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Separatrix reconnection in the standard nontwist map is described, including exact methods for determining the
reconnection threshold in parameter space. These methods are implemented numerically for the case of odd-
period orbit reconnection, where meanders (invariant tori that are not graphs) appear. Nested meander structure
is numerically demonstrated, and the idea of meander transport is discussed.

1 Introduction

Here we consider the standard nontwist map (SNM) M , as
introduced in Ref. [1]:

xn+1 = xn + a
(
1 − y2

n+1

)
,

yn+1 = yn − b sin (2πxn) , (1)

where (x, y) ∈ T × R, a ∈ (0, 1) and b ∈ (−∞,∞). This
map is area-preserving and violates the twist condition,

∂xi+1 (xi, yi)
∂yi

�= 0 ∀ (xi, yi) , (2)

along a curve in phase space, called the nonmonotone
curve.[2] Traditional studies of area-preserving maps dealt
with twist maps, for which (2) is satisfied, but more recent
research efforts have considered the nontwist case.

Nontwist maps describe many physical systems, inclu-
ding the magnetic field lines in toroidal plasma devices such
as tokamaks (see e.g. [3, 4, 5, 6, 7]) and stellarators[8, 9].
Recently, it has been shown[10] that (2) is violated gene-
rically in area-preserving maps that have a tripling bifur-
cation of an elliptic fixed point. Apart from their physical
importance, nontwist maps are of mathematical interest be-
cause important theorems concerning area-preserving maps
assume the twist condition, e.g., the KAM and Poincare-
Birkhoff theorems. The SNM can serve as a model for the
development of new proofs. Presently, only a few mathema-
tical results exist for nontwist maps [11, 12, 2, 13].

Nontwist maps of the annulus exhibit interesting bifur-
cation phenomena: periodic orbit collision and separatrix
reconnection. The former, which applies specifically to col-
lision of periodic orbits of the same period, such as the so-
called up and down periodic orbits that occur in the SNM,
can be used to calculate torus destruction,[14] while the lat-
ter is a global bifurcation that changes the phase space topo-
logy in the vicinity of a central barrier that occurs in these
maps. At the threshold of reconnection, the invariant mani-
folds of two or more distinct hyperbolic orbits with the same

rotation number connect. Various aspects of this bifurcation
have been studied over the years. Some early references are
Refs. [14, 15, 16]. (For a more complete review of past work
see Ref. [17].)

Key to the analytical and numerical exploration of the
SNM is the map’s invariance under symmetries.1 Of par-
ticular significance are indicator points,[18] fixed points of
some of the symmetries of the SNM, given by

z
(0,1)
1 =

(
∓1

4
,∓ b

2

)
, and z

(0,1)
2 =

(
a

2
∓ 1

4
, 0

)
.

(3)
The importance of these points was first recognized by Shi-
nohara and Aizawa. In Ref. [19], they showed that a shear-
less invariant torus crosses the x-axis at the two points z0

2

and z1
2. This led them to devise the following criterion to

determine the approximate location in the (a, b)-parameter
space of the breakup of shearless invariant tori: For a given
(a, b) value, one of these points, e.g. z0

2, is iterated many
times. If the y value stays below a threshold, it is assumed
that the shearless curve exists and the point is plotted. The
boundary of the resulting diagram (see Fig. 7) displays a
fractal-like structure. The analysis of Refs. [20, 14, 19] in-
dicates that the highest peaks correspond to the break-up of
shearless invariant tori with noble winding numbers. (See
Refs. [20, 21] for discussion.)

In Ref. [18], Shinohara and Aizawa obtained the four
points of (3) and used them to propose exact expressions for
the reconnection threshold of even-period hyperbolic orbits.
These indicator points were independently re-discovered
by Petrisor[2] in the analysis of the reversing symmetry
group[22] of nontwist standard-like area-preserving maps.

A very different exact criterion for the reconnection th-
reshold was also proposed by Petrisor in Ref. [23]. For a
class of standard-like nontwist maps it was shown that the
hyperbolic points belonging to periodic orbits of the same
period are at the reconnection threshold if their actions coin-
cide. As noted in Ref. [23], for odd-period hyperbolic orbits
in the SNM this criterion reduces to the action being zero at
the point of reconnection.

