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Hamiltonian Description of Shear Flow

N.J. Balmforth and P.J. Morrison

1 Introduction

In traditional mechanics courses we learn to solve ideal problems, ones without
friction-like effects, by transforming to normal coordinates. Such problems are
typically Hamiltonian and the transformation theory of Hamiltonian systems
is exploited. If the system under consideration describes linear motion about a
stable equilibrium point, then in terms of normal coordinates the Hamiltonian
has the following normal form:

H(p, q) =
∑

k

νk

2
(
q2k + p2

k

)
=

∑
k

νkJk. (1.1)

Here (q, p) denotes a set of canonical variables and the νk’s are the natural
frequencies of oscillation of the system. In (1.1) the Hamiltonian is written
in two ways: as a sum over independent simple harmonic oscillators and as a
sum over the action variables, Jk, with their conjugate variables being absent
from the Hamiltonian, i.e. these variables are ignorable. It is well-known that
the equations that describe ideal fluid flow are Hamiltonian (see e.g. Morrison
1998, 1982 and references therein) and thus one would expect that a similar
transformation to normal coordinates should exist for inviscid fluid problems.
Indeed this is the case and we demonstrate this here for the problem of shear
flow in a channel.

This shear flow problem is complicated by the fact that it possesses a con-
tinuous spectrum associated with the presence of critical levels. Continuous
spectra cannot occur in finite degree-of-freedom systems and so new tools are
required. We will describe these new tools and use them to show that the
transformation to normal coordinates can be constructed using the singular
eigenfunctions associated with the continuous spectrum. In particular, we show
that this normal coordinate transformation is a linear integral transform that
is a generalization of the Hilbert transform.

For convenience we consider flow profiles for which our shear flow problem
is stable and possesses only a continuous spectrum. That is, we consider pro-
files for which there is no discrete component to the spectrum. According to
Rayleigh’s criterion this is guaranteed to be the case if the profile contains no
inflection points. A more general criterion for assuring this type of spectrum
is given in Balmforth & Morrison (1999), which treats necessary and sufficient
conditions for stability.
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118 Balmforth & Morrison

Stability criteria like those of Rayleigh (1880), Fjørtoft (1950), and Arnol’d
(1965, 1966) will be seen to be essentially energy criteria. The finite degree-of-
freedom version of these criteria would amount to showing that the Hamilto-
nian for a linear problem, H = App+Bpq+Cqq, is a definite quadratic form.
Thus all of these criteria are versions of Dirichlet’s energy criterion for stabil-
ity of Hamiltonian systems. Researchers in fluid and plasma dynamics have
noticed that Rayleigh-like criteria exist for a variety of fluid and plasma sys-
tems, ranging from Drift–Rossby dynamics to magnetohydrodynamics. While
such stability criteria may be useful, they are incomplete. A complete solution
would be to transform to the normal coordinates or the normal form Hamil-
tonian analogous to (1.1), where the oscillating individual degrees of freedom
are separated. Accomplishing this for the shear flow problem is the major goal
of the present paper.

The νk’s that appear in the Hamiltonian of (1.1) need not be positive num-
bers. Indeed, a degree of freedom for which νk < 0 is referred to as a negative
energy mode. Negative energy modes oscillate, just as ordinary stable oscilla-
tions, but their energy, as given by the Hamiltonian, is negative. Negative en-
ergy modes are important because typically they are destabilized upon adding
dissipation and they can give rise to explosive instability when nonlinearity
is introduced. Also, the signature of a mode, as defined by sgn(νk), plays an
important role in Hamiltonian bifurcation theory. In this paper we show how
to define signature for the continuous spectrum.

Just as all stable finite degree-of-freedom Hamiltonian systems can be put
into the form of (1.1), with appropriate signature, one would expect similar
generality for infinite systems with continuous spectra. Indeed, there exists a
normal form for systems of this type. The essential ideas and calculations of
the present paper have been done previously for the Vlasov–Poisson system
in Morrison & Pfirsch (1992), Morrison & Shadwick (1994), Shadwick (1995),
and Morrison (2000). It appears that all Hamiltonian systems that possess a
Hamiltonian formulation in terms of a kind of Poisson bracket known as a
Lie–Poisson bracket (see e.g. Morrison 1998 and Thiffeault & Morrison 2000)
possess the transformation to normal form, in the manner described here.
(The essential ideas in the shear flow context were first given in Balmforth
& Morrison 1995a and 1995b, and then extended to include the β-effect in
Vanneste 1996.)

In the remainder of this Introduction we gather together some known ma-
terial about shear flow. Most of this material will be needed in subsequent
sections, but some is included to add insight and to place our new results in
historical context. Readers who are well-versed in the specifics of shear flow
may wish to skim through this part and proceed to Section 2. Specifically, in
Section 1.1 we review some general properties of shear flow dynamics. In this
subsection we set our notation while describing the problem, and we briefly
discuss constants of motion and the notion of dynamical accessibility. Sec-
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tion 1.2 contains facts about the associated eigenvalue problem. Properties of
Rayleigh’s equation are reviewed and it is shown why pure oscillations make
up a continuous spectrum and are associated with singular eigenfunctions. In
Section 2, with the singular eigenfunctions as motivation, we introduce the
integral transform. In addition we show that the transform possesses an in-
verse and we present some transform identities that are then used to solve the
shear flow problem. In Section 3 we interpret the transform in the Hamilto-
nian context. In this section we review the Hamiltonian structure for Euler’s
equation, and then derive a canonical Hamiltonian description for the shear
flow problem, which we solve by means of finding a canonical transformation
generated by a mixed variable generating functional. We discuss the concept
of modal signature, and how it relates to negative energy modes and stability.
Lastly in Section 3, we show that Rayleigh-like criteria are essentially energy
arguments. Finally, we conclude in Section 4.

1.1 Shear flow dynamics

The two-dimensional Euler equation that describes an incompressible and in-
viscid fluid can be written as

∂ω

∂t
+ [ψ, ω] = 0, (1.2)

where the scalar vorticity, ω, is related to the streamfunction, ψ, through
∇2ψ = ω, and where

[ψ, ω] := v · ∇ω =
∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x
(1.3)

with v := (−∂ψ/∂y, ∂ψ/∂x).
We are interested in analysing Euler’s equations in a domain D that corre-

sponds to an infinitely long channel of fixed width, (x, y) ∈ R × [−1, 1], with
the usual boundary condition that there be no flow normal to the bound-
aries located at y = ±1. With these assumptions, Poisson’s equation can be
rewritten as

ψ(x, y) =
∫

D
G(x, y, x′, y′)ω(x′, y′) dy′ dx′, (1.4)

where G is the Green’s function, which implicitly contains the boundary con-
dition.

