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Abstract 

The linear Vlasov-Poisson system for homogeneous, stable equilib­
ria is solved by means of a novel integral transform that is a gener­
alization of the Hilbert transform. The integral transform provides a 
means for describing the dynamics of the continuous spectrum that 
is well-known to occur in this system. The results are interpreted in 
the context of Hamiltonian systems theory, where it is shown that the 
integral transform defines a canonical transformation to action-angle 
variables for this infinite degree-of-freedom system. A mea~s for at­
taching Krein (energy) signature to a continuum eigenmode is given. 

1 Introduction \ 

1.1 Motivatibnand overview 

There are two main points of this paper: (1) to describe an integral transform 
for solving the Vlasov-Poisson equation linearized about a homogeneous, 
stable equilibrium and (2) to interpret this transform method of solution in 
the context of infinite degree-of-freedom Hamiltonian dynamics. 

In Sec. 2 we describe the integral transform, a generalization of the 
Hilbert transform,' that is specifically designed to unravel the continuous 
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spectrum, which is well-known to occur in the linearized Vlasov-Poisson 
system. This transform ·was introduced elsewhere (Refs. [1] and [2]), but 
the level of rigor given here is much higher. If a method provides a rigorous 
solution, then one may question the necessity of the Hamiltonian formalism, 
which we present in Sec. 3. We address this question below by describing a 
sort of Hamiltonian philosophy. 

In the past couple of hundred years a sizable body of lore has accu­
mulated about finite degree-of-freedom Hamiltonian systems, and indeed 
remarkable progress has been made in the past 50 years. For example, it 
is now recognized that systems with one degree of freedom are integrable 
and that such systems are exceptional. It is known that systems with two 
degrees of freedom are generically nonintegrable, invariant tori are broken, 
and 'chaos' is the norm. In systems with three or more degrees of freedom 
invariant tori no longer separate phase space, and thus no longer provide 
barriers to transport. The philosophy in which one uses results and proce­
dures from finite systems as a guide for investigation of infinite systems is 
one to which we subscribe. Relatively speaking, not nearly so much is known 
about infinite systems. Although all phenomena of finite systems occur in 
infinite systems, there are new phenomena that can occur only in infinite 
systems. One example of this is the continuous spectrum, and interpreting 
this in the Hamiltonian context is one of our main points. 

Perhaps the most compelling argument for the Hamiltonian point of 
view resides in its generality. The most important equations of physics are 
Hamiltonian, and when one solves one problem one solves a whole class 
of important problems. For example, it has been proven that all stable 
finite degree-of-freedom Hamiltonian systems can be transformed so that 
the Hamiltonian obtains the following normal form: 

N N N 

H=L~a (p~+q~) =-iLWaQaPa=LwaJa (1) 
a=l a=l a=l 

which we have written three ways. The first way demonstrates that the 
dynamics is merely that of a collection of uncoupled oscillators or normal 
modes, while the last way corresponds to the action-angle variable descrip­
tion in which the angle variable is ignorable. The middle way is sometimes 
convenient because it incorporates the complex eigenvectors as coordinates; 
we record it for later use. 

So, is there a similar normal form for infinite degree-of-freedom Hamil­
tonian systems with a continuous spectrum? The answer to this question 
is yes, and as one might expect the normal form is given by something like 
the following: 

H= J w(u)J(u)du. (2) 
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In Sec. 3 we demonstrate this for the Vlasov-Poisson system, but it is also 
true for the Vlasov-Maxwell system (Ref. [3]), the two-dimensional Euler 
fluid equations (Ref. [5]), and others. It is now clear that something general 
is going on: the continuous spectrum is resolved by a class of transformations 
that is a generalization of the Hilbert transform. 

A feature of the normal form (1) that carries over to infinite dimensions 
is the notion of signature. The first form of (1) is a quadratic form, which 
need not be positive definite: in general the frequencies satisfy Wa = O"alwal 

with O"a E {-1,1}. Even though some of the oscillators may have negative 
frequencies, they are still stable oscillators. For the obvious reason they 
are called negative energy modes. It is known by Sylvester's theorem that 
the signature, defined to be the difference between the number of positive 
and negative modes, is invariant under real similarity transformations, and 
so to the extent that energy is defined, signature has physical meaning. 
Perhaps the most important role of signature is the one it plays in governing 
bifurcations. A theorem of Krein [independently proved by Moser (see.e.g. 
Refs. [4])] states that a necessary condition for the bifurcation from stability 
to instability is that colliding modes possess opposite sign. At the end of 
Sec. 3 we discuss signature in the context of the continuous spectrum of the 
Vlasov-Poisson system. 