1For a review of symmetry properties of the SNM and the definition of symmetry lines see Ref. [20].
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Figure 1. Depiction of periodic orbit collision for even-period orbits at a = 0.27. The periodic orbit collision of the hyperbolic orbits on s1

[Fig.2] is interpreted as the reconnection of the up and down island chains. The winding number of the chains shown here is 1/4.

A goal of the present paper is to bring together these
two exact criteria for the reconnection threshold and to im-
plement them numerically. We aim to deepen the unders-
tanding of the behavior of the SNM in different regions
in (a, b)-parameter space by extending the discussions of
Refs. [20, 21, 14, 19, 18].

The paper is organized as follows: In Sec. 2, we des-
cribe the reconnection of hyperbolic orbits of even period,
applying the method of Ref. [18] to Eq. (1). A description
of the reconnection of hyperbolic orbits with odd period is
presented in Sec. 3, where we also numerically implement
the exact criterion of Ref. [23]. In addition, we discuss the
occurrence of meanders and introduce the notion of mean-
der transport. Section IV contains our conclusions and some
directions of future research.

2 Reconnection of even-period perio-
dic orbits

The reconnection process for orbits with even-period win-
ding number, for which the up and down orbits on a sym-
metry line have the same stability type, is illustrated by the
example of 1/4-orbits. As the perturbation is increased (by
increasing b at a fixed value of a), the hyperbolic orbits on
the s3 and s4 symmetry lines2 collide [Fig. 2]. The phase

space topology after the collision of hyperbolic orbits shows
the “dipoles” of elliptic orbits [Fig. 2]. As the perturbation is
increased further, the elliptic orbits collide as well, as shown
in Fig. 2. No 1/4-period orbits exist for larger values of b.
This process takes place for any two chains of periodic or-
bits which have the same stability type on a symmetry line.
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Figure 2. Comparison of the numerical bifurcation curves (b =
Φ(a)) with the analytical expressions obtained using indicator
points.

2See [14] for discussion of symmetry lines.
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The threshold for reconnection of even-period orbits,
which is the same as the point of collision of their hy-
perbolic points, can be obtained by using the numerical
observation[18] that at the point of bifurcation two of the
indicator points belong to the periodic orbit.3 This implies
that M2nz

(0,1)
i = z

(0,1)
i for either i = 1 or i = 2, where

z
(0,1)
i are the indicator points given in Eq. (3).

The symmetries of the map further imply that the in-
dicator points map onto each other after n iterations, i.e.
Mnz

(0,1)
i = z

(1,0)
i . By solving these two equations for

the two unknowns (a, b), we can obtain an exact expres-
sion for the bifurcation threshold. Note that the result obtai-
ned using z

(0,1)
1 is the reconnection threshold [b = Ψ(a)],

while that using z
(0,1)
1 is the collision threshold [b = Φ(a)].

Fig. 2 shows that the curves obtained analytically using this
method compare very well with the numerically obtained
bifurcation curves (where up and down periodic orbits have
collided) using the methods of Ref. [20].

3 Reconnection of odd-period perio-
dic orbits

The reconnection scenario for the odd-period orbits is very
different because the stability types of the up and down pe-
riodic orbits on a symmetry line are different [Fig. 3]. In
this case, as the chains approach each other with increasing
perturbation, the hyperbolic manifolds of the up and down
orbits connect, as shown in Fig. 3. Further, increase of the
perturbation leaves each hyperbolic orbit with a homocli-
nic and a heteroclinic manifold. In the region between the
two chains, new periodic orbits and non-KAM tori appear
[Fig. 3], i.e., orbits and tori that do not exist at zero perturba-
tion. These tori are not graphs over the x-axis and have been
called meanders or meandering curves.[24, 13] Such invari-
ant tori can occur only in nontwist maps (to be more precise,
in the nontwist region of the phase space). It is known that
any invariant torus for a twist map must be a graph over x.