By straightforward formal manipulation it can be shown that (1.2) conserves
the energy functional

H[ω] =
1
2

∫
D
|∇ψ| dy dx, (1.5)
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a quantity that will be seen to be the Hamiltonian functional for the infinite
degree-of-freedom Hamiltonian description given in Section 3.1. In addition to
the energy, (1.2) formally conserves the momentum functionals

Px[ω] :=
∫

D
yω(x, y, t) dy dx, Py[ω] := −

∫
D
xω(x, y, t) dy dx, (1.6)

and the Casimir invariants

C[ω] :=
∫

D
C(ω) dy dx, (1.7)

where C is an arbitrary function of the vorticity.
It is well-known that the solution to Euler’s equations can be written as a

rearrangement: ω =
◦
ω ◦ Z, where ◦ denotes the composition of functions, Z

represents the solution to the characteristic equations, and
◦
ω represents the

initial vorticity. Equivalently, this can be written out as

ω(x, y, t) =
◦
ω(

◦
x(x, y, t),

◦
y(x, y, t)). (1.8)

It is also well-known that not all rearrangements are allowed: only those that
preserve the area measure dx dy. It can be shown directly that the Casimir
invariants of (1.7) are preserved under such rearrangements (see Appendix B
of Morrison & Pfirsch 1990).

In this paper we are interested in the linear dynamics about equilibrium
configurations where the streamfunction, Ψ, and vorticity, Ω, satisfy

[Ω,Ψ] = 0, ∇2Ψ = Ω. (1.9)

The subset of solutions of (1.9) that are of interest satisfy Ω(y) = −U ′(y) =
Ψ′′(y), where prime denotes d/dy. The equilibrium velocity U(y), the “flow
profile,” is in general an arbitrary function of y. Here we take this function
to be monotonic for y ∈ [−1, 1]; nonmonotonic profiles will be considered
elsewhere.

Upon linearizing by writing ψ = Ψ + δψ and ω = Ω + δω and expanding
(1.2) to first order, we obtain

∂δω

∂t
+ U

∂δω

∂x
− U ′′∂δψ

∂x
= 0, (1.10)

with ∇2δψ = δω. The linear dynamics conserves the following functional:

HL[δω] =
1
2

∫
D

[
U

U ′′ (δω)2 − δω δψ

]
dy dx, (1.11)

which corresponds physically to the total energy contained in a perturbation
away from the equilibrium state. In Section 3.1 we will see that this functional
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is the Hamiltonian for the linear dynamics. The linear dynamics also conserves
the momenta obtained upon linearizing (1.6).

Since the solution to Euler’s equation is a rearrangement, i.e. has the form
of (1.8), it is natural to restrict initial infinitesimal perturbations to be rear-
rangements of the equilibrium state. In Morrison & Pfirsch (1989, 1990, 1992)
such restricted variations were called dynamically accessible variations and
there the following formula was presented:

δω = [h, ω], (1.12)

where ω is any vorticity function, and h is an arbitrary function of (x, y). (This
idea has recurred many times in the literature in different contexts, many of
which are pointed out in Morrison 1998.)

Of interest here are variations about the shear flow equilibrium state that
are to be initial conditions for (1.10). Thus δ

◦
ω = [h,Ω] = Ω′∂h/∂x. This

implies, for nonsingular h’s, that δ
◦
ω has the same extrema as Ω. Also, it is

easy to show that if a function is initially dynamically accessible, then under
the dynamics of (1.10) it will be so for all time; i.e. δω at any time can be
written in the form of [h,Ω] for some function h.

Since the equilibria of interest are independent of the coordinate x, pertur-
bation quantities can be Fourier transformed in that coordinate. We can then
consider each Fourier mode independently and write δψ = ψk(y, t) exp(ikx)
and δω = ωk(y, t) exp(ikx) for the infinitesimal perturbations, where k is the
streamwise wavenumber. The quantities δψk and δωk satisfy

∂ωk

∂t
+ ikUωk − ikU ′′ψk = 0 (1.13)

with

ψk(y, t) =
∫ 1

−1
Kk(y, y′)ωk(y′, t) dy′, (1.14)

where

Kk(y, y′) =

{
sinh[k(y − 1)] sinh[k(y′ + 1)]/k sinh[2k] for y > y′,

sinh[k(y′ − 1)] sinh[k(y + 1)]/k sinh[2k] for y ≤ y′.
(1.15)

The boundary conditions are now that each ψk vanish at y = ±1.
The channel is infinite in x, so k is really a continuous variable, even though

it appears above as a subscript. The label k corresponds to the eigenvalue of
a second continuous spectrum, that associated with a regular problem in an
infinite domain. Later in this paper we will consider k to be fixed at some
value and we will not be concerned with this latter continuous spectrum.
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1.2 Eigenmodes and Rayleigh’s equation

We now discuss the associated eigenvalue problem, i.e. we investigate eigen-
mode solutions that are characterized by an exponential time dependence with
a phase velocity c that corresponds to the eigenvalue. Upon writing

ψk(y, t) = ψk(y, c) exp(−ikct), ωk(y, t) = ωk(y, c) exp(−ikct), (1.16)

(1.13) and (1.14) become

(U − c)ωk − U ′′ψk = 0, (1.17)

and

ψk(y, c) =
∫ 1

−1
Kk(y, y′)ωk(y′, c) dy′, (1.18)

respectively. (Note, we will distinguish the functions ωk and ψk of (1.13) and
(1.14) from those of (1.17) and (1.18) by explicitly displaying the argument,
when there is a possibility of confusion.)

Equation (1.17) is Rayleigh’s equation, which is generally written as follows:

(U − c)(ψ′′
k − k2ψk) = U ′′ψk. (1.19)

If Rayleigh’s equation possesses solutions with c being a complex number, then
such solutions come in growing and decaying mode pairs and they are always
regular (square integrable) and discrete. Rayleigh (1880) (see also Rayleigh
1896) showed that these complex modes can only appear when the velocity
profile contains an inflection point, i.e. a point yI such that U ′′(yI) = 0. This
follows easily: simple manipulation of (1.17) leads to

−
∫ 1

−1
(|ψ′

k|2 + k2|ψk|2) dy =
∫ 1

−1

U ′′

U − c
|ψk|2 dy, (1.20)

which has the imaginary part

ci

∫ 1

−1

U ′′

|U − c|2 |ψk|2 dy = 0. (1.21)

Thus, either ci = 0 and there is no complex mode, or the integral must vanish.
A necessary condition for the integral to vanish is that U ′′ change sign within
the domain. Hence, an inflection point is necessary for instability.

Fjørtoft’s (1950) generalization of Rayleigh’s criterion goes further by using
both (1.21) and (1.20). Evidently,

−
∫ 1

−1

[U − U(yI)]U ′′

|U − c|2 |ψk|2 dy =
∫ 1

−1
(|ψ′

k|2 + k2|ψk|2) dy ≥ 0. (1.22)
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Thus, not only must there be an inflection point, but at that point, U ′′/(U−UI)
must be negative for instability, where UI = U(yI). Equivalently, for instability
U ′′′(yI)/U ′(yI) < 0, or, since Ω = −U ′, the vorticity must be a minimum at
the (sole) inflection point.