We conclude the present section by describing the Vlasov-Poisson system 
and collecting together some notions that will be used in the remainder of 
the paper. 

1.2 The Vlasov-Poisson system 

The one-dimensional Vlasov-Poisson system has a single dynamical variable, 
the phase space density f(x, v, t), and can be thought of as a 1 + 1 + 1 field 
theory; i.e. a theory with one space, one velocity (or momentum), and one 
time variable. We have f: X X IR2 --+ JR, where X is the spatial part and 
typically X is either 8 1 or JR. In the former case we have periodic boundary 
conditions while in the latter case we have a some kind of decay condition 
at infinity. Physical initial conditions satisfy f(x, v, 0) ;::: O. 

The Vlasov-Poisson system is composed of the equation for the conser­
vation of phase space density, 

of +vof _.::... o¢[x,t;flof = 0 
ot ox m ox OV 

(3) 

and Poisson's equation, 

¢xx = -471' [e JJR f(x, v, t) dv + PB] , (4) 



400 MORRISON 

where PB is a background charge density that is chosen so that the total 
charge vanishes. Equations (3) and (4) formally conserve the following en­
ergy functional: 

(5) 

which is composed of the sum of kinetic energy plus electrostatic energy 
pieces. This energy is actually the Hamiltonian for the infinite degree-of­
freedom Hamiltonian description that we consider in Sec. 3. 

In this work we are interested in perhaps the simplest plasma problem, 
that of linearization about a homogeneous, stable equilibrium. Thus we set 
f = fo(v) +8f(x,v,t), insert this in (3) and (4), and obtain 

88f +v8of _.::..88¢[x,t;8f]8fo =0 
8t 8x m 8x 8v 

(6) 

and 
o¢xx = -471'e fJR 8f(x, v, t) dv. (7) 

This linear system formally conserves the following energy functional: 

which will be seen in Sec. 3 to be the Hamiltonian for this system. 
It is well-known that the solution to the full Vlasov-Poisson system can 

be written as a rearrangement: f = J oZ, where Z represents the solution to 
the characteristic equations run backwards in time. Equivalently, this can 
be written out as f(x, v, t) = j(x(x, v, t), v(x, v, t)). It is also well-known 
that not all rearrangements are allowed: only those that preserve the area 
measure dxdv. Thus it is natural to restrict initial perturbations to be 
rearrangements of the equilibrium state. In Refs. [6] and [1] we called such 
restricted variations dynamically accessible variations and obtained for the 
linear dynamics, which takes place on the tangent space to the space of such 
rearrangements, the following formula for them: 

of = [h,f], (9) 

where 
[A,B]:= ~ (8A8B _ 8B8A) 

m 8x 8v 8x 8v 
(10) 

is the usual Poisson bracket, f is any phase space density, and h is an 
arbitrary (sufficiently well-behaved) phase space function. Of interest here 
are variations about a homogeneous equilibrium state that are to be initial 
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conditions for (6). 'rhus we have 6J = [h, fa] = hxf6/m where f6 := afo/av. 
This implies, for reasonable h's, that 6J has the same extrema as fa. Also, 
it is easy to show that if a function is initially of the form of (9), then under 
the dynamics of (6) it will be so for all time; i.e. 6f at any time can be 
written in the form of [h, fa] for some function h. 

In closing this section we point out that the idea of dynamical accessi­
bility has recurred-many times in the literature in different contexts, many 
of which are pointed out in Ref. [7], which along with Refs. [6], [1], and [8] 
is a source of more detailed information. 

2 Linear Vlasov solution by integral transform 

Now consider the integral transform solution. Because the continuous spec­
trum, our main object of concern, is associated with velocity dependence, 
we remove the spatial dependence by Fourier decomposition, 

6f = LJk(V, t)eikx , 
k 

6¢ = L ¢k(t)eikx 

k 

and write the linearized Vlasov-Poisson system as 

afk + 
at 

ikvfk - ik!....¢k f6 = 0 
m 

= 47l'e jO)f/k(V, t) dv. 

