configurations and Hamiltonian systems
theory. The manner in which invariant tori breakup in symplectic twist maps, maps that embody one
and a half degree-of-freedom Hamiltonian systems in general and describe magnetic field lines in
tokamaks in particular, will be reviewed, including symmetry methods for finding periodic orbits
and Greene’s residue criterion. Innontwist maps, which describe, e.g., reverse shear tokamaks and
zonal flows in geophysical fluid dynamics, a new theory is required for describing tori breakup. The
new theory is discussed and comments about renormalization are made. ©2000 American
Institute of Physics.@S1070-664X~00!01905-4#
in
d.
ti
.

ve
be
m
em
on

o
10

s
h

b
o

ve
f
e
te

al
, t
n
t

ta
a
s
ia
no

ics
of

nal
ght
the
fu-
tles
also
al
las-
l in
ysi-
an-
of

ntal

ed
rest
on,
e is
ag-
es
my
ics
eld
a
of

uss
ity
sly.

er
at
ys-
the
I. INTRODUCTION

Classical mechanics is a very old discipline; depend
on where one selectst50, it is at least hundreds of years ol
It may come as a surprise that important and substan
progress has been made in this field in the last 50 years
particular, the elementary problem of how a swing beha
or the essentially equivalent problem of explaining the
havior of bundles of closed magnetic field lines when sy
metry is broken have been solved. Both of these syst
possess nonlinearity and periodicity, and they are, am
other things, the subject matter of this talk.

Because this is the American Physical Society~APS!
Centennial meeting it seems appropriate to say a little ab
the progress that has transpired in this field in the past
years. At the turn of the century Poincare´ made impressive
discoveries. For systems with two degrees of freedom~two
canonical coordinates and two momenta! he introduced the
idea that Hamiltonian systems are area preserving map
planar regions. He of course did much more than this;
worked on the existence of invariant surfaces~tori! and con-
jectured about their destruction, work that was completed
G. D. Birkhoff. To many he is considered to be the father
the field of topology. However, in spite of the impressi
discoveries by Poincare´, Birkhoff, and others in the first hal
of the 20th century, the more impressive progress has b
made in the second half; namely, the proof of the celebra
KAM ~Kolmogorov–Arnold–Moser! theorem, which gives
meaning to perturbation theory, the discovery of Sm
horseshoes, which gives meaning to the notion of chaos
clear understanding of the failure of perturbation theory, a
the nonexistence of action-angle variables. Because of
work of Greene and later researchers, we now unders
how invariant tori break and we have a theory of renorm
ization in Hamiltonian systems. In addition, much progre
has been made in understanding transport in Hamilton
phase space, a major concern of fusion physics, but I will
dwell much on this topic.
2271070-664X/2000/7(6)/2279/11/$17.00
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In the first half of the 20th century, classical mechan
was a relatively unfashionable discipline. This was the age
modern physics and the parallel development of functio
analysis in mathematics. Relatively few researchers thou
seriously about classical mechanics. In the second half of
20th century the quest to achieve energy by controlling
sion reactions by containing hot plasma in magnetic bot
was begun, and impressive progress in this endeavor
was~and is being! made. It is my belief that there is a caus
relationship between the progress in fusion and that in c
sical mechanics. The quest for fusion instigated a renewa
the study of classical mechanics, and indeed plasma ph
cists have made important contributions to classical mech
ics. This is an example of the not uncommon scenario
scientific advancement, where practical and fundame
progress are made hand-in-hand.

In fusion physics one is interested in containing charg
particles, and because the particle concentrations of inte
are typically small compared to the quantum concentrati
particles can be described classically. Thus obviously on
led to the study of classical trajectories in electric and m
netic fields. But because particles follow magnetic field lin
to leading order, one needs to understand their nature. In
experience, the typical physicist outside of plasma phys
does not have a good feeling for the nature of magnetic fi
lines. Few know that a single field line can densely fill
surface or wander around forever in a bounded region
space without closing. This is because textbooks only disc
cases with symmetry. I do not know of a single electric
and magnetism text that treats magnetic field lines seriou
The incorrect belief that¹•B50 implies field lines are ei-
ther closed or go to infinity, surprisingly still exists. Anoth
thing that is not widely known is that the equations th
describe magnetic field lines are in fact a Hamiltonian s
tem. Since Hamiltonian trajectories are typically chaotic,
same is true of magnetic field lines.

So I have two main goals:
9 © 2000 American Institute of Physics
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~i! to describe some of the progress in classical mech
ics in the last 50 years and to give a sense for w
contributions are associated with plasma physici
and

~ii ! to describe some recent work of my own in co
laboration with John Greene and Diego del-Castil
Negrete1 on how invariant tori break in systems th
violate the so-called twist condition.