Both Rayleigh’s and Fjørtoft’s criteria are necessary conditions for instabil-
ity. A necessary and sufficient condition for instability was given in Balmforth
& Morrison (1999), which we will not describe here. However, all of the equi-
librium flow profiles treated in the present paper are stable, and this can
be guaranteed by Rayleigh’s criterion, Fjørtoft’s criterion, or the criterion of
Balmforth & Morrison (1999). Henceforth we assume c ∈ R and in the remain-
der of this section we discuss neutral modes. We show why they constitute a
continuous spectrum, why they are singular, and then we construct the singu-
lar eigenfunctions associated with them.

If c ∈ R, then Rayleigh’s equation is a second-order differential equation
with singular points located where the phase velocity matches the equilibrium
velocity, c = U(y). Such points are commonly referred to as critical levels. If
the flow profile is monotonic, then c = U(y) has a single solution, y = yc.
This is the situation considered here. For general, nonmonotonic flow profiles,
there may be more than one critical level for a given mode, and this introduces
complications that will be treated in a later publication.

In the vicinity of the critical level it is straightforward to obtain two Frobe-
nius series solutions of the form,

ψ
(g)
k (y, yc) = [U(y) − c]ϕ(1)

k (y, c) (1.23)

and

ψ
(b)
k (y, yc) = [U(y) − c] log |U(y) − c|ϕ(2)

k (y, c) + ϕ
(3)
k (y, c), (1.24)

where the ϕk’s are regular functions that do not in general vanish at the critical
level. The ‘good’ solution, ψ(g)

k , cannot satisfy the boundary condition, and this
is, in part, the reason for the occurrence of the continuous spectrum. The proof
of this uses a classical integral relation of the early nineteenth century (Green’s
transform) to understand the extension of the spectrum in the complex plane
(see e.g. Hille 1976), which has been reconsidered in more recent literature (see
e.g. Barston 1964 and Rosencrans & Sattinger 1966). Because the argument
is not difficult, we include it here.

From the Frobenius solutions of (1.23) and (1.24) we see that ψ(g)
k is regular

and vanishes at the critical point, while ψ(b)
k is constant to leading order, but

has a discontinuous derivative at the critical level unless U ′′ vanishes there.
(Note (1.24) can be rewritten as ψ(b)

k ∼ 1+U ′′(yc)(y−yc) log |y−yc|.) Smooth
eigensolutions can therefore be built if either there is no critical level within
the channel, or if the eigenmodes contain only ψ(g)

k near y = yc. However, the
argument based on the classical integral relation indicates that such smooth
solutions cannot satisfy the boundary conditions.
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In terms of the displacement ξk, defined by (U − c)ξk = ψk, Rayleigh’s
equation becomes

d

dy

[
(U − c)2

dξk
dy

]
− k2(U − c)2ξk = 0, (1.25)

which has both a regular and a singular solution at y = yc. Multiplying this
equation by ξ∗k and integrating over the interval [y1, y2] gives

[
(U − c)2ξ∗kξ

′
k

]y2

y1
=

∫ y2

y1

[U(y) − c]2
[
|ξ′k|2 + k2|ξk|2

]
dy. (1.26)

If there is no critical level (yc is outside the channel), we select y1 = −1 and
y2 = 1, then both sides of (1.26) must vanish and so there is no nontrivial
solution. This establishes that only neutral modes with critical layers exist. If
we now select y1 = −1 and y2 = yc or y1 = yc and y2 = 1, then we observe
that, unless ξk is singular at the critical point, the solution is again trivial.
This indicates that ξk must be singular at the critical layer. Equivalently, ψk

must contain ψ
(b)
k near y = yc, so the streamfunction has no derivative there

(unless U ′′(yc) = 0). Consequently, the neutral modes are generically singular.
However, such a mode exists for each phase velocity that satisfies U = c, and
thus we have a continuous spectrum.

The eigenfunctions associated with these singular modes can be described
by following Van Kampen (1955) and rewriting (1.17) as a distribution (gen-
eralized function)

ωk = P
(
U ′′ψk

U − C

)
+ Ckδ(U − c), (1.27)

where P signifies the Cauchy principal value, Ck is (as yet) arbitrary, and δ
is Dirac’s delta function. (Van Kampen considered a solution in the form of
(1.27) in the context of plasma oscillations; the solution was previously used
in quantum scattering theory and perhaps first appeared in a paper by Rice
1929, according to Van Kampen’s 1951 interpretation. In fluid mechanics the
special case of constant shear flow was considered in Eliassen et al. 1953.)

By writing the vorticity of the eigenfunction in the form of (1.27), we explic-
itly display the singular nature of the mode. Its vorticity is composed of two
pieces. There is a divergent, global component that corresponds to advection
of the underlying flow by the perturbation, and relies on the presence of a
mean vorticity gradient. For a linear velocity profile only the second term is
present, and this represents a line vortex positioned at the critical level.

Eliminating ωk between (1.17) and (1.18) yields the inhomogeneous integral
equation

ψk(y, yc) = P
∫ 1

−1
Kk(y, y′)

U ′′(y′)ψk(y′, yc)
U(y′) − c

dy +
Ck

|U ′
c|
Kk(y, yc), (1.28)
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where U ′
c = U ′(yc). The kernel of this integral equation is singular at the

critical level, but we have yet to specify Ck.
Because our problem is linear, the amplitude of the eigenfunction is in-

determinate up to scaling. We determine this amplitude through an integral
normalization. One that is especially convenient is (Kamp 1991, Kowalski &
Feldman 1961, Sattinger 1966, Sedláček 1971)

Ξk =
∫ 1

−1
ωk dy, (1.29)

where Ξk is the modal amplitude, a quantity that can be taken to be any
desired function of the eigenvalue c (or yc). (In calculations that will be re-
ported elsewhere we have found it acceptable to set Ξk to unity.) Inserting the
singular eigenfunction (1.27) into (1.29) gives

Ξk =
Ck

|U ′
c|

+ P
∫ 1

−1

U ′′(y′)ψk(y′, yc)
U(y′) − U(yc)

dy′, (1.30)

which is an equation for the unknown quantity Ck. With this selection for Ck

the integral equation (1.28) becomes

ψk(y, yc) = fk(y) +
∫ 1

−1
Fk(y, y′; yc)ψk(y′, yc) dy′, (1.31)

where the inhomogeneous term fk(y) := ΞkKk(y, yc) and the kernel is defined
by

Fk(y, y′; yc) =
[Kk(y, y′) −Kk(y, yc)

U(y′) − U(yc)

]
U ′′(y′). (1.32)

This kernel is regular at the critical level (accordingly we have omitted the
principal-value symbol), and it depends on a ‘parameter’, yc. Thus, the choice
of normalization (1.29) converts the singular integral equation (1.28) into the
regular integral equation (1.31).