(11) 

(12) 

These are the equations we solve. Henceforth, k enters as a parameter and 
we will not be concerned with the reconstruction of the x-dependence. We 
assume k does not vanish, but otherwise it can take on any real value. Note, 
the assumption k =F 0 is consistent with dynamical accessibility, because 
hx rv ikhk. Hence, a dynamically accessible initial condition vanishes for 
k = 0 and the 0 k = 0 term in the Fourier series for 6 f will remain zero for 
all time. 

Equations (12) have been well-studied by essentially two methods: the 
Laplace transform method that originates with with Landau in 1946 and 
the normal mode approach that originates with Van Kampen in 1955. Since 
these original papers there have been many works of varying degrees of rigor 
and generality. (See e.g. Refs. [9], [10], and [11].) The integral transform 
method treated here, which originates in Refs. [1] ,and [2], amounts to a 
coordinate change that makes the time integration trivial. This method is 
closest to Van Kampen's approach, but the spirit is very Hamiltonian, an 
interpretation that is deferred to Sec. 3. 

The integral transform method is very simple once the. transform is 
known and understood. We intra due the G-transform [given by Eq. (15)], 
which we prove has an inverse G that transforms (12) into 
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(13) 

The solution to (13) is obviously 9k(U,t) = 9kexP(-ikut), where 9k(U) := 

9k(U,t = 0). Using 9k = O[lkL where lk(V) := fk(V,t = 0), we obtain the 
solution upon transforming back with the G-transform: 

fk(v, t) = G[gk(U, t)] 

= G [9k( u)e-ikut] = G [O[l k]e-ikut] (14) 

In the remainder of this section we make this rigorous. In 2.1 we describe 
classes of equilibria and initial conditions that our solution method accom­
modates, and we remark on their physical significance. In 2.2 we review 
some properties of the Hilbert transform, which we use in 2.3 to prove the 
main theorems about the G-transform. Lastly in 2.4 we state precisely the 
nature of the solution. 

2.1 Equilibria and initial conditions 

Definition (VPl) A function fo(v) is a good equilibrium if f6(v) satisfies 

(i) f6 E Lq(IR) n CO,O(IR) for some q such that 1 < q < 00 and some a 
such that 1 < a < 00 , 

(ii) 3v* > 0 such that If6(v)1 < Alvl-It,'lilvl > V*, where A> 0 and 
J.L> 0, and 

(iii) f6/v < 0, 'Ii v E IR, or fa satisfies the Penrose criterion described 
below. (We assume f6(O) = 0.) 

Remarks: 

1. Co,o is the space of H6lderfunctions that satisfy If(x) - f(y)1 < Klx­
ylO, where 0 < a ::;; 1. For our purposes local Holder is sufficient and 
we exclude the case a = 1 (Lipschitz). 

2. Because (12) only depends on f6, conditions on f6 are sufficient for 
determining properties of its solutions. However, the physics requires 
other conditions, such as, fa (v) ~ 0 and that the integrals fIR vn fo dv, 
for n = 0, 1,2, exist in some sense. 

3. Item (iii) assures that the spectrum is entirely continuous, i.e. does 
not possess a discrete component. The Penrose criterion relaxes the 
monotonicity condition and allows for negative energy modes, which 
were mentioned in Sec. 1 and are described in Sec. 3. 
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4. Maxwellian equilibria are included in our class of good equilibria, along 
with bump on tail equilibria with sufficiently small and slow bumps, 
and other interesting equilibria as well. However, we are excluding cold 
beams that are distributions, fa rv o( V - va), and waterbag equilibria 
and others of compact support. The solution method is more powerful 
than what is stated here and can be generalized to e.g. piecewise Holder 
functions, and probably functions of bounded mean oscillation. 

o 
Definition (VP2) A function, h(v), is a good initial condition if it sat-

isfies Jk,VJk E Lp(JR). 

Remarks: 

1. The above requirements assure that all the terms of (12) exist at the 
initial time. It follows that the initial charge and corresponding po­
tential also exist. 