In Sec. II, it is described how both Hamiltonian systems a
magnetic field line systems, particularly those of fusion d
vices, are area preserving maps. Also, ways of casting
equations for field lines in Hamiltonian form are present
In Sec. III a bit of Hamiltonian dynamics lore is describe
~e.g., periodic orbits, the rotation number or safety factor,
standard map!, but mainly the twist condition is described
an important property possessed by the most studied Ha
tonian systems. Section IV describes systems that violate
twist condition, and here the nontwist map, a prototype m
for nontwist behavior, is discussed. Also in this section it
shown how transport in zonal flows, nonmonoton
q-profiles, and other systems are nontwist Hamiltonian s
tems. In Sec. V, reconnection in nontwist systems is brie
considered. Here it is noted that island chains come in
types and that this gives rise to a complicated arrangeme
periodic orbits. The main problem, when and how do t
break in nontwist systems, is described in Sec. VI. Bef
describing our results on nontwist systems, we first rev
Greene’s calculation for twist maps and describe an ass
ated procedure for finding periodic orbits. In Sec. VII a fe
comments about renormalization are made before we s
marize in Sec. VIII.

II. MAGNETIC FIELD LINES ARE HAMILTONIAN
TRAJECTORIES

Let us jump back about 100 years and discuss a resu
Poincare´. Consider a Hamiltonian system with two degre
of freedom,

q̇i5
]H

]pi
, ṗi5

]H

]qi
, i 51,2, ~1!

whereH5H(q,p) does not have explicit dependence up
time. Because it is not possible to visualize the fo
dimensional phase space, we set the Hamiltonian equa
some constant value, sayE, and plot trajectories in a three
dimensional space. If the equationH5E can be solved for
p25p2(q1 ,p1 ,q2 ,E), which is usually the case, then a tr
jectory can be plotted in the space with axesq1 ,p1 ,q2 as
depicted in Fig. 1. If the trajectory returns to a neighborho
of the initial condition, which must be the case if the ener
surface is bounded, then Eqs.~1! define a return map. In
appropriate coordinates this map is an area preserving
of a planar region~see, e.g., Ref. 2, pp. 151–155!. An ex-
ample of this is shown in Fig. 1, where a trajectory origin
ing in theq12p1 plane returns at a later time toq250. Near
this trajectory there is~at least! a little disk in the plane of
trajectories that return, and thus Eqs.~1! define an area pre
serving map of at least a disk of theq12p1 plane to itself.
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Because the trajectories in the disk return toq250 at
different times, it is natural to attempt to find a set of coo
dinates in which all the trajectories return at the same tim
This is achieved by using the coordinateq2 as a time vari-
able. It is a classical result that in terms of the ‘‘q2’’ time
variable, this system still has Hamiltonian form~see, e.g.,
Ref. 3, Sec. 141!. Upon settingq25t, dropping the sub-
scripts ‘‘1’’ on q1 andp1 , the Hamiltonian in the new coor
dinates becomesH5H(q,p,t), where we suppress the de
pendence on the fixed value ofE. Thus we have reduced th
order of the problem, but at the expense of obtaining expl
time dependence in the Hamiltonian. Taking the return ti
of the disk of trajectories to beT, a little thought yields the
periodicity condition H(q,p,t)5H(q,p,t1T). Systems
like this are said to have one and a half degrees of freed
the half accounting for the periodic time dependence. T
we have arrived at the following conclusion: Hamiltonia
systems of one and a half or two degrees of freedom are~at
least locally! area preserving maps of a planar region. Ma
like these are sometimes called symplectic maps.

Now let us turn to magnetic field lines. In particula
consider the arrangement of two current sources depicte
Fig. 2. This arrangement has a large current with densityJz

flowing in the ẑ-direction and a smaller closed current wi
densityJa that lies in the plane perpendicular toẑ and is on
average azimuthal. The separate magnetic field lines co
sponding to the two currents are also depicted in this figu
It is not difficult to show by analyzing the cylindrical coor
dinate field line equations,

dz

Bz
5

dr

Br
5

rdf

Bf
, ~2!

that the field lines due to the total current, i.e., those of
superposition of the two fields depicted, are typically n
closed and typically do not go to infinity.

