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Abstract

We describe a new type of top, the twisted top, obtained by appending a cocycle to the Lie—Poisson bracket for the charged
heavy top, thus breaking its semidirect product structure. The twisted top has an integrable case that corresponds to the Lagrang
(symmetric) top. We give a canonical description of the twisted top in terms of Euler angles. We also show by a numerical
calculation of the largest Lyapunov exponent that the Kovalevskaya case of the twisted top is chao€it.Elsevier Science
B.V. All rights reserved.

1. Introduction

We present a new top, called the twisted top, obtained by modifying the Lie—Poisson bracket for the charged
heavy top. The charged heavy top, also introduced in this Letter, is a heavy top [1-3] immersed in an electric field.
The bracket for the charged heavy top arises from a semidirect product(@j 88dR3 x R3. The twisted top
is not a top in the classical sense of a rigid body in a gravitational field. Rather, it is a mathematical construction
obtained by using a different Lie group to build the Lie—Poisson bracket for the system. This abstract procedure is
analogous to the manner in which tops are derived fof?d5J4], for SU(N) (obtained in Hamiltonian truncations
of the Euler equation [5,6]), and for other groups [7,8]. The construction method of the twisted top is also related
to tops obtained by deformations of algebras [9].

The bracket for the twisted top results from adding a cocycle to the charged heavy top bracket, so that the
structure is no longer semidirect. Such brackets are classified in [10] and [11], and the case we are considering
is the simplest example of a Leibnitz extension [10-12]. Because we are interested in how the nontrivial cocycle
affects the dynamics of the system, we use the same Hamiltonian for the twisted top as for the heavy top. The
bracket for the twisted top possesses three Casimir invariants, one of which differs from that possessed by the
charged heavy top.

A most interesting feature of the twisted top is that it retains the integrability property of the Lagrange top: it
is integrable when it has an axis of symmetry (two moments of inertia are equal), its centre of rotation lies on the
symmetry axis, and the electric field vanishes (or, equivalently, the top is uncharged). The conserved quantities are
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the energy, the angular momentum along the symmetry axis, and a third invariant which is a modification of the
conserved component of the canonical momentum in the Lagrange case.

The outline of this Letter is as follows. In Section 2 we discuss the charged heavy top and describe its invariants
and some of its integrable cases. In Section 3 we introduce the twisted top and its invariants. We show that it has
an integrable case analogous to the Lagrange case of the heavy top. We give a canonical description of the twiste
top in terms of Euler angles in Section 4. In canonical coordinates the difference between the twisted top and the
charged heavy top is transferred from the bracket to the Hamiltonian, and appears as a term that can be interprete
as a momentum-dependent potential. Finally, in Section 5 we discuss our results and show by numerical calculation
that the Kovalevskaya case of the twisted top is not integrable.

2. Thecharged heavy top

Consider a heavy, charged top in constant gravitational and electric fields. The angular momentum vector is
denoted by, the position of the centre of mass is a veapand the position of the centre of chargebisThe
direction and strength of the fixed gravitational and electric forces are given by the ve@onds8, respectively.

The frame of reference is the body frame, so thahdb are constant. The energy of such a top is

H(Z,a,ﬁ):%l-w—i—a-a—i—ﬂ-b, (1)

wherew := I~1¢ is the angular velocity anfl is the moment of inertia tensor, which can be taken to be diagonal
by an appropriate choice of frame. We assume that the top’s rotation is slow enough that the magnetic fields set uf
by the motion of charges is negligible, and that the top is a perfect insulator, so that the centre of charge remains
fixed within the body. The charge, like the mass, does not have to be distributed uniformly, but only the centres of
charge and mass couple to uniform gravitational and electric fields.