2. The physics suggests fIR vnJk(v)dv < 00, for n = 1,2, i.e. in addition 
to the charge, momentum and energy-like integrals should exist in 
some sense. These should even exist locally. Likewise fIR v I J k I 2/ f6 dv 
should exist, because this is part of HL, the Hamiltonian functional. 

2.2 Hilbert transform review 

The Hilbert transform is defined by 

H[g](x) := P r g(y) dy, 
1f JIR Y - x 

where P denotes the Cauchy principal value. There are many theorems 
about Hilbert transforms in the spaces Lp and Co,O<. (See e.g. Ref. [12].) We 
state some of them without proof. 

Theorem (HI) 

(ii) H: Lp(JR) ----+ Lp(JR), for 1 < p < 00, is a bounded linear operator: 

where Ap depends only on p, 

(ii) H has an inverse on Lp(JR), given by 

H[H[g]] = -g, 
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and 

(iii) H: Lp(IR) n Co,Q:(IR) -+ Lp(IR) n CO,Ct(IR). 

The proof of (HI) is given in the classical works of Plemelj, M. Riesz, 
Zygmund, Titchrri:arsh and others. (See e.g. [13] and [14].) It can also be 
extracted from the more general Calder6n-Zygmund theory. (See e.g. [15] 
and [16].) 

Theorem (H2) If gl E Lp(IR) and g2 E Lq(IR) with ~ + i < 1 where 
1 <p,q < 00, then 

A proof based on the Hardy-Poincare-Bertrand theorem was given by 
Tricomi and can be found in [17]. 

Lemma (H3) If g, vg E Lp(IR), then 

H[vg](u) = uH[g](u) +.!. r gdv. 
71' fJR 

Proof: Because g, vg E Lp(IR) =? 9 E L1(IR), we can use 

v u+v-u u 1 
--= =--+ 
v-u v-u v-u 

to split the integral H[vg] into the two terms, which individually exist. 0 

2.3 The G-transform 

Definition (Gl) The G-transform is given by 

f(v) = G[g](v) 

.- €R(V) g(v) + €J(v) H[g] (v) , (15) 

where 
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Remarks: 

1. In the remainder of this section we suppress the dependence of € and 
other quantities upon k. Note, w; := 47rnoe2/m is the plasma fre­
quency corresponding to an equilibrium of number density no. 

2. The quantity € = €R +i€I (when extended into the complex v-plane) is 
the plasma dispersion relation whose vanishing implies the existence 
of discrete normal eigenmodes. When € does not vanish, the system 
has only a continuous component to the spectrum. 

To prove boundedness of the G-transform we will need the following 

Lemma (G2) If €I <X fa E Lq(IR) n cO,a(IR), then €R, €I E Loo(IR). 

Proof: Because the Hilbert transform preserves cO,a and €R - 1 = H[eJ], 
both €R and €I are continuous. The Lemma follows from limlvl-+oo €I = 0 and 
limlvl-+oo €R = 1, where the latter is easily demonstrated for good equilibria. 

o 

Theorem (G3) G: Lp(lR) --+ Lp (IR) , 1 < p < 00, is a· bounded linear 
operator: 

where Bp depends only on p. 

Proof: Because €I and €R are Holder and by Lemma (G2) bounded, 9 E 
Lp(IR) , H[g] E Lp(IR) and thus G[g] E Lp(IR). By the triangle inequality, 
Holder's inequality, and the boundedness of H[g], 

IIG[g]llp < IIERgllp + IIEI H[g] lip 
:5 IIeRlloo Ilgllp + IIEIlloo IIH[g] lip 
:5 Bp Ilgllp . 

o 

Theorem (G4) If fo is a good equilibrium, then G[g] has a bounded inverse, 

for lip + 11q < 1, given by 

g(u) GU](u) 
ER(U) €I(U) 

.- Ie(U) 12 f(u) - IE(U)12 HU](u). 
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where kl 2 := e~ + e~. 
Proof: First we show 9 E Lp(IR) and then 9 = G[G[g]]. 