FIG. 1. Depiction of Poincare´ return map in a two degree-of-freedom
Hamiltonian system.
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Consider the symmetrical situation where the curre
are concentrated to single wires, a vertical one along
z-axis corresponding toJz and a circular one that points i
the f̂-direction and is located atr5R, z50, corresponding
to Ja . In order to simplify the discussion we supposeJz is
much larger thanJa , and consider a region over which th
azimuthal field produced byJz is approximately constant
The field lines can be described by a surface of section s
as the one shown in Fig. 3. Here we have plotted po
where the field lines pierce a given vertical plane contain
the vertical wire, e.g., the planef50. The ordinate of this
figure is pªr 2/2, where r is a radius measured from th
circular wire, and the abscissau is an angle measured aroun
the circular wire. Thus, (r ,u) constitute a polar coordinat
system located in anyf5constant plane. From the figure,
can be inferred that field lines wind around in a helical ma
ner and lie on nested tori centered on the circular wire. M
field lines densely cover a torus, but some are indeed clo
Field lines that look like this are calledintegrable.

The two-current system described above is a sort
‘‘poor man’s’’ version of the field lines that ideally occur i
stellarator or tokamak fusion devices. In practice, symme
is necessarily broken and the field lines look more like th
shown in Fig. 4. Observe that some appear to wander

FIG. 2. Depiction of a two-current system and magnetic field lines.

FIG. 3. Magnetic field line return map for a symmetrical two-current s
tem.
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So, what does¹•B50 imply? The answer is that th

map from thep2u plane to itself that is defined by the fiel
lines is an area preserving map, just like that described ab
for Hamiltonian systems. The field line picture is identical
the Hamiltonian trajectory picture with the role of time bein
played by the azimuthal coordinatef. Thus we have arrived
at the following conclusion: Magnetic field lines are~at least
locally! trajectories of Hamiltonian systems of one and a h
or two degrees of freedom. Thus magnetic field line maps
symplectic maps.

The relationship between magnetic field lines a
Hamiltonian systems was recognized early on in the fus
program. The earliest reference I know of is that of Krusk
~Ref. 4! in 1952, who iterated an explicit area preservi
map ~similar to the standard map defined below! in order to
describe the magnetic field of stellarators. Early papers
which field line Hamiltonians were obtained for integrab
fields are Refs. 5 and 6.~See Ref. 7, which describes some
the ample contributions from the former Soviet Union.! Al-
though many papers were written in the early 1960’s a
1970’s on this topic, a general and explicit Hamiltonian d
scription for field lines does not appear to have been disc

-

FIG. 4. Magnetic field line return map for an unsymmetrical two-curre
system.
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ered until the early 1980’s. Boozer~in Ref. 8! considered a
potential representation for the divergence-free magn
field of the formB5¹c3¹u1¹f3¹x, an idea that was
used previously in less generality in plasma physics
dates way back to Euler. With this form forB, the field line
equations can be cast into the following Hamiltonian form

dc

df
52

]x

]u
,

du

df
5

]x

]c
, ~3!

wheref is the azimuthal angle,c is a radial-like coordinate
that plays the role of the momentum conjugate tou, and
x(f,u,c) is the Hamiltonian. This formulation has bee
widely used in stellarator research.~See also Ref. 9, pp
8–10.! A more fundamental description was given by Ca
and Littlejohn~Ref. 10! in terms of an action principle tha
depends on the vector potentialA,

S@r #5E
r0

r1
A•dr . ~4!

Here, as in Hamilton’s principle of mechanics, the trajec
ries are pinned at the initial and final positions,r0 and r1 ,
respectively. It is interesting to compare this action princi
with the phase space action principle, the action principle
mechanics that directly gives Hamilton’s equations

S@q,p#5E
r 0

r1
p•dq2Hdt. ~5!

If one singles out one of the coordinates in~4! to play the
role of time, then comparison with~5! indicates that the cor
responding component of the vector potential is associa
with the Hamiltonian, while the other components are as
ciated with the canonical momenta.

Lest one thinks the story is over, I mention the work
Mezic and Wiggins~Ref. 11!, who give a description in
terms of commuting vector fields that does not require
introduction of the vector potential.

III. TWIST

The twist conditionis an ingredient that is used in man
important theorems in Hamiltonian dynamics, theorems
to Arnold, Moser, Aubry, Mather, and others. The conditi
is used in theorems that apply to both the ordinary differ
tial equation and map descriptions of Hamiltonian syste
Because of this, we will describe the twist condition below
both contexts. Ultimately, the prevalence of the twist con
tion can be traced to the form of the Hamiltonians that
scribes particle dynamics.