The vectorsx and 8, being fixed in space, rotate in the body frame. The dynamics of such a configuration can
be generated by a Lie—Poisson bracket with a semidirect product structure,

{figlsp=—L - (Ve f xVyg)—a- (Vo f xVug+ Vo fxVyg)
—B- (Ve f xVgg+ Vg fxVyg), 2

where f and g are functions of(¢, «, ), andV is a gradient with respect to its subscript. Eq. (2) is a simple
extension of the bracket for the heavy top, which also has a semidirect product structure [2,3,13,14] @ithout
The Casimir invariants of Eq. (2) are

Ci=llal?>, Co=a-B, C3=|BI%

The invariantC, says that the angle betweerandp is constant, because I}y andCs their length is conserved.
Therefore, the two vectore and B fully describe the orientation of the rigid body, and there is a one-to-one
mapping between andg and Euler angles. The phase space of the motion is thg8)SCR® = 7*SO(3). This

is the same phase space as in the unreduced (canonical) system [15].

For the case with; = I, a= (0,0,43)", andb = 0, the charged heavy top reduces to the Lagrange top, also
called the heavy symmetric top, and so is integrable (see, for example, [16]). The invariants are thélerergy
and{ - «. (There is also an integrable case witk- (0, 0, b3)" and(a x 8) - b =0, i.e., where the forces are in the
equatorial plane.)
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3. Thetwisted top

In [10] and [11], it is shown that the only bracket extension of two field variables (suéhaad ) is of the
semidirect product type. To obtain an extension that is not semidirect, one requires at least three variables, which
we take to be the same variables as for the charged heavy top. The simplest nonsemidirect extension is then th
Leibnitz bracket

{f. gleib={f.glsD—€B - (Vo [ X Vo 8), (3

wheree is a parameter measuring the deviation from a semidirect bracket and is not necessarily small. Using the
same Hamiltonian (1) as for the charged heavy top in bracket (3), we obtain the equations

£ ={ Hjleb=C xw+axa+p xb, 4)
a={a,H}epb=a Xw+ef X a, (5)
B=1{B.H}Leib=B x w. (6)

These are the equations for the twisted top. The term proportiorzalridhe & equation adds a “twist” which
means tha& does not simply rotate rigidly (thoughstill does). This is reflected in the Casimir invariants, which
are now

Cr=llal®>+2:-B. Co=a-B. C3=|BI>% @)

Since the length o is no longer preserved, the invariafit does not imply that the angle betweerand g is
constant. However, the length of thmjection of & onto 8 is preserved.

For a positive-definite moment of inertia tensor, the energy surfaces of the twisted top are bounded, as can be see
from the following argument. First note that the componenté cdnnot diverge withouk or g8 also diverging,
since{ enters the Hamiltonian in a positive-definite quadratic form. From the invafignthe components of
B are finite. To have unbounded surfaces, and still cons€iveboth ||£| and |le| must go to infinity, with
lee||2 ~ —2¢€ - B. But with this functional relation it is not possible to haj&| — co whilst preserving the
HamiltonianH , since its kinetic part is proportional fi#||2 and its potential part tie|| ~ [|£]/2, precluding any
balance. We conclude that the energy surfaces are bounded. This will be important in Section 5 where we try to
demonstrate chaotic behaviour by computing the largest Lyapunov exponent.

The twisted top also has an integrable Lagrange case. It is obtained, as for the charged heavy top, by letting
I1=1,a=(0,0,a3)T, andb =0. The energyH and the third component of the angular momentgnare still
conserved, whereas the third invariant becomes

P=t-a+elhasfs. (8)
We call this integrable case the twisted Lagrange top. We can verifyPtimtonserved directly from the equations
of motion (4)—(6),
P =é-a+€~dz~|—811a3ﬂ3=((’, Xw)-a+4L - (e xw+ef xa)+elhaz(f X w)3
=ca-UxP)+ea- (B x w) =0,
where we equatedhw to £ in the last triple product because only the first two components afe involved,
and /1 = I». Itis straightforward to verify that the invariant#, ¢3, P} are in involution, i.e., they commute with

respect to bracket (3) — a necessary condition for integrability. The commutativity of the invariants carries over to
the canonical variables of Section 4.



338 J.-L Thiffeault, P.J. Morrison / Physics Letters A 283 (2001) 335-341
4. Canonical description

Since the twisted top is a Hamiltonian system, there exists a coordinate transformation on the symplectic leaves
(the constraint surfaces described by the Casimirs) that makes the system canonical. We now proceed to find suc
a coordinate transformation, in a manner analogous to the reduction of the rigid body and the heavy top [14,17]. The
transformation we describe will be from the three Euler angles(¢, v, 6)" and their corresponding canonical
momentap = (py, py, po)' (6 coordinates) to the vectos, &, B) (9 coordinates, 3 Casimirs). We show that the
transformation is invertible on the symplectic leaves, so that it can be used to canonize the system.