2 The integral transform and coordinate change

Now we turn to the description of our integral transform solution. In Section
2.1 we give some motivation for the form of the transform, and then state
it and its inverse. In Section 2.2 we show that the inverse stated in Section
2.1 is indeed the inverse, and in Section 2.3 identities associated with the
transform are given. Finally in Section 2.4 these identities are used to obtain
an expression for the solution.
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2.1 Integral transform pair

Perhaps the easiest way to explain the origin of the integral transform is to
consider it to be a coordinate change designed with a basis composed of a
continuum of the singular eigenfunctions of (1.27). A superposition of the
continuum of singular eigenfunctions, which we label by yc, with amplitudes
given by Λk(yc, t), suggests the following transform:

Gk[Λk](y, t) :=
∫ 1

−1
Gk(y, yc)Λ(yc, t) dyc (2.1)

where

Gk(y, yc) := ε
(r)
k (y)δ(y − yc) + PU

′′(y)ψk(y, yc)
U(y) − U(yc)

, (2.2)

ε
(r)
k (y) := 1 − P

∫ 1

−1

U ′′(y′)ψk(y′, y)
U(y′) − U(y)

dy′, (2.3)

and ψk(y, yc) is a solution to (1.31). The transform (2.1) takes the function
Λk(yc, t) into a function ωk(y, t) := Gk[Λk](y, t).

Alternatively, upon inserting (2.2) into (2.1) we obtain the following equiv-
alent form for the integral transform:

Gk[Λk](y, t) := ε
(r)
k (y)Λk(yc, t) + P

∫ 1

−1

U ′′(y)ψk(y, yc)
U(y) − U(yc)

Λk(yc, t) dyc, (2.4)

whence we see that Gk is the sum of a simple multiplicative piece plus a piece
that is a generalization of the Hilbert transform (Titchmarsh 1937, Stein &
Weiss 1971).

We will show that the inverse of (2.1), subject to the conditions of mono-
tonicity of U and no discrete spectrum is given by the following integral trans-
form:

Ĝk[ωk](yc, t) :=
∫ 1

−1
Ĝk(yc, y)ωk(y, t)dy, (2.5)

where

Ĝk(yc, y) =
1

|εk(yc)|2
[
ε
(r)
k (yc)δ(y − yc) + PU

′′(yc)ψk(y, yc)
U(y) − U(yc)

]
, (2.6)

and where |εk(y)|2 := (ε(r)k )2 + (ε(i)k )2 with

ε
(i)
k := −πψk(yc, yc)

U ′′(y)
U ′(y)

. (2.7)
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Note that on the right-hand sides of (2.1) and (2.5), the functions Λk(yc, t)
and ωk(y, t) are arbitrary functions (within the function space that defines
the domain of the transforms, which we will not specify here) of yc and y,
respectively, and the explicit time dependence appears only as a parameter.
We include this time dependence to emphasize that the integral transforms
are coordinate changes; the actual time dependence will be determined by the
equation of motion.

If Ĝk is to be the inverse of the transform Gk, then Ĝk[Gk[Λk]] ≡ Λk, which
follows if ∫ 1

−1
Ĝk(y′c, y)Gk(y, yc) dy = δ(yc − y′c). (2.8)

This inverse relation can also be viewed as a relation that verifies the com-
pleteness of the continuous spectrum. We verify (2.8) in the next section. In
a similar fashion we have the reciprocal completeness relation,∫ 1

−1
Ĝk(yc, y

′)Gk(y, yc) dyc = δ(y − y′). (2.9)

2.2 Transform inverse

Now we show that the transform (2.1) is the inverse of (2.5). In addition
we give some other identities that will be of use to us in Section 2.4 and in
Section 3. Under mild restriction on the profiles U , many rigorous results can
be obtained. For example, using generalization of techniques associated with
Hilbert transform theory it can be shown that the transforms are bounded
linear operators on Lp spaces. We will not pursue this here, but instead direct
the reader to Morrison (2000) where the corresponding proofs are given in the
context of the Vlasov–Poisson equation.

If we substitute the explicit forms of Ĝk(yc, y) and G(y, y′c) into the integral
on the left-hand side of equation (2.8), we find

∫ 1

−1
Ĝk(y′c, y)Gk(y, yc) dy = ε

(r)
k (yc)2δ(yc − y′c)

+
U ′′(yc)

U(yc) − U(y′c)
[
ε
(r)
k (yc)ψk(yc, y

′
c) − ε

(r)
k (y′c)ψk(y′c, yc)

]
+
U ′′(y′c)
|εk(y′c)|

P
∫ 1

−1

U ′′(y)ψk(y, yc)ψk(y, y′c)
[U(y) − U(yc)][U(y) − U(y′c)]

dy. (2.10)
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To evaluate the integral of the final term of (2.10) we use the relation,

U ′′(y′c)P
∫ 1

−1

U ′′(y)ψk(y, yc)ψk(y, y′c)
[U(y) − U(y′c)][U(y) − U(yc)]

dy

= ε
(i)
k (yc)2δ(yc − y′c) +

U ′′(y′c)
U(yc) − U(y′c)

P
∫ 1

−1
U ′′(y)ψk(y, y′c)ψk(y, yc)

×
[

1
U(y) − U(yc)

− 1
U(y) − U(y′c)

]
dy, (2.11)

which is a form of the Poincaré–Bertrand transposition formula (see e.g.
Gakhov 1990). Using (2.11) and collecting together terms, (2.10) becomes

∫ 1

−1
Ĝ(y′c, y)Gk(y, yc) dy = δ(yc − y′c) +

U ′′(y′c)
U(yc) − U(y′c)

Ik(yc, y
′
c)

|εk(y′c)|2
, (2.12)

where

Ik(yc, y
′
c) := ε

(r)
k (yc)ψk(yc, y

′
c) + P

∫ 1

−1

U ′′(y)ψk(y, yc)ψk(y, y′c)
U(y) − U(yc)

dy

− ε
(r)
k (y′c)ψk(y′c, yc) − P

∫ 1

−1

U ′′(y)ψk(y, y′c)ψk(y, yc)
U(y) − U(y′c)

dy. (2.13)

Recognizing that Ck/|U ′
c| = ε

(r)
k , (1.31) can be rewritten as

ψk(y, yc) = ε
(r)
k (yc) + P

∫ 1

−1
Kk(y, y′)

U ′′(y′)ψk(y′, yc)
U(y′) − U(yc)

dy′. (2.14)

Insertion of (2.14) into the first and third terms of (2.13) and into the second
ψk of the integrands of the second and fourth terms, reveals that Ik(yc, y

′
c) ≡ 0.