As the perturbation is increased further, the periodic or-
bits collide [Fig. 3], and are survived by the meandering tori.
This reconnection process, in a related plasma physics con-
text, was conjectured by Stix in [6, page 523]. He stated
(emphasis and figure references are ours):

Looking now at the nonlinear growth of the
double-tearing mode, Fig. 3 represent bold
guesses at the possible evolution of the mag-
netic surfaces for this instability. . . If such re-
connections were to take place in the double-
tearing mode, it would be accompanied by a
rapid redistribution of the current and electron
heat along the new convoluted and extended
magnetic surfaces.

An exact method for determining the threshold of re-
connection for odd-period orbits was presented in Ref. [23].
This method uses the primitive function S(x, y), which is a

generalization of the generating function of canonical trans-
formations (see, e.g. Ref.[25]). For the SNM, it is given by

S(x, y) = −2a

3
[y − b sin(2πx)]3 +

b

2π
cos(2πx) . (4)

The action of a periodic orbit {z1, z2, . . . , zn} is defined by

An(z1,z2, . . . ,zn) =
n∑

i=1

S(zi) . (5)

In the case of the SNM, Petrisor[23] states that at the re-
connection threshold for an odd-period hyperbolic orbit, the
action of the orbit is zero. (This result is valid for any orbit
for which the up and down orbits on a symmetry line have
opposite symmetry types, which is the case for odd-period
orbits in maps with quadratic twist.)

We have implemented this idea numerically. The main
idea is to conduct a root search for the zeros of the action,
considered as a function of the perturbation parameter b, for
any given value of a. By this method, we have obtained
reconnection curves b = Ψ(a) for a few low-period orbits.
These are shown in Fig. 7.

3.1 Meandering invariant tori

In this subsection, we will focus on two aspects of mean-
dering tori: their implications for transport and their nested
structure.

Meander transport and global meanders The reconnec-
tion process outlined for odd-period orbits also takes place
for the fixed points of the SNM. The only difference is that
the location of the fixed points with winding number 0/1 is
independent of the parameters (a, b), i.e., for all a > 0 the
fixed points are located at (x, y) = (0,±1) and (1/2,±1).
Thus even though the manifolds of the hyperbolic fixed
points reconnect, the points do not collide with increased
perturbation. This implies that for all b > Ψ0/1(a), there
are meandering tori. These we call “global meanders” be-
cause they change the topology of the phase space globally
and not just locally as is the case for meanders around other
periodic orbits. An example of such meanders is shown in
Fig. 4.

We also note that the global meanders can traverse
large regions in phase space. For example, for (a, b) =
(0.001, 2.1), Fig. 4 shows meanders that range from y ≈
−13 to y ≈ 5. Their appearance can be understood by no-
ting that the map is “integrable” for any nonzero value of b
if a = 0. In this integrable case, there are no invariant tori
that encircle the cylinder. However, the orbit of any point
(x0, y0) is parallel to y-axis:

yn = y0 + nb sin(2πx0) , xn = x0 . (6)

The orbits near x = 0 and x = 1/2 undergo small displace-
ments in y under iteration, while those close to x = ±1/4
are displaced in y in increments of the order of ∼ b. When

3As shown in Ref. [18] this is not the case for odd-period orbits.
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Figure 3. Reconnection of hyperbolic manifolds of up and down periodic orbits of odd period. The winding number for the chain shown
here is 1/3 and a = 0.345. Meandering curves, shown in red, appear after reconnection. The orbits no longer exist after their collision
[Fig. 3].
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Figure 4. Meandering curves after reconnection of the fixed point
with winding number 0/1. Note the large range in y and the exis-
tence of smooth tori even for the large perturbation b = 2.1 .

a small “perturbation” a �= 0 is added, the orbits are defor-
med and the fixed points at (0,±1) and (1/2,±1) appear.
The orbits still cover a large range in y, especially close to
y = 0, x = ±1/4, giving rise to phase space structures like
those shown in Fig. 4. In the presence of such global mean-
dering tori, transport in phase space can occur along these

tori even when the tori are not broken. The implications of
such transport scenarios in applications such as the structure
of magnetic field lines are being investigated.