If eR(u)/le(u)12 and eI(u)/le(u)12 are bounded, then clearly 9 E Lp(IR). 
For good equilibria the numerators are bounded and everything is Holder, 
so it is only necessary to show that kl is bounded away from zero. Either 
of the conditions of (VPl)(iii) assures this: 

If the first condition is satisfied then Ifbl > 0 for v =f. 0 and f6(O) = O. 
Therefore we need only look at v = 0 and v = 00 to assure lei =f. O. At v = 0 

w
2 r it 

eR(O) = 1- S JlR :dv > 1> 0, 

while as v --+ 00, eR --+ 1. 
The second condition, the Penrose criterion (see e.g. [10]), uses the ar­

gument principle of complex analysis to show lei =f. O. It states that there 
are no discrete modes if for all minima, Vm , of fo 

or better if 

r fo(v) - fo(vm ) dv < 0, 
JlR (v-vm )2 

r fb(v) dv < O. 
JlR v - Vm 

Note this criterion is independent of k, but allows inversion of the G­
transform V k. 

That G is the inverse follows directly upon inserting G[g] of (Gl) into 
9 = G[G[g]J. and using (H2) and eR(v) = 1 + H[eI]' We write out the steps: 

D 
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Lemma (G5) If €J and ER are as above, then 

(i) for f,vf E Lp(ffi), 

G[vfl(u) = uGrfl(u) - W~ fIR f dv, 

(ii) G[€J](u) = l:r2(~) 

(iii) and if f( u, t) and g( v, t) are strongly differentiable in ti i. e. the map­
ping t 1--+ f(t) = f(t,') E Lp(ffi) is differentiable with the usual differ­
ence quotient converging in the Lp sense, then 

Proof: (i) goes through like (H3), (ii) follows from ER = 1 + H[€J], and (iii) 
follows because G is bounded and linear. 0 

2.4 The solution 

Now we are in a position to justify the solution (14) that was described at 
the beginning of this section. 

Theorem (81) For good initial conditions and equilibria, 

fk(V, t) = G [GrJkle-ikut] 

is a solution of (12) in the strong Lp sense Icf. Lemma (G5)J. 
Proof: The only thing left to show is that the time derivative of the expres­
sion for fk(V, t) is in fact in Lp. Since differentiation pulls down a factor of 

u, the result follows if uGrJ kl E Lp , which in turn follows from the first item 
of Lemma (G5) for good equilibria and initial conditions. 0 

Remarks: 

1. The solution above can be compared to that for a sum over eigenvec­
tors, Gj: zi(t) = aj G) eiw;t, which when projected onto an initial 
condition ~ gives aj = (GJ)-l ~k. Whence zi(t) = G; (Gj)-l ~k eiwjt . 

2. The analogue of Gi is the Van Kampen singular eigenfunction 

P 1 
9(u, v) = €J(v) --- + €R(V) c5(v - u), 

7fU-V 

l 
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which is the eigenfunction for the continuous spectrum, indexed by 
u E IR. 

3 Hamiltonian Description 

Now we interpret the results of Sec. 2 in the Hamiltonian context. In 3.1 
we briefly review the generalization of Hamiltonian theory that is possessed 
by the equations that describe the dynamics of classical media in terms of 
Eulerian variables. In 3.2 we do two main things: we change variables so 
that the Hamiltonian description of (20) achieves canonical form in terms 
of canonically conjugate variables, (qk,Pk), and then we use the results of 
Sec. 2 to construct a canonical transformation to new canonical variables, 
(Qk, Pk), in terms of which the Hamiltonian HL achieves diagonal form. This 
latter form is essentially action-angle form, which we describe. The section 
is concluded with a brief discussion of signature and Krein's theorem. 

3.1 Hamiltonian structure for Vlasov-Poisson 

There is a standard and general Hamiltonian structure possessed by physical 
systems that describe media in terms of Eulerian variables. For example, 
ideal fluid equations, including magnetohydrodynamics, and various ldnetic 
theories, including the Vlasov-Poisson equations, possess this structure. (See 
Ref. [7] and many references therein.) It is a structure that dates back to 
the nineteenth century and the work of Sophus Lie, but its importance for 
describing fluid and plasma equations was not realized in generality until 
around 1980. Since then a great deal of research, much of it with a definite 
modern geometric flavor, has been done. 