First, consider a one and a half degree-of-freedom s
tem, i.e., one with a singleq and p that satisfiesH(q,p,t)
5H(q,p,t1T). The Hamiltonians for a driven swing an
for magnetic field lines without symmetry are of this typ
For a particle system, the swing included, the Hamiltonian
the sum of kinetic and potential energy parts,H5p2/(2m)
1V(q,t), with V(q,t)5V(q,t1T). Sincemq̇5p it is evi-
dent that larger canonical momentum implies larger veloc
a condition that is true for many Hamiltonians but obvious
not all. This simple monotonicity condition is the essence
the twist condition.
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More generally, consider near-integrable systems w
one and a half degrees of freedom, which have Hamiltoni
of the form H5H0(J)1eH1(u,J,t), with e!1. Here the
variables~u, J! are assumed to be action-angle variables
an integrable system with HamiltonianH0(J). The fre-
quency is defined byv0(J)ª]H0 /]J and the twist condi-
tion for this class of system is given by

]v0~J!

]J
5

]2H0~J!

]J2 .c.0, ~6!

wherec is a real number.@Note, the twist condition exists if
]v0(J)/]J,c,0, which turns into~6! under time reversal.#

In Sec. II we saw how Hamiltonian systems and ma
netic field line equations are related to symplectic ma
Such maps inherit the twist condition. Investigation of fie
lines ~or Hamiltonian trajectories! conventionally requires
numerical integration of differential equations like those
Eq. ~2!. However, it is now understood that Hamiltonian sy
tems haveuniversal behavior that is captured by studyin
explicit symplectic maps of the plane.

The most studied symplectic map is thestandard map
~sometimes called the Chirikov–Taylor map!, which is given
by

yn115yn2
k

2p
sin~2px!, xn115xn1yn11 . ~7!

Here y is a momentum-like variable andx is a coordinate-
like variable that is assumed to be periodic with period
Sometimes we usezª(x,y) and write ~7! compactly as
zn115T(zn).

Figures 3 and 4 of Sec. II were generated by repea
iteration of the standard map. In Fig. 3 some of the horiz
tal lines are filled in while some are merely isolated poin
These are, respectively, the rational and irrational tori of
magnetic field configuration. The rational tori are compos
of periodic orbits, which satisfyz5Tn(z)5T+T+T...T(z),
where+ means composition of functions@i.e., Tn(z) denotes
the quantity obtained upon inserting the map inside itsen
times#. If after iterating the mapn-times one returns to the
same point, then one has a periodic orbit of periodn. On the
other hand, irrational tori are densely filled-out upon r
peated iteration. An important quantity is therotation num-
ber, v, which is defined to be the average horizontal jum
per iteration,

vª lim
n→`

xn

n
. ~8!

Here, one suspends the periodic boundary condition ox
when taking the limit. For both rational and irrational tori th
rotation number exists, and is correspondingly a rational
irrational number. Thesafety factor, qª2p/v, is conven-
tionally used in fusion physics, and it measures the m
ratio of the number of turns the long way around the torus
the short way around. In Fig. 4 we see some irrational
~or invariant tori as they are often called! and remnants of the
rational tori as isolated periodic orbits. Periodic orbits play
large role in what is to come in Sec. VI.
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Now we define the twist condition for maps: a map s
isfies the twist condition~is a twist map! if points higher up
along a vertical line make larger jumps in the horizon
direction. This will be true if]yn11 /]xn.c.0. Thus we
expect the rotation number~when it exists! to increase mono-
tonically in the vertical direction. This is indeed the case
the standard map, which is the prototype twist map.

IV. NONTWIST

So, what is nontwist? Quite simply, anontwistsystem is
any system that does not satisfy the twist condition. Th
are many ways that this can happen. For example, a sy
can haveno twist, which in the differential equations contex
means ]v0(J)/]J[0, while in the map context mean
]yn11 /]xn[0. Alternatively, there can be a single point
which these quantities vanish, and the vanishing can b
arbitrarily high order. The most important violation of th
nontwist condition is that for which there is a single simp
zero; i.e., for whichv0(J) possesses a simple maximum
minimum or for which the rotation number of the map has
simple maximum or minimum. Universal behavior of th
kind of system is captured by a map that we have called12 the
standard nontwist map, which is defined by

yn115yn1b sin~2pxn!, xn115xn1a~12yn11
2 !, ~9!

wherea andb are parameters and againx has period 1. There
are other ways of writing nontwist maps, but all of tho
with the simple extremum property are essentially the sa
map, because they can be transformed into this form
means of a coordinate transformation. Note, that no coo
nate transformation can eliminate the two-parameter dep
dence. We have studied the standard nontwist map in g
detail; some of our work will be described in Secs. V–VI

The nontwist map possesses ashearless curve, a curve
along which the twist condition is violated. It is easy to d
fine this quantity whenb50; for this case, the standard no
twist map reduces to an integrable map, like that of Fig
for which all the orbits lie on horizontal lines. Evidently, th
twist condition is violated along the horizontal liney50. For
bÞ0 it is a greater challenge to define the shearless cu
one we meet in Sec. VI.