Following the heavy top reduction [14], since the veggorotates rigidly (length conserved), it is fixed in the
space frame, and we write

B =A(w, (9)

where the rotation matriA is

—siny coSp — cosY Sing CoSyYr  — Siny Sing + COSH COSp COSY  COSYr Sinb

( COSYr COSp — COSY Sing siny COSy Sing + cosh cosp siny sinyr sind )
sing sing —sing cosp cosy

The matrix A transforms vectors from the space frame to the body frame (we are following the convention of
Goldstein [18, p. 147] for the definition af). The vectow is constant and fixed in space. Since rotations preserve
lengths, we hav€s = |82 = w?, wherew = ||w]|| > 0.

For the angular momentum, we take

whereL is more concisely defined via its inverse,

L 1= 0 0 1

(Sine siny  sind cosyr cos@>
cosyr —siny 0

This is the usual transformation one makes when reducing the rigid body [17, p. 499], WheneapsT*SQ(3)
to g*.
Finally, for « we try the form
a = A@)Vv(g, p), (11)

where we have allowed to depend on the Euler angles and canonical momenta in an effort to conserve the
CasimirsCy, andC». We then have

Co=a-B=V-ATAw=V-w,

where we used the orthogonality 4f Decomposing into a partv; & perpendicular tov and a parv& parallel
tow, we obtainC2 = vw. Sincew is constant, we requireto also be constant.
The norm ofw is

lel?=v-ATAV =13 + 12 =C1 —2¢¢- B,

where we used definition (7) @f1. We solve this fomi,

2
_ (e B

UJ2_=C1—v2—2€e-ﬂ=||0l||2 7/0, (12)
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with vi = 0if and only ife andg are collinear. For convenience, define the constant

@2
n:=C1—v2=a|®- (“ﬂf) + 260 - B,

which we will use from now on instead @f;. Then Eq. (11) becomes

a=A[ve +/n—2:c0-B&]. (13)

Note that the vectore and g are collinear ¢ x g = 0) if and only if = 2¢€ - 8. Assume that they are initially
not collinear ¢ # 2¢¢ - B). The time evolution of 2¢ - 8 is obtained from (5) and the conservation@f, yielding

L. py=—Lia)2= —2¢a
26— p)=—— |l = —2ea- (@ x B). (14)

If n = 2¢£- B initially, then it remains so for all times, because then the right-hand side of (14) vanishes. Conversely,
if n # 2¢£ - B initially, then the two vectorae and are never collinear.

This is crucial because it tells us that we can always invert Egs. (9) and (1&),f¢t 6), as long as andg are
not initially collinear. The inversion is done as follows: takes the spatial-axis. Therg is 7/, the transformed-
axis, which allows us to determineandé, but notg since it represents a rotation about thaxis. We then use
to define thex-axis, which allows us to fing from « (as long as/; # 0, but we showed that it is sufficient to
require this initially). But since thesZ - B term only affects the magnitude of , not its orientation, we conclude
that the Euler angles are only a functionnodnd, not of €. We can then go back and solve (10) for the canonical
momenta. (Provided dét"1 = sing # 0, the coordinate singularity inherent to Euler angles. This singularity can
be avoided by “inflating” the phase space [19].)

It remains to be shown that the canonical coordinates do indeed transform bracket (3) to canonical form.