Hence, we have verified (2.8) and thus that (2.1) is the inverse of (2.5).

2.3 Transform identities

Just as Fourier and Laplace transforms possess many useful identities, there
are a variety of identities possessed by Gk and Ĝk. For later use we state two
such transform identities that will be used in Section 2.4:

Ĝk[Uωk](yc, t) = U(yc)Ĝk[ωk](yc, t) +
U ′′(yc)
|εk|2(yc)

P
∫ 1

−1
ωk(y, t)ψk(y, yc) dy,

(2.15)

and

Ĝk[U ′′ψk](yc, t) =
U ′′(yc)
|εk|2(yc)

P
∫ 1

−1
ωk(y, t)ψk(y, yc) dy, (2.16)
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where (2.16) is valid if ωk is related to ψk according to (1.18). The validity of
these identities can be demonstrated in a manner similar to our demonstration
of (2.8).

For the record we state two additional orthogonality-like identities,∫ 1

−1
Ĝk(yc, y)Ĝk(y′c, y)U

′′(y) dy =
U ′′(yc)
|εk|2(yc)

δ(yc − y′c)

and∫ 1

−1

[
U(y)
U ′′(y)

Gk(y, yc) − ψk(y, yc)
]
Gk(y, y′c) dy =

U(yc)
U ′′(yc)

|εk|(yc)δ(yc − y′c).

These last two identities will not be needed in the rest of this paper.

2.4 Solution

Now we are in a position to use the transform pair to solve (1.13). Let
Λk(y, t) := Ĝk[ωk] and then ωk(y, t) = Gk[Λk]. Transforming (1.13) with Ĝk

gives

∂Λk

∂t
+ ikcΛk = 0, (2.17)

where use has been made of both (2.15) and (2.16), with the obvious cancel-
lation, and we have set c = U(yc). This simple form is obtained because the
transform has been designed especially for (1.13); it is a coordinate change in
which the equation becomes trivial to solve. The solution to (2.17) is clearly

Λk =
◦
Λke

−ikct, which upon transforming back gives

ωk(y, t) = G
[
Ĝ[

◦
ωk]e−ikct

]
. (2.18)

Here we have written
◦
Λk in terms of

◦
ωk(y) := ωk(y, t = 0) by means of

◦
Λk = Ĝ[

◦
ωk].

The solution (2.18) is exact, but not entirely explicit because it requires
ψk(y, yc), which in turn requires the solution of the integral equation (1.31).
This is a fairly easy numerical exercise because (1.31) is a regular Fredholm
equation. Most important is the fact that this calculation only needs to be
done once for each flow profile, U(y). After ψk(y, yc) is obtained, (2.18) gives
the temporal dependence for all initial conditions. Over the past five years or
so we have accumulated a variety of numerical results of this nature that will
be reported elsewhere.

Before proceeding to the next section, where we show that the integral
transform is in essence a canonical transformation to action-angle variables,
we mention that the solution of (2.18) is an alternative to that obtained by
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using the Laplace transform to solve the initial value problem (see Case 1960,
Engevik 1966, and Rosencrans & Sattinger 1966). Because both the Laplace
transform solution and (2.18) are solutions they must be equal, and indeed
with the wisdom of hindsight and some effort this can be shown. The solution
(2.18) differs from the Laplace transform solution in that the integration in-
volved in the transform G can be viewed as a sum over individual solutions
varying as e−ikct, while the Bromwich contour integral of the inverse Laplace
transform solution is not a sum over solutions.

3 Hamiltonian interpretation

Now we interpret the solution of (2.18) in the Hamiltonian context. We begin
in Section 3.1 by briefly reviewing the Hamiltonian description of Euler’s equa-
tion in terms of the noncanonical Poisson bracket, the point of view adopted
in Morrison & Greene (1980). In Section 3.2 the noncanonical Hamiltonian
structure for the linearized shear flow dynamics is canonized (converted into
the conventional canonical form) and then diagonalized (transformed into a
set of uncoupled oscillators). In Section 3.3 modal signature and the rami-
fications of negative energy modes are discussed. In Section 3.4 we see that
Rayleigh-type stability criteria amount to energy criteria.

3.1 Hamiltonian structure

The Hamiltonian structure possessed by equations that describe continuous
media in terms of Eulerian variables has a Poisson bracket that is degenerate
and not of the canonical form. This is because the variables that are usually
used to describe fluids, as well as those of magnetohydrodynamics, kinetic
theories, and other media theories, are not canonical variables. This formula-
tion in terms of noncanonical variables, with associated noncanonical Poisson
bracket, is employed here. However, we note that there are other forms that
the Hamiltonian structure of fluid mechanics can assume; for example, the
canonical form in terms of Lagrangian or material variables, which dates to
the nineteenth century, and the Hamiltonian description in terms of a degen-
erate Lagrange bracket or two-form (see e.g. Appendix 2 of Arnol’d 1978).
We direct the reader to Morrison (1998) where the Hamiltonian description of
fluid dynamics is extensively reviewed.

In the present context, the upshot of the noncanonical Hamiltonian struc-
ture is that Euler’s equation for the fluid can be written as follows:

∂ω

∂t
= {ω,H} = [ω, ψ], (3.1)

where the noncanonical Poisson bracket is given by

{A,B} =
∫

D
ω

[
δA

δω
,
δB

δω

]
dy dx, (3.2)
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the Hamiltonian functional H is given by (1.5), and

[ω, ψ] :=
∂ω

∂x

∂ψ

∂y
− ∂ψ

∂x

∂ω

∂y
.

In the bracket of (3.2), A[ω] and B[ω] are functionals of the dynamical variable
ω and the functional derivative δA/δω is defined by

δA =
∫

D

δA

δω
δω dy dx. (3.3)

It is evident that the bracket of (3.2) is not of canonical form for the following
reasons: it depends explicitly upon ω, there is only a single dynamical field
variable, ω, rather than a canonically conjugate pair, and it is degenerate.
Degeneracy is evident because of the existence of the Casimir invariants of
(1.7), which by definition satisfy {A,C} = 0 for all functionals A.

The linear dynamics obtains its Hamiltonian structure from that of the full
dynamics given in (3.1) by linearizing. This procedure involves linearizing the
bracket as well as the Hamiltonian. Upon inserting ω = Ω+δω into the bracket
and retaining the lowest order piece, we obtain

{A,B}L =
∫

D
Ω

[
δA

δδω
,
δB

δδω

]
dy dx, (3.4)

where δA/δδω is the functional derivative of a functional A of δω with respect
to the linear dynamical variable, δω. Because of the existence of the Casimir
invariants, the Hamiltonian used in (3.1) is not unique: the quantity F =
H + C, for any C, can serve as a Hamiltonian because {A,F} = {A,H}, for
all functionals A. This nonuniqueness is exploited in obtaining the Hamiltonian
for the linear dynamics. We choose C so that δF/δω = 0 is satisfied by the
equilibrium vorticity of interest, Ω, and then expand F to second order in δω.
This second order quantity is the expression HL[δω] := δ2F given by (1.11),
that serves as the Hamiltonian for the linear dynamics. With the Hamiltonian
HL and the bracket of (3.4), the linear dynamics of (1.10) has the Hamiltonian
form

∂δω

∂t
= {δω,HL}L.