In spite of the fact that prior to this decade nontw
systems received little attention, they occur in many phys
systems. Below we describe several of these. In Sec. I
we discuss how nontwist must occur in atmospheric a
laboratory zonal flows, where we began studying this p
nomena about ten years ago. In Sec. IV B we discuss n
twist in the magnetic field line context, and in Sec. IV C w
briefly mention several other physical problems where n
twist systems occur.

A. Zonal flows and chaotic advection

Zonal flows are azimuthal jets that occur in planeta
atmospheres. The jet stream and polar night jet are exam
that occur in the Earth’s atmosphere, and the great red sp
intimately related to zonal flows in Jupiter’s atmosphere. B
cause of rotation, these flows are predominately two dim
sional, with the altitude being the ignorable dimension.
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leading order the flows are directed along lines of latitu
either eastward or westward, with variation in the flow spe
along lines of longitude. This variation possesses a ma
mum and the flows tend to be confined in longitude, which
why they are called jets or zonal flows. Because of the ma
mum in flow speed, zonal flows give rise to transport ph
nomena, including barriers, described by nontwist Ham
tonian systems.12–14 The maximum in the flow profile
corresponds to the shearless curve.

There is a long history of rotating fluid laboratory e
periments~see, e.g., Ref. 15! designed to simulate facets o
atmospheric dynamics. Our interest in the subject was c
tured by an experiment in the laboratory of Swinney16 ~see
also Refs. 17–19! and in particular the connection betwee
drift wave transport and the fluid mechanics of zonal flo
that this experiment simulates. Drift waves are described
leading order by the Hasegawa–Mima equation and the s
is true for the fluid dynamics of the experiment. The expe
ment is equipped with sophisticated particle tracking ca
bility, which is ideal for measuring the transport of trac
particles that are added to the fluid.

The tracer particles are to high accuracy governed b
Hamiltonian system of differential equations. This is becau
the velocity field is nearly two dimensional and satisfies¹
•v50, and because the tracer particles move with the flu
These conditions imply the following equations for the tr
jectories of the tracer particles:

ẋ5vx5
]c

]y
, ẏ5vy52

]c

]x
, ~10!

wherec, the streamfunction, is the Hamiltonian, and the c
ordinates~x, y! are the canonical coordinates. They can
viewed as longitude and latitude or as azimuthal and ra
coordinates in slab approximation. Thus a ‘‘pure’’ zonal flo
occurs ifc5c(x) andvy(x) is nonmonotonic~with an ex-
tremum!, and therefore flows that are perturbations of th
flow will violate the twist condition.

Experimentally it was observed18 and in simplified mod-
els shown13,14 that nonmonotonic velocity flow creates
strong transport barrier that is located in the region where
velocity profile attains its maximum, i.e., near the shearl
curve. The reason for this is twofold,

~i! Because of the maximum in velocity, it can be show
that generally the density of low order resonances~is-
land chains! decreases as one approaches the shea
curve. Typically higher order resonances are sma
and produce less damage.

~ii ! In the fluid mechanical and in some plasma mod
~see below!, perturbations of the pure zonal flow b
the superposition of eigenmodes produce resonan
that are bounded away from the shearless curve.~That
they are bounded away is a consequence of the p
ics of the linear theories.! Thus the eigenmodes mus
have large amplitudes~or strong turbulence is needed!
to overlap and thereby destroy the shearless invar
torus.

In plasmas the zonal flow problem is analogous toE
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3B transport, with the electrostatic potential being t
Hamiltonian. Accordingly, if the radial electric field is no
monotonic, transport in the plane perpendicular to the m
netic field can be modeled with an area preserving map
violates the twist condition. Nonmonotonic radial elect
fields are believed to be present in the tokamak edge w
there is good confinement and we have recently found
same to be true in nontwist map models.20

B. Nonmonotonic q-profiles

As described in Sec. II, magnetic field lines in toroid
plasma devices, such as tokamaks and stellerators, ideal
on and wrap helically around nested tori. Also recall that
q-profile is the average pitch of this wrapping. Thus no
monotonicq-profiles correspond to nontwist maps. In expe
ments it has been observed that nonmonotonicq-profiles are
correlated with enhanced confinement.21 The map models
obtained in Ref. 20 contain this effect, as well as that of
nonmonotonic radial electric fields described above, and
contribution of each to transport was analyzed. We refer
interested reader to this reference for details.

