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1. Introduction
In this paper we consider the standard nontwist map (SNM):[3]

xn+1 = xn + a
(
1− y2

n+1

)
,

yn+1 = yn − b sin (2πxn) ,

where (x, y) ∈ T × R, a ∈ (0, 1.5) and b ∈ (−∞,∞). This is an area-preserving
map that violates the twist condition along a curve in phase space. The SNM is
reversible, i.e., it can be decomposed into involutions. The sets of fixed points of
the involution maps are one-dimensional sets, called symmetry lines of the map. A
major difference between the SNM and, e.g., the standard twist map is that there
are two periodic orbits (“up” and “down”), if they exist, with the same winding
number on each symmetry line.

Of particular interest is the so-called shearless invariant curve, which is invariant
under the action of the reversing symmetry group of the SNM (see, e.g., Ref. 6),
and exhibits strong resilience to perturbation. Previously, details of the break-up
for several tori and their interpretation in terms of renormalization group operators
have been studied.[1,2,4,5] Here our goal is a deeper understanding of the behaviour
of the map in different regions of (a, b)-parameter space.

Nontwist maps are used to describe many physical systems, including the mag-
netic field lines in toroidal plasma devices such as reversed-shear tokamaks and
stellarators (see Refs. 1 and 4 for bibliography). They are also of mathematical in-
terest because, e.g., the KAM theorem and Aubry-Mather theory assume the twist
condition.

Nontwist maps of the annulus exhibit interesting bifurcation phenomena: peri-
odic orbit collision and separatrix reconnection. The latter is a global bifurcation
that changes the phase space topology in the nontwist region. At the threshold of
reconnection, the invariant manifolds of two or more distinct hyperbolic orbits with
the same rotation number connect. Various aspects of this bifurcation have been
studied over the years. For a much more exhaustive list of references see Ref. 13.

Here we highlight only a few recent developments: the occurence of meanders
in the even-period orbit reconnection scenario[9] and some thoughts on shearless
meanders in the odd-period reconnection. These ideas are explored in more detail
in Refs. 12 and 13.

Key to the analytical and numerical exploration of the standard nontwist map
is the map’s invariance under symmetries. Of particular significance are the four
indicator points,[9] fixed points of some of the symmetries of the SNM that always
lie on the shearless curve. Shinohara and Aizawa devised a criterion to determine
the approximate location in the (a, b)-parameter space of the breakup of shearless



invariant tori (see Ref. 8 for details). The boundary of the resulting break-up di-
agram [see Fig. 1(b)] displays a fractal-like structure. The analysis of Refs. 1,2,4,
and 8 indicates that the highest peaks correspond to the break-up of shearless in-
variant tori with noble winding numbers. Subsequently, Shinohara and Aizawa
proposed exact expressions, the indicator curves, for the bifurcation threshold of
even-period hyperbolic orbits.[9] Indicator points were independently re-discovered
by Petrisor[6] in the analysis of the reversing symmetry group of nontwist standard-
like area-preserving maps.

2. Reconnection scenarios of even-period orbits
For orbits with even-period winding number, the up and down orbits on a symme-

try line have the same stability type. The standard reconnection scenario, collision
of hyperbolic points and formation of “dipoles” of elliptic points at the reconnection
threshold, has been described in, e.g., Ref. 4.

In certain regions of (a, b)-parameter space the reconnection scenario changes.
Phase space portraits [see, e.g., Fig. 1(a)] show the appearance of meanders, invariant
tori that are not graphs over the x-axis, which are usually associated in the SNM
with odd-period reconnection.[10,11]

Understanding the change in scenario requires the study of the indicator curves
and the so-called bifurcation curves along the symmetry lines s1 and s3, first defined
in the context of invariant torus break-up.[4] The m/n-bifurcation curve is the set
of (a, b) values for which the m/n up and down periodic orbits are at the point of
collision.

For most regions of (a, b) space the indicator curves and bifurcations curves
(obtained using numerical methods described in Ref. 1) coincide. In regions close to
bifurcation curves of odd-period orbits, bifurcation curves and indicator curves of
even-period orbits diverge and even cross each other, as seen, e.g., in Fig. 1(b) for
the 7/8-period orbit.

This change is due to a tangent-bifurcation along s3 at the shearless point, which
results in new pair of elliptic orbits of period 7/8 along s3, together with a pair of
hyperbolic points that move away from the symmetry axis. (For more details see
Ref. 13.)

3. Global meanders, nested meanders, and meander transport
For the odd-period orbits the up and down periodic orbits on a symmetry line

are of opposite stability type. As the orbits approach each other with increasing
perturbation, the hyperbolic manifolds of the up and down orbits connect, leaving
each hyperbolic orbit with a homoclinic and a heteroclinic manifold connection. In
the region between the two chains, new periodic orbits and meanders appear, one
of them shearless. Phase space plots of this scenario can be found, e.g., in Ref. 4.
In some regions of parameter space manifold reconnection leads to global transport,
and no meanders are created. (For details see Ref. 13.)

As a particular case consider the fixed points of the SNM, since their location is
independent of (a, b). Thus even though the manifolds of the hyperbolic fixed points
reconnect, the orbits never collide. The resulting meanders are dubbed “global me-
anders” because they can traverse large regions of phase space. Transport in phase
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(a) Meanders during reconnec-
tion of 7/8 periodic orbits at
(a, b) = (0.926, 0.2297).
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(b) Boundary for the breakup of shear-
less curves (dots), the indicator curves
(ic1 and ic3) and bifurcation curves (bc1
and bc3) for 5/6 periodic orbits.

Figure 1:

space can occur along these tori even when they are not broken. The implications
of such transport scenarios in applications such as the structure of magnetic field
lines are being investigated (see Ref. 12 for more details and plots).

The winding number of meanders is less than that of the reconnecting orbits
bordering the meandering region. Consequently the winding number profile attains
a minimum, which corresponds to the shearless meander if the minimum winding
number is irrational. If the perturbation is increased so that the minimum reaches
a rational number, one can see the reconnection process occur locally inside the
meandering region. A local maximum at the bottom of the minimum of the wind-
ing number plot indicates this “second order” reconnection, giving rise to “nested
meanders”. This is illustrated in Figs. 2(a)-2(b).

Thus we can imagine that the reconnection of periodic orbits inside this second
order meandering region will lead to third order meanders.[10] If this process con-
tinues, then at certain “critical” parameter values bc, the limiting curve will have
structure at all scales even though it is not at the point of breakup. Even apart from
the structure of such a higher order meander, it is still an open question whether
the last curve to break is a shearless meander or a non-meandering curve.[6] An
investigation of the breakup of meandering curves using Greene’s residue criterion
is under way.
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(a) Nested meanders around the 18/19
orbit inside the meandering region of 1/1
orbit.
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(b) The local maximum at the bottom of
the local minimum, showing the presence
of nested meanders. The “minimum” on
the right should be at 18/19, the same
value as the plateau.
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