In canonical coordinates, the “potential” part of Hamiltonian (1) becomes

Vie,B)=a-a+ B -b=((va+ wbh)- AéH +vn—2eL-Ba- Aéy, (15)
with

£-B=p-LT(@AQW.
The matrixLT A is

—cotdsing cotdcosp 1
L'A=| cscvsing —cscvcosp O
Ccosp sing 0

The integrable case of the twisted top hlas= I, a= (0,0,a3)", b = 0, for which the kinetic energy is
independent op andy, and the potential becomes

V(¢.0.p) =a3(ves- A& +/n—2cL- B&3- ABY).
Note that bothLTA and &z - A = (siné sing, — sind cos¢, cosh) are independent of, so that in the twisted
Lagrange top casg is cyclic (py conserved).
A particularly simple choice i& = &, & =&, w = 1, for which the potential is
V($,0,p) =az(vcosh + /n — 2epy Sind sing).
Though simple, this description does not reduce nicely to the Lagrange top avhed. The choiceg, = &z,
&) =&, w =1, which gives

V($.0,p) =az(vsindsing + /n — 2¢L - B cosh),
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with

£- B =—pgcotdsing + py €S0 Sing + py COSP,

has the Lagrange top form when= ¢ = 0, at the cost of a more complicated expressiorffg8.

5. Discussion

We have introduced a simple generalisation of the heavy top by giving it charge and placing it in a constant
electric field. By deforming the bracket of this charged heavy top, we have obtained a new top that we call twisted.
We have found that twisted top possesses an integrable case analogous to the Lagrange top. Itis then natural to a:
if such a deformation always preserves integrability. An affirmative answer would be very surprising, considering
the delicate nature of integrable systems, and indeed it does not seem to be so for the system at hand.

We investigate this by looking at the Kovalevskaya case of the twisted top. For the uncharged hebwy @p (
¢ = 0), the Kovalevskaya case involves settihg= 2, I3 = 2I1, andaz = 0. This top is integrable [16,20]. The
analogous case for the twisted top, as for the Lagrange top, simply involves a change of bracket by gefting
Specifically, we choose= 1 anda= (—1,0,0)".

Fig. 1 shows a plot of the instantaneous largest Lyapunov exponent of the twisted Kovalevskaya top, after
averaging over 20,000 random initial conditions integrated numerically (dotted line). The solid line is a least-
squares fit to help determine the Lyapunov exponent to greater accuracy, using an asymptotic form of the averagec
exponent [21]. The Lyapunov exponentis- 0.122, suggesting that the twisted Kovalevskaya top is chaotic. For
comparison, the dashed line shows the same calculation for the untwisted (ordinary) Kovalevskaya top, which
shows the Lyapunov exponent going to zero. Thus, the twisted case appears to be chaotic, whilst the untwisted cas
is not. We conclude that integrability does not always survive deformation, contrary to the Lagrange case. Note that
we can infer chaos from a positive Lyapunov exponent because we showed in Section 3 that the motion takes place
in a bounded region of phase space [22]. The presence of chaos does not rule out the existence of an integrable ca
with parameters “close” to the Kovalevskaya values (in the sense of differing only by terms invejvilvg have

0 20 40 60 80 100

Fig. 1. Lyapunov exponent for the twisted top, averaged over initial conditions. The dotted line is for the Kovalevskaya top and the solid line is
the function 0497/¢ + 0.113//t + 0.122, obtained by a least-squares fit and yielding the vahte.122 (see Ref. [21]). For comparison, the
dashed line is the averaged Lyapunov exponent for the ordinary Kovalevskaya top.



J.-L Thiffeault, P.J. Morrison / Physics Letters A 283 (2001) 335-341 341

not found such a case. Another approach would be to use a Kovalevskaya—Painlevé analysis to determine othe
integrable limits of the twisted top.

A rigorous demonstration that the twisted Kovalevskaya top is chaotic could in principle be achieved using
a Melnikov analysis, as was done by Holmes and Marsden [14] for the heavy top. The present case is less
straightforward because of the complicated form of the homoclinic orbits.

It would of course be of great value to find a physical realisation of the twisted top. One could use either the
noncanonical picture, Egs. (4)—(6), or the canonical picture, given by the standard free rigid body Hamiltonian [14]
with Eqg. (15) for a potential. Regardless of the physical interpretation, the twisted top remains an object worthy of
study in its own right, because of its interesting integrable case and peculiar geometry. It would be worthwhile to
carry out a topological classification of the bifurcations of the phases space of twisted Lagrange top, as was done
by Dullin et. al. [23] for the Kovalevskaya top. This is complicated by the need to find a good surface to make
Poincaré sections in the canonical coordinate space.
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