C. Other physical systems

Nontwist maps arise in many other physical problems
celestial mechanics, when planetary gravitational potent
are not spherically symmetric because of oblateness of
planets, there are corrections to the Keplerian orbits that
governed in essence by a nontwist map.22 Other problems
described by nontwist maps include the dynamics of ray
a cylindrical waveguide with a periodic array of lenses23

particle accelerators with nonmonotonic tune,24 and super-
conducting quantum interference device~SQUIDs! and
polymers.25

V. RECONNECTION IN NONTWIST SYSTEMS

Magnetic field line systems that do not satisfy the tw
condition have a richer Hamiltonian structure than those
do. In Figs. 4 and 5~a! we see the usual island structure th
occurs in Hamiltonian systems with the twist condition, t
usual island structure of tokamak and stellarator geomet
However, given a set of fixed points, thex-points and
0-points of the figure, there are two topologies, i.e., there
two ways to hook up the separatrices. The alternative wa
shown in Figs. 5~b! and 5~c!. The phenomenon where th
separatrices change from one of these topologies to the o
is calledreconnection, and it is an example of what is calle
a global bifurcation.

Reconnection of this type was noticed early on in t
magnetic fusion context where it was suggested as an ex
nation for rapid current penetration in tokamaks.26 A discus-
sion in the context of Hamiltonian systems was given in R
27. We first pointed out that this kind of reconnection is
consequence of violation of the twist condition in Re
12–14 and discussed it in subsequent work~Ref. 28!. Several
other contributions have been made in a variety
contexts,29–32too many to describe in detail here. Instead
present a picture gallery of reconnection phenomena in
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standard nontwist map in Figs. 6 and 7. In these figures
parametersa and b are chosen so that the map is nea
integrable, as opposed to the values chosen for Fig. 8, w
contains both topologies nestled together with chaotic tra
tories. Upon magnification of this figure one sees both

FIG. 5. Depiction of two possible separatrix possibilities, with transiti
point, in a nontwist system.

FIG. 6. A reconnection bifurcation in the standard nontwist map.
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pologies intertwined on ever finer scales. This is a harbin
of a difficulty associated with finding periodic orbits that
addressed in the next section.

VI. LAST TORUS OF THE STANDARD NONTWIST
MAP

In order to understand transport, one must underst
how and when invariant tori break. In Fig. 3 we see th
trajectories, being bound to horizontal lines, the invari
tori, cannot migrate in the vertical direction, while in Fig.
tori are broken and migration can occur. Thus we turn to
main problem:

For which values of the standard nontwist map para
etersa and b is the shearless curvewith rotation number
equal to the inverse of the golden mean critical?
Recall the rotation number,v, is the average jump per itera
tion ~suspending periodicity! in the horizontal direction,v
5 limn→` xn /n, and the shearless curve is the curve alo
which the twist condition fails.

One could attempt to solve the main problem by br
force numerical iteration of the standard nontwist map. W
careful numerics this procedure can give a sense of tha
2b parameter space and it might be sufficient to ans
some engineering questions, but besides being ineleg
such a technique is limited in accuracy and gives limi
insight into how tori break. In contrast, for twist maps the
is a criterion due to Greene that allows one to perform
tremely accurate computations and to understand the
similar nature of phase space near a torus that is on the v
of breaking. For this reason we attack the main problem~in
Sec. VI C! by extending Greene’s criterion to nontwist map
This extension is nontrivial and so we briefly revie
Greene’s criterion in the context of twist maps in Sec. VI

FIG. 7. Another reconnection bifurcation in the standard nontwist ma
er
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in preparation for the generalization to nontwist maps t
we implement in Sec. VI C. Since Greene’s criterion us
periodic orbits, we describe in Sec. VI B how the involutio
decomposition that arises from discrete symmetries can
used to find them. Forb50, the shearless curve correspon
to the liney50, but for bÞ0, as noted above, some care
required to make precise what is meant by this quantity.
discuss this in Sec. VI C where we describe our solution
the main problem.

A. Greene’s criterion

Greene’s criterion is a method for determining parame
values for the destruction of invariant tori in twist map
Unlike KAM theory, these tori are far from the integrab
limit. Since physical systems are often not nearly integrab
this procedure is of greater importance, but one must re
to numerics to implement it. Greene originally calculated t
parameter value for the destruction of thelast invariant torus
in the standard map.

Green’s calculation has two essential ideas. The fi
idea is that one can approximate an invariant torus by a
quence of periodic orbits. It is evident from Fig. 3 that this
possible for integrable systems, since this picture dep
both rational and irrational tori, but indeed it was genera
on a computer screen for which all orbits are period
~Clearly there are a finite number of pixels on any screen
in any data array.! When a system is not integrable, it re
mains true that near an invariant torus are periodic orbits
arbitrarily high order.