Ordinarily Hamilton's equations are written as follows: 

. aH 
Pa = - aqa ' (16) 

where a = 1,2, ... , N. However, if these equations are written in terms of 
arbitrary noncanonical variables or coordinates, Z = (q, p), they obtain the 
form 

iP- = Jp-v aH = [zP-, H], azv 

where fJ, = 1,2, ... , 2N, and the Poisson bracket becomes 

[A, E] := aaA Jp-v (z) aaE . 
zP- ZV 

(17) 

The essence of being Hamiltonian lies in the fact that [A, E] is a Lie bracket, 
i.e. it is bilinear and satisfies 
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[A,B] == -[B,A] 

and 
. [A, [B, ell + [B, [e, All + [e, [A, Bll = 0, 

for all functions A, Band e. The latter condition, known as the Jacobi 
identity, is· the crux of the matter: by a nineteenth century result credited 
to Darboux, if det J =f 0, then at least locally there exists a canonical set of 
coordinates in which Eqs. (17) have the form of (16). Also, in the nineteenth 
century Sophus Lie studied the case where det J = 0 and concluded that 
a system of coordinates exist in which Eqs. 17 have the form of a smaller 
canonical system plus some coordinates, called Casimir invariants, that are 
constants of motion. 

Lie studied the bracket 

JJ1-V = c~vz"( ¢::::::? [A, B] = c~vz"(:~ ;: ' 

where c~v are the structure constants (or operators) of some Lie algebra. 
But it was unbeknownst to Lie that this kind of Poisson bracket, now called 
a noncanonical Poisson bracket of Lie-Poisson type, describes continuous 
media. The quantity J, called the Poisson tensor or cosymplectic form, is 
linear in the dynamical variables, unlike that' for conventional (canonical) 
field theories such as the Klein-Gordon equation. 

It is apparent that the Vlasov-Poisson system cannot possess canonical 
form. Its energy, as given by (5), is quadratic in f and such Hamiltonians 
give rise to linear theories like the simple harmonic oscillator or the wave 
equation. Also, f is the only dynamical variable, and so a conjugate is 
missing. A simple dimensional analysis reveals that if this system is to be 
noncanonically Hamiltonian, then the Poisson bracket must be linear in f. 
The Vlasbv-Poisson system possesses an infinite-dimensional generalization 
of the structure studied by Lie. The table shows the correspondence between 
quantities in a finite-dimensional theory and those for the Vlasov-Poisson 
system. 

Finite +----7 VP 
z +----7 f 
fJ, +----7 (x,v) 

A(z) +----7 F[f) 

oA = 'VA· OZ +----7 lloF of = x lR. of of dxdv 

JJ1-V = c'l-V Z "( 
"( 

+----7 :r = -[J, . ) 
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The first row compares dynamical variables; the second, indices, with J..L 

being discrete and (x, v) E X x JR; the third, phase space funtion(als); the 
fourth compares first variations and serves to define the functional derivative 
of /0 f, which is evidently an infinite-dimensional gradient; and the last row 
compares cosymplectic forms. 

The noncanonical Hamiltonian description for the Vlasov-Poisson system 
was first given in [18J. The Poisson bracket, with the cosymplectic form of 
the table, is the following: 

{F,O} = fxfIPJ [~~, ~~] dxdv, (18) 

where F and 0 are functionals of f. In terms of (18) the Vlasov-Poisson 
system can be written as 

8f 
8t = {j, H} = [e, fJ· 

where H is the energy functional of (5), e = mv2/2+e</>, and [e, fJ is defined 
by (10). 

Letting f = foe v) + oj, as in Sec. 1.2, and linearizing gives 

j. r [OF 00] 
{F,OlL = x JIR/O oof' oof dx dv, (19) 

where F and 0 are now functionals of of and of/oof is an unfortunate 
notation for the functional derivative of F with respect to of. With the 
Hamiltonian (energy) of (8), (19) gives the linearized Vlasov-Poisson equa­
tions in the noncanonical Hamiltonian form 

80f 
7ft = {of,HL}L' (20) 

3.2 Canonization and diagonalization 

Upon expanding oj in a Fourier series as in (11), the Poisson bracket (19) 
can be written as 

(21) 

and the Hamiltonian (8) becomes 
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where 

with Ok,-k' and o(v - v') being the Kronecker and Dirac delta functions, 
respectively. Because of the second term of (23) the Hamiltonian (22) is not 
diagonal; i.e. it is not in a form that is an infinite dimensional generalization 
of (1). 