We now turn to the task of transforming this Hamiltonian structure into a
canonical, diagonal (action-angle) form.

3.2 Canonization and diagonalization

Canonization of the bracket of (3.4) is facilitated by introducing the Fourier
representation:

δω(x, y) =
1√
2π

∫
R
eikxωk(y) dk, ωk(y) =

1√
2π

∫
R
e−ikxδω(x, y) dx.

(3.5)
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Using (3.5) it is not difficult to show that the functional derivative transforms
according to

δA

δδω
=

1√
2π

∫
R
e−ikx δA

δωk
dk, (3.6)

which in essence follows from the chain rule for functional derivatives. To see
this we insert the first variation of (3.5) into the expression analogous to (3.3)
for functionals of the variable δω,

δA =
∫

D

δA

δδω
δδω dy dx =

∫
D

δA

δωk
δωk dy dk

=
∫

D

δA

δωk

1√
2π

∫
R
e−ikxδδω(x, y) dx dy dk.

Interchanging the order of integration and equating coefficients of δδω gives
(3.6).

Inserting (3.6) and the corresponding formula for δB/δδω into (3.4), inte-
grating by parts, and mapping the k < 0 region of integration to k > 0, yields
the following Poisson bracket:

{A,B}L =
∫ ∞

0

∫
R
ikΩ′

(
δA

δωk

δB

δω−k
− δB

δωk

δB

δω−k

)
dy dk, (3.7)

where henceforth we denote the domain of integration of (3.7) byDk := R
+×R.

Since the domain of integration is only over positive values of k, it is clear
that ωk and ω−k are independent variables, and it is also clear from (3.7) that
if it were not for the factor ikΩ′, these variables would be canonical variables.
Evidently a simple scaling is required for canonization, and we do this by
introducing the new variables

qk(y, t) := ωk(y, t), pk(y, t) :=
ω−k(y, t)
ikΩ′ . (3.8)

With this choice the bracket (3.7) obtains the canonical form

{A,B}L =
∫

Dk

(
δA

δqk

δB

δpk
− δB

δqk

δA

δpk

)
dy dk, (3.9)

where qk and pk are canonically conjugate variables.
The transformation of (3.8) appears to be singular at k = 0 and at points

(values of y) where Ω′ = 0. As pointed out in Section 2, we assume Ω(y) sup-
ports no discrete eigenmodes, but this can be the case even when Ω′ = 0, so
singularity due to Ω′ = 0 could be an issue. (Recall that Rayleigh’s criterion
is not necessary for linear stability.) However, the condition of dynamical ac-
cessibility discussed in Section 1.1 removes both the k = 0 and the Ω′ = 0
singularities. This follows because in terms of the Fourier variable ωk, (1.12)
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becomes ωk = ikhkΩ′, and therefore ωk vanishes at k = 0 and at points where
Ω′ = 0. The choice of canonical variables is designed so that the dynamics takes
place on the constraint surface (symplectic leaf) determined by the equilib-
rium Ω, which in turn is determined by the value of the Casimir invariants.
The singularities we are removing arise from the degeneracy in the original
noncanonical bracket and the choice of coordinates (3.8) that removes them
also removes this degeneracy.

The Hamiltonian for the linear dynamics is given by (1.11), which with the
insertion of (3.5) becomes

HL =
∫

Dk

(
U

U ′′ωk − ψk

)
ω−k dy dk,

=
∫

Dk

∫
D′

k

ωk(y)Ok,k′(y|y′)ωk′(y′) dy dk dy′ dk′, (3.10)

where

Ok,k′(y|y′) :=
U

U ′′ δk,−k′δ(y − y′) −Kk(y, y′)δk,−k′ . (3.11)

From (3.10) or (3.11) it is clear that this Hamiltonian is not diagonal; i.e. it
does not possess a form that is the infinite dimensional generalization of either
of the forms of (1.1). This remains true even after rewriting it in terms of the
canonical variables of (3.8). However, we will see that a coordinate change that
uses the integral transform of Section 2 achieves this diagonalization.

We wish to diagonalize the Hamiltonian while maintaining the Hamiltonian
structure. This can be done by introducing the following mixed variable gener-
ating functional, the essence of which is determined by the integral transform
of (2.5):

F [q, P ] =
∫

Dk

Pk(y) Ĝ[qk](y) dy dk. (3.12)

The transformation to the new canonical variables (Qk, Pk) are given by the
following:

pk(y) =
δF [q, P ]
δqk(y)

= Ĝ†[Pk](y), Qk(yc) =
δF [q, P ]
δPk(yc)

= Ĝ[qk](yc). (3.13)

That this generates a canonical transformation can be verified directly. By
a chain rule procedure similar to that used in obtaining (3.6), we obtain

δA

δqk
= Ĝ†

[
δF

δQk

]
,

δB

δpk
= G

[
δB

δPk

]
, (3.14)
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where Ĝ† is the adjoint of Ĝ. Upon inserting (3.14) into (3.9), using the adjoint
property, and recognizing that Ĝ is the inverse of G we obtain

{A,B}L =
∫

Dk

(
δA

δqk

δB

δpk
− δB

δqk

δA

δpk
dy dk

)
dy dk

=
∫

Dk

(
δA

δQk

δB

δPk
− δB

δQk

δA

δQk

)
dy dk. (3.15)

This verifies that (3.13) defines a canonical transformation.
Now we will insert the transformations of (3.13) into the Hamiltonian of

(3.10) and show that this gives a diagonal form. Rewriting (3.10) as

HL =
∫

DL

(−ikUqkpk + ikU ′′ψkpk) dy dk

and inserting pk = Ĝ†[Pk] and qk = G[Qk] yields

HL = −i
∫

DL

kPk

(
Ĝ[UG[Qk]] − Ĝ[U ′′ψk]

)
dyc dk, (3.16)

which upon making use of (2.15) and (2.16) gives

HL = −i
∫

Dk

kUPkQk dyc dk = i

∫
Dk

νkPkQk dyc dk. (3.17)

Equation (3.17) is a kind of Hamiltonian normal form; it is a Hamiltonian that
completely decouples each dimension of the system. However, it is not yet of
the form of (1.1), our initial goal. So, we now take this last step to achieve our
goal.