As one increases the parameterk in the standard map
more and more invariant tori break. A body of research le
ing up to and including the proof of the KAM theorem su

FIG. 8. A depiction of the two possible separatrix possibilities together w
chaos in the standard nontwist map.
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gested that sturdy tori are those with winding numbers t
are difficult to approximate by rational numbers. A class
numbers called noble numbers, a class that includes
golden mean and its inverse, are especially difficult to
proximate. For this reason Greene conjectured that the
surviving invariant torus has a rotation number equal to
inverse of the golden mean,

1

g
5

A521

2
5

1

11
1

11...

50.618..., ~11!

and he calculated the value ofk for which this torus is critical
to very high precision. He did this by finding a particul
sequence of periodic orbits with rotation numbers,v i

5ni /mi ~ni andmi are integers! that limit to 1/g. The v i ’s
he used were obtained by truncating the continued frac
expansion and writing the result as a simple fraction. T
givesv i5Fi /Fi 11 , where theFi ’s are the Fibonacci num
bers, 1,1,2,3,5,... .

The second essential idea concerns the stability of
periodic orbits. In the vicinity of stable periodic orbit
nearby orbits remain nearby, while unstable orbits mo
away exponentially. The type of periodic orbit depends up
the residuewhich Greene defined by

Rª
1

4
@22trace~DTn!#, ~12!

whereDTn is a deceptively simple notation for the matr
obtained upon linearizingTn about the periodic orbit. If 0
,R,1, the periodic orbit is stable or elliptic, if 0,R or R
.1, the periodic orbit is unstable or hyperbolic, and ifR
50 or R51, the periodic orbit is parabolic, which is cha
acteristic of periodic orbits in integrable systems. Greene
culated the residues for the periodic orbit sequence that
its to the golden mean and observed that if limi→` Ri50,
then the torus with rotation number 1/g exists, while if
lim i→` Ri diverges then the torus does not exist. At critic
ity he found limi→` Ri'.25. He was able to creep in on th
critical value of the parameter by examining the residu
and in this way obtainkc'.97... to a gazillion places.

B. Involution decomposition and periodic orbits

In order to implement Greene’s method it is necessar
find periodic orbits. An efficient way to do this is to explo
discrete symmetries possessed by maps of interest. In t
tional course work we learn about Noether’s theorem, a
how it relates symmetries to constants of motion. Howev
the symmetries involved in this theorem are continuous s
metries, symmetries such as space translation that de
continuously on a parameter. Although discrete symmet
are not useful for obtaining constants of motion, it was r
ognized by Birkhoff~see, e.g., Ref. 33! and de Vogeleare
~Ref. 34! that they do organize the periodic orbit structure
Hamiltonian systems and, most importantly, it was shown
Greene~Ref. 35! how they can be used in numerical comp
tation to vastly expedite the search for periodic orbits
maps.
t
f
he
-
st
e

n
s

e

e
n

l-
-

-

s,

o

di-
d
r,
-
nd
s
-

f
y

The most well-known discrete symmetry is time rever
symmetry, where the equations of motion are invariant un
t→2t and p→2p. Hamiltonian systems do not alway
possess this time reversal symmetry. In particular, the n
twist systems of interest here do not satisfyH(q,p)ÞH(q,
2p). However, another discrete symmetry exists th
amounts tot→2t andq→2q, and we exploit this discrete
symmetry to obtain periodic orbits for the standard nontw
map.

The story of discrete symmetries and their associat
with periodic orbits is a long one, so we only touch on tw
salient points and direct the reader to Ref. 28, where
review the method and apply it to the standard nontwist m
The two points are

~i! Discrete symmetries in Hamiltonian differential equ
tions are manifest in the corresponding area preserving m
as involution decompositions. If we represent maps such a
those of~7! and ~9! aszn115T(zn), then we have an invo-
lution decomposition ifT5I 1+I 0 , whereI 1+I 15 identity and
I 0+I 05 identity. ~Recall here+ means composition of func
tions.!

~ii ! Periodic orbits can be found by searchingsymmetry
lines, which are curves in the plane that map into themsel
underI 1 or I 0 .

The second point above is most important becaus
reduces the search for periodic orbits to a one-dimensio
root finding problem. For the standard nontwist map t
symmetry lines are shown in Fig. 9. By searching alo
these lines we have been able to calculate periodic orbit
very high order to high accuracy.