In terms of (21) and (22), (12) can be written in noncanonical Hamilto­
nian form as 

(24) 

which is merely the projection of (20) onto Fourier modes. 
This description can now be canonized, i.e. written in terms of canonical 

variables, by the simple scaling transformation, 

m 
Pk(V,t) = ik161-k(v,t) , 

which gives 

{F Gh = f: r (OF oG ~ oG OF) dv 
, k=l JIR oqk OPk oqk OPk . 

Note that a possible singularity occurs in this transformation at points where 
k = 0 or 16 = 0; howev~r, both of these are ruled out by restricting initial 
conditions to be dynamically accessible. 

Diagonalization is achieved using the following mixed variable generating 
functional to generate a canonical transformation from (q,p) to (Q, P) : 

F[q,P] = f: in Pk(V) G[qkl(v) dv. 
k=l IR 

(25) 

As is usual for generating functions of this type, the transformation is given 
by 

The new Hamiltonian in terms of these variables takes the form 

(27) 
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where Wk(U) = ku. Thus we have transformed to an infinite-dimensional 
generalization of the normal form of (1). This is diagonalization. 

Above we have introduced complex variables in our transformations. 
However, ultimately the dynamical variables of Vlasov theory correspond 
to real physical quantities and are thus real variables. Everything we have 
done could have been done entirely in terms of real variables. This would 
have been awkward, but, as for finite degree-of-freedom systems, it has the 
advantage of keeping track of the invariant signature of the Hamiltonian. 
The signature can be recovered by the following transformation to action­
angle variables, (Jk' Bk), 

Qk(U, t) = J Jk(U, t) eiO"kBk(U,t) , 

Pk(U, t) = iV Jk(U, t) e-iO"kBk(U,t) , (28) 

where the signature is given by O"k(U) := sgn(ku€J). In terms of these vari­
ables the Hamiltonian becomes 

(29) 

where Wk(U) := Ikul, and the Poisson bracket becomes 

00 in (OF oG oG OF) 
{F,Gh = L MJ oJ - MJ OJ duo 

k=l IR k k k k 
(30) 

Thus we have achieved the normal form of (2). 
The quantity O"k(U) assigns a signature to a continuum eigenmode, anal­

ogous to that for finite systems. In the study of finite systems, one assumes 
the Hamiltonian depends upon a parameter and then investigates bifur­
cations as this parameter is varied. As mentioned above, when discrete 
eigenmodes collide Krein's theorem states that a necessary condition for 
the bifurcation to instability is that the colliding modes have opposite sig­
nature. The Penrose criterion can be used to analyze bifurcations in the 
Vlasov-Poisson system, and indeed it can be shown that unstable modes 
emerge from the continuum at places where positive and negative contin­
uum eigenmodes meet, a result that suggests an infinite dimensional version 
of Krein's theorem. However, unlike the finite case, care must be taken in 
defining the 'distance' from the bifurcation point. Because any point of the 
continuum is point-wise arbitrarily close to either signature, a Sobolev type 
norm is required. A general discussion of Krein's theorem for infinite di­
mensions will be given in future work, along with several items described in 
the next section. 
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4 Summary and future work 

In this paper we described an integral transform, or equivalently a coordi­
nate change, that enabled us to obtain an Lp solution of the Vlasov-Poisson 
system linearized about good equilibria with good initial conditions. The 
equilibria considered possess a continuous spectrum with no discrete compo­
nent. The Hamiltonian transformation to action-angle variables was given. 
Signature for the continuous spectrum was defined and comments about 
Krein's theorem for infinite systems were made. 

It is clear that there are many other problems suggested by the Hamil­
tonian philosophy described in the Introduction. We list a few of them: 

1. Defining the general class of linear Hamiltonian systems with continu­
ous spectra that can be solved by a general class of integral transforms 
similar to those presented here. 

2. Inclusion of discrete spectra in the class above. 

3. Investigation of bifurcation theory in the presence of the continuous 
spectrum and the role of negative energy modes. 

4. The generalization of the theory of adiabatic invariants. 

5. Nonlinear Hamiltonian perturbation theory with the continuous spec­
trum. 

These will be the subjects of future papers. 
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