Nested meandering tori Another important aspect of me-
anders is their winding number. Fig. 3a-b shows a plot of the
winding number as a function of the y-coordinate along the
s1 symmetry line at fixed parameter values, and Fig. 3a-b
shows the corresponding phase space plots. The winding
number increases monotonically until the hyperbolic point
is reached, and then stays constant at 1/3 throughout the is-
land. It starts decreasing in the meandering region, attai-
ning a minimum at the shearless curve, and then increases
again until the upper separatrix with winding number 1/3
is reached. The latter cannot be seen in the plot because of
insufficient resolution.

The meandering region itself has periodic orbits that can
undergo reconnection and collision. Thus, if the perturba-
tion is increased so that the minimum in Fig. 3a-b reaches a
rational number, one can see the reconnection process occur
locally inside the meandering region. A local maximum at
the bottom of the minimum of the winding number plot will
be an indicator of this “second order” reconnection, giving



1704 Brazilian Journal of Physics, vol. 34, no. 4, December, 2004

rise to “nested meanders.” This is illustrated in Figs.3-a, 3-b
for the reconnection of 18/19-period orbits inside the mean-
dering region of the 1/1-periodic orbit.

Thus we can imagine that the reconnection of periodic
orbits inside this second order meandering region will lead
to third order meanders and so on.[13] If this process con-
tinues, then at certain “critical” parameter values bc, the li-
miting curve will have structure at all scales even though it
is not at the point of breakup. Even apart from the structure
of such a higher order meander, it is still an open question
whether the last curve to break is a shearless meander or a
non-meandering curve. As far as we know, there have been
no studies of breakup of meandering curves using Greene’s
residue criterion.
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Figure 5a. Meandering curves after reconnection of 1/3-period or-
bit. The shearless curve is shown in purple.
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Figure 6a. Nested meanders around the 18/19 orbit inside the me-
andering region of 1/1 orbit.
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Figure 6b. The local maximum at the bottom of the local mini-
mum, showing the presence of nested meanders. The “minimum”
on the right should be at 18/19, the same value as the plateau.

4 Conclusion

Another important use of the indicator points is to obtain a
rough estimate of the threshold parameter values for breakup
of the shearless torus.[18] This use is based on the observa-
tion that the indicator points belong to the shearless torus.
For a given (a, b), the indicator points are iterated many ti-
mes (we used 106). If the y value stays below a threshold
(we used |y| < 20), it is assumed that the shearless curve
exists and the point is plotted. Fig. 7 presents the results of
using this procedure for the SNM.

This figure also depicts a few low-period bifurcation and
reconnection curves. Note that this criterion provides an up-
per bound on the critical value for breakup because if the
indicator point does not stay below the threshold, the she-
arless curve definitely has broken, but not vice-versa. The
only exceptions are global meanders which reach past the
bounds in y, but this happens only for large values of b that
are not shown in the figure.

There are a few important features to be noted about
Fig. 7.
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curves of low-period orbits and the critical points (marked by ∗) found using Greene’s residue criterion.

• The a = 0.5 line is the bifurcation curve of 1/2-
orbits on s1. The indicator point (a/2 + 1/4, 0) =
(0.5, 0) is a period-2 orbit and thus never crosses the
y-threshold. Therefore the criterion fails for a = 0.5 .

• For (a, b) values in the region left of the 0/1 recon-
nection curve Ψ0/1(a) (i.e. the region a ≈ 0), the
map has global meanders. This region is transformed
into the region near the 1/1 reconnection curve (i.e.
a ≈ 1) under the reparametrization a → a + 1 and
b → b

√
a/(a + 1). Thus it might be easier to study

the breakup of global meanders by studying the re-
gion in parameter space between a = 1 and the 1/1-
reconnection curve.

• The plot generally shows a “dip” in the region
between the reconnection and bifurcation curves.
These are related to the presence of meanders, and
further studies of breakup of meanders can reveal
more clearly the structure in these “dips.”[17]
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