C. Results

Now we are in a position to solve our main problem
However, there is a difficulty. In Greene’s original calcul
tion he was able to find the necessary periodic orbits
searching a particular symmetry line. In the present cas
was discovered that periodic orbits with rotation numb
v i5Fi /Fi 11 sometimes do not exist and sometimes come

FIG. 9. Symmetry lines for the standard nontwist map.
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pairs. It is perhaps not too surprising that they could come
pairs, since a resonance will generally open two island ch
at the two equal values of theq-profile. This is easy to show
whenb50, but asb increases the periodic orbits can collid
and disappear all together. In Fig. 10 we show the beha
asb is increased fora50.618 and rotation number 3/5. At
critical value ofb, between four and five, the orbits collide
Thus we have a big problem, because we do not kn
whether or not a given periodic orbit exists for values of t
parametersa andb.

FIG. 10. Separation iny and collision of a pair of periodic orbits in the
standard nontwist map.
in
ns

or

w

To get a handle on this problem we introduced the n
tion of the r /s-bifurcation curve, which is defined to be the
locus of points~a,b! such that the periodic orbit with rotatio
numberr /s is at its collision point. We can write this curv
as b5F r /s(a). In practice we fixa and then easeb away
from zero until we are at bifurcation. Ther /s-bifurcation
curves are useful because we know that below the curve
pair of periodic orbits exists, but above it they do not.

Evidently periodic orbits on the curve are at a point

FIG. 11. Bifurcation curves limiting toF1/g .
t
FIG. 12. Standard nontwist map a
criticality.
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degeneracy, and we call periodic orbits of this typeshearless
periodic orbits. Now we can define the shearless curve wh
bÞ0: Shearless periodic orbits limit to the shearless cur
In Fig. 11 we show severalr /s-bifurcation curves that indi-
cate the approach to a limiting curve. We call this limitin
curveF1/g . Note this figure only shows periodic orbits wit
rotation numbers representative of half of the Fibonacci
quence. It turns out that periodic orbits with rotation nu
bers equal to only half of the sequence exist, but this
sufficient for effecting the limit of their residues as calc
lated from Eq.~12!. However, there is another surprise: the
residues do not limit to a number, but limit to a period
cycle; i.e., the sequence of residues has six convergent
sequences. This makes the calculations of convergence
difficult because one must work much harder to obtain
same level of convergence of the residue values as for
twist case. We overcame this difficulty by exploiting som
tricks involving symmetry, and we refer the reader to Ref.
for details.

The upshot is that we calculated periodic orbits forr /s
575, 025/121, 393 and obtained the following critical valu
of the parameters:

a'0.686 049, b'0.742 497 002 412. ~13!

In Fig. 12 we show the standard nontwist map at these c
cal values. Here we see the last invariant torus bounding
orbit generated from asingle initial condition.

VII. RENORMALIZATION

The jagged structure of the last invariant torus shown
Fig. 12 suggests a self-similar structure reminiscent of ph
transitions. This suggestion is strengthened in Fig. 13, wh
is a blow-up and rescaling of a region of Fig. 12. The an
ogy to phase transitions is not merely suggestive, but the
a well-developed theory for renormalization in Hamiltoni
systems. Early work on the theory was due to Kadan
~Refs. 36 and 37!, but the picture was completed by Gree
and Mackay~Refs. 38–41!. In this theory, as in critical phe
nomena, there is a renormalization group operator, but h
fixed points correspond to invariant tori at criticality rath
than to phase transitions. In Ref. 42 we obtained a new fi
point for this operator. Further discussion is beyond
scope of this paper; the interested reader is referred to
reference.

VIII. SUMMARY

In this paper we have described how magnetic field lin
typically behave, by identifying the equations that defi
them with Hamilton systems of one and a half degrees
freedom or equivalently with area preserving maps of pla
regions. This enabled us to use the vast lore of Hamilton
dynamics theory to say some general things about their
havior. In particular, we observed that magnetic field lin
generally do not close on themselves and when there
lack of symmetry they possess chaotic behavior. We h
discussed the twist condition in both the differential equat
and map settings, and we traced its origin to particle-l
Hamiltonians. We described nontwist systems and gave
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amples of representative physical systems, including
tracking of particles in zonal flows and magnetic field lin
in reversed shear configurations. Some Hamiltonian lore
reviewed, including the definition of such quantities as pe
odic orbits, the rotation number, and the residue. Reconn
tion in nontwist systems was discussed. The use of disc
symmetries for finding periodic orbits was described in t
context of Greene’s method for finding the last invaria
torus in twist systems. The difficult generalization
Greene’s method to nontwist systems was also describe
few brief comments were made about renormalization.

Our goal here has been to acquaint the reader with s
of the ideas in this area of Hamiltonian field line dynamic
and the contributions of plasma physicists. However, ther
an enormous literature in this area and many topics have
necessity been omitted, particularly those on transport.
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