It is well-known lore of Hamiltonian mechanics that if one restricts to real
canonical transformations, then for stable (purely oscillating) systems one can-
not decouple each dimension; the best one can do is decouple each degree of
freedom. Above we introduced complex analysis in order to avoid messy cal-
culations; we could have defined the integral transform in such a way that
only real variables were used. If we had done so, we would have arrived at
the normal form of (1.1). It is a simple matter to recover this real variable
Hamiltonian normal form by performing the following transformation:

Qk(yc, t) =
√
Jk(yc, t) eiσkθk(yc,t), Pk(yc, t) = −i

√
Jk(yc, t) e−iσkθk(yc,t),

where we have introduced a definition of signature, σk(yc) := sgn(U ′′/U), an
important quantity that will be discussed in the next subsection. In terms of
the canonical variables (θk, Jk) the Hamiltonian becomes

HL =
∫

Dk

σk(yc)ν(yc)Jk(yc, t) dyc dk, (3.18)
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where νk(yc) := |kU(yc)| and the Poisson bracket becomes

{F,G}L =
∫

Dk

(
δF

δθk

δG

δJk
− δG

δθk

δF

δJk

)
dyc dk.

Thus we have achieved our goal of obtaining a continuum generalization of the
oscillator form given in (1.1).

3.3 Signature and negative energy modes

In the course of arriving at the normal form of (3.18), the continuum version
of (1.1), we defined the signature σk(yc) := sgn(U ′′/U). This signature is the
sign of the energy associated with a (stable) continuum eigenfunction. When
σk is negative, the continuum eigenmode is a negative energy mode. A mode
can have negative energy when the equilibrium state about which we expand,
in order to obtain the linear theory, is not a minimum energy state. Vacuum
states or states in thermodynamic equilibrium are minimum energy states,
while an equilibrium state composed of a flow with shear is not. Consequently,
for some shear flow equilibria there can be singular modes with sgn(U ′′/U) < 0,
i.e. there can exist negative energy modes whose presence lowers the energy
of the system to below that of the equilibrium alone. In a system with a shear
flow equilibrium, one can easily imagine that a perturbation that slows down
the flow will remove kinetic energy and thus lower the energy of the system.

Although our definition of signature for the continuum modes above and its
predecessor in Vlasov theory (Morrison & Pfirsch 1992) are novel, signature is
a well-known concept in finite degree-of-freedom Hamiltonian systems theory.
Also, it is well-known in infinite dimensional systems that describe the beam–
plasma instability (see e.g. Davidson 1972 and many references therein), and
it has previously appeared in the context of fluids (Cairns 1979). However,
these developments describe modes that are not continuum modes, but nor-
mal discrete modes. Let us now turn to a discussion of the ramifications of
signature.

As noted in the Introduction, negative energy modes and signature arise in
the context of bifurcation theory and stability theory. That the signature of
modes can have repercussions on possible bifurcations was shown for Hamilto-
nian systems of finite dimension by Krĕın (1950) and Moser (1958) (see Krĕın
& Jakubovič 1980 for a collection of original papers). These authors established
that the Hamiltonian Hopf bifurcation is only possible when pairs of modes
of opposite signature collide on the real (stable) axis of the spectral plane.
For discrete modes in the infinite dimensional plasma physics context, this is
a well-known result, and in a fluid dynamical context, MacKay and Saffman
(1986) have previously considered the role of signature in bifurcations of water
waves. For infinite-dimensional systems with a continuous spectrum there is
an analogue of Krĕın’s theorem, which states among other things that insta-
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bilities must emerge from places where positive and negative continua meet,
but a discussion of this is beyond our present scope.

Signature also has implications regarding dissipative and finite-amplitude
instability. Finite-dimensional systems that are linearly stable but possess
negative energy modes are generically destabilized by the addition of dissi-
pation. This is the so-called Thompson–Tait theorem (Poincaré, 1885; Lamb,
1907; Thompson & Tait, 1888; Greene & Coppi, 1965). Linearly stable sys-
tems which have both positive and negative energy modes (in all frames of
reference) can be destabilized by the inclusion of nonlinear mode interaction
(Cherry, 1925; Davidson, 1972; Weiland & Wilhelmsson, 1977; Kueny & Mor-
rison, 1995; Morrison, 1998). Thus, we expect that equilibrium shear flow
profiles with negative-energy continuous spectra can be destabilized by the
addition of dissipation (the generalization of the Thompson–Tait theorem),
and that linearly stable flows that violate Fjørtoft’s criterion for stability may
be nonlinearly unstable.

The importance of signature leads one to ask whether or not signature is in-
variant under coordinate changes. For time-independent transformations that
involve only the dependent variables, Sylvester’s theorem (Whittaker, 1937)
guarantees that this is the case. However, for time-dependent transformations
that have an explicit time dependence, energy is not a covariant quantity and
signature can change. An important example, which is relevant here, is af-
forded by Galilean transformations to frames moving at a constant velocity in
the streamwise direction. This is a time-dependent canonical transformation
on the Lagrangian variable level.

Normally, equilibria that are equivalent up to Galilean transformations are
obtained as extremal points of the Hamiltonian plus a constant multiple of
the conserved, total momentum. In noncanonical variables this leads us to
extremize

Fu[ω] := F + uPx, (3.19)

where u is the Galilean boost velocity, and Px the total streamwise momentum,
as given in (1.6). Equation (3.19) provides us with a new Hamiltonian for linear
theory in a moving or boosted frame:

Hu
L =

1
2

∫
D

(
|∇δψ|2 +

(U − u)
U ′′ δω2

)
dy dx. (3.20)

Therefore, the second term of the integrand of (3.20), for any value of y, has a
sign that depends upon u. Although one can change the sign of an individual
mode by choosing a frame appropriately, one cannot, for general U , find a
frame in which all of the modes possess the same sign. It is because of this
and the fact that dissipation is also frame dependent, that the discussion
above regarding the significance of signature for bifurcation and stability has
meaning. Now we further discuss stability.



Hamiltonian description of shear flow 137

3.4 Rayleigh-like criteria as energy stability criteria

The Hamiltonian Hu
L of (3.20) is the physical perturbation energy in the

boosted frame. Such energy expressions are very useful for obtaining stabil-
ity criteria. If the energy is such that all perturbations increase or decrease
the total energy of the system, then the corresponding configuration is sta-
ble. This is a basic means for ascertaining stability in Hamiltonian systems,
which is sometimes called Dirichlet’s theorem, and is in fact the essence of the
energy-Casimir method of Kruskal and Oberman (1958) and Arnol’d (1965,
1966) (see also Holm et al. 1985 and Morrison 1998). In infinite-dimensional
Hamiltonian systems, a positive or negative definite form for the perturbation
energy guarantees linear (and is suggestive of nonlinear) stability.

In the current context, Dirichlet’s theorem states that linear stability is
assured by the definiteness of either HL or Hu

L. The latter expression is more
powerful for ascertaining stability because it contains u, which is an arbitrary
constant parameter that can be used to advantage. Definiteness ofHu

L for some
u implies stability in the frame boosted by u, and because stability is frame
independent this implies stability in all frames. We will use this idea to obtain
the Rayleigh and Fjørtoft criteria. (Arnol’d (1965) suggests this frame shift
idea but does not make it explicit.)

If there is no inflection point, then U ′′ has the same sign for all y ∈ [−1, 1].
Therefore, one can select u so that

(U − u)U ′′ > 0 (3.21)

throughout the flow. Since the first term of (3.20) is obviously positive, the
energy Hu

L can be made positive definite by an appropriate choice of frame.
Thus we see that Rayleigh’s criterion (the nonexistence of inflection points
implies stability) is in fact an energy stability criterion (a positive definite
energy functional implies stability). Hence, we see there is a deep physical
reason for the stability underlying the ad hoc manipulations of Rayleigh’s
criterion that were performed in Section 1.2.

When there are no inflection points there are no discrete modes, and there-
fore the coordinate change of (3.13) is well-defined and we can then introduce
into Hu

L the transformation to action-angle variables. This gives the diagonal
Hamiltonian of (3.18) with the frequency shifted, i.e. with σkνk replaced by

σkν
u
k = k(U − u) sgn(U ′′). (3.22)

From this expression it is clear that the signature is frame dependent and that
there is a frame in which all the modes have positive signature.

Fjørtoft’s sufficient condition for stability, which as we saw in Section 1.2
applies when the equilibrium profile has an inflection point, also follows di-
rectly from (3.20). This is seen by taking u to be the flow speed at y = yI .
Clearly, if U ′′/(U − UI) > 0, then the energy HUI

L is positive definite and
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we have stability. Therefore, like Rayleigh’s theorem, Fjørtoft’s condition is
simply a statement of Dirichlet’s energy theorem.

Note that when the system is stable by Fjørtoft’s condition, then we can use
the transformation to action-angle variables and write the Hamiltonian HL in
diagonal form.

Both of the energy criteria above are sufficient conditions for stability that
are based on positive definiteness of the energy. However, Dirichlet’s theorem
gives sufficient conditions for stability when the energy is either positive or
negative definite. Thus, given an equilibrium, it is natural to ask whether or
not HL is negative definite. For this to be the case the first term of (1.11)
must dominate the second. This idea is the essence of what is sometimes
called Arnol’d’s second theorem (Arnol’d 1965, 1966), which uses Poincaré’s
inequality to formally estimate the first term in comparison to the second and
to thereby show that the energy is negative definite. When the system is stable
by this criterion, we can again use the transformation to action-angle variables
and write the Hamiltonian HL in the diagonal form. The resulting diagonal
form has a negative integrand.

Now we treat one last case, which is possibly the most interesting. It is
possible to have one or more inflection points and for the system to be sta-
ble. This was discussed in Balmforth & Morrison (1999) where necessary and
sufficient conditions for stability were obtained by using the Nyquist method.
When there is more than one inflection point, there is no frame in which the
energy of (3.20) is sign definite. This is true whether or not the system is sta-
ble. However, when the system is stable, the transformation to action-angle
variables that we described in Section 3.2 exists, but the resulting Hamiltonian
of (3.18), with frequencies shifted according to (3.22), cannot be made sign
definite by a choice of u.

When the Hamiltonian is indefinite and the system is in fact unstable, or
when there exist discrete neutral modes embedded in the continuous spectrum,
then the transformation of Section 3.2 fails. The integral transforms Gk and
Ĝk are no longer well-defined inverses of each other. Thus, one should not
attempt to effect the transformation and then ascertain stability. When a
system is unstable or has embedded modes, the appropriate transformation is
obtained by adding in the discrete modes. The resulting transformation does
not lead to the normal form of (3.18), but to a different normal form, one that
is appropriate for either the unstable or embedded-mode Hamiltonian systems.
We will record this in a future paper.

4 Conclusions

In this paper we have described the shear flow problem and have reviewed
associated material that was needed for our purposes. We introduced an in-
tegral transform, a generalization of the Hilbert transform, that amounts to
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a coordinate change to variables that make the linear shear flow dynamics
trivial. We have briefly reviewed the noncanonical Hamiltonian structure of
Euler’s equation and we have used it to interpret the integral transform in
the Hamiltonian context; i.e. we showed how to use the integral transform to
obtain the mixed variable generating functional that transforms the system to
action-angle variables. We defined signature for continuum eigenmodes, which
enabled us to identify negative energy modes. The role of signature in bifur-
cation and stability theory was discussed. It was shown how the Rayleigh and
Fjørtoft criteria for stability are in essence energy criteria for stability.

One of the reasons for studying Hamiltonian systems is because of their
generality; one discovers properties for one system that turn out to be true for
a large class of systems. It is evident from what we have presented here and
from previous work on the Vlasov equation, that the subject matter of this
paper is far reaching. The techniques we have developed apply to a large class
of Hamiltonian systems that possess linear theories with continuous spectra.
There is much more we could say, and there are many future directions in which
to proceed. Below we briefly describe the content of some ongoing research.

We have used the integral transform as a numerical tool for examining
the long time behaviour of linear shear flow, and we have weakened the re-
quirements on the profiles U . Namely, the monotonicity requirement and the
requirement that profiles only support continuous spectra can be relaxed. The
level of mathematical rigor given in Morrison (2000) can be achieved for the
shear flow problem, although with greater difficulty.

The Hamiltonian interpretation presented here suggests many additional
projects, such as a rigorous discussion of Krĕın’s theorem and a theory of
adiabatic invariants for systems with the continuous spectrum. We leave these
and many other topics to possible future publications.
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Poincaré, H. 1885. Sur I’equilibre d’une masse fluide animée d’un mouvement de
rotation. Acta Math. VII, 259–380.

Rayleigh, J.W.S. 1880. On the stability, or instability, of certain fluid motions. Proc.
Lond. Math. Soc. 9, 57–70.

Rayleigh, J.W.S. 1896. Theory of Sound , Art. 369, Macmillan.

Rice, O.K. 1929. Perturbations in molecules and the theory of predissociation and
diffuse spectra. Phys. Rev. 33, 748–759.

Rosencrans, S.I. & Sattinger, D.H. 1966. On the spectrum of an operator occurring
in the theory of hydrodynamic stability. J. Math. and Phys. 45, 289–300.

Shadwick, B. 1995. On the Hamiltonian structure of the linearized Maxwell–Vlasov
system, Ph.D. thesis, The University of Texas at Austin, Austin, TX.

Sattinger, D.H. 1966. A singular eigenfunction expansion in anisotropic transport
theory. J. Math. Anal. and App. 15, 497–511.
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