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New global periodic orbit collision and separatrix reconnection scenarios exhibited by the standard
nontwist map are described in detail, including exact methods for determining reconnection thresh-
olds, methods that are implemented numerically. Results are compared to a parameter space
breakup diagram for shearless invariant curves. The existence of meanders, invariant tori that are
not graphs, is demonstrated numerically forboth odd and even period reconnection for certain
regions in parameter space. Implications for transport are discussed. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1915960g

In recent years, area-preserving maps that locally violate
the twist condition in phase space have been studied in
physics and mathematics. Thesenontwist maps show up
in a variety of physical models, e.g., in magnetic field line
models for reversed magnetic shear tokamaks. An impor-
tant problem is the determination and understanding of
the transition to global chaos (global transport) in these
models. Nontwist maps exhibit several different mecha-
nisms for this transition: the breakup of invariant tori
and separatrix reconnections. The latter may or may not
lead to global transport depending on the region of pa-
rameter space. In this paper we conduct a detailed study
of newly discovered reconnection scenarios in thestan-
dard nontwist map, investigating their location in param-
eter space and their impact on global transport.

I. INTRODUCTION

We consider thestandard nontwist mapsSNMd M as
introduced in Ref. 1:

xn+1 = xn + as1 − yn+1
2 d,

yn+1 = yn − b sins2pxnd, s1d

where sx,ydPT3R are phase space coordinates anda,b
PR parameters. This map is area preserving and violates the
twist condition;

]xi+1sxi,yid
]yi

Þ 0 ∀ sxi,yid, s2d

along a curve in phase space, called thenonmonotone curve.2

Some basic concepts used throughout the paper are reviewed
in Appendix A.

Nontwist maps are used to describe many physical sys-
tems, e.g., magnetic field lines in tokamaksssee, e.g., Refs.
3–9d and stellarators10,11 splasma physicsd, planetary orbits12

and stellar pulsations13 sastronomyd; traveling waves,1,14 co-
herent structures, and self-consistent transport15 sfluid dy-
namicsd. Additional references can be found in Refs. 16 and
17. Apart from their physical importance, nontwist maps are

of mathematical interest because important theorems con-
cerning area-preserving maps assume the twist condition,
e.g., the KAM theorem and Aubry–Mather theory. Up to now
only few mathematical results have been known.18–22 Re-
cently, it has been shown23,24 that the twist condition is vio-
lated generically in area-preserving maps that have a tripling
bifurcation of an elliptic fixed point. For studies of nontwist
Hamiltonian flows, we refer the interested reader to Ref. 25
and references therein.

Although the SNM is not generic because of its symme-
tries ssee Appendix Bd, it captures the essential features of
nontwist systems with a local, approximately quadratic ex-
tremum of the winding number profile.

Nontwist maps of the annulus exhibit interesting bifur-
cation phenomena: periodic orbit collision and separatrix re-
connection. The former, which applies specifically to colli-
sions of periodic orbits of the same period, such as the so-
called up and down periodic orbits that occur in the SNM,
can be used to calculate torus destruction.17 The latter is a
global bifurcation when the invariant manifolds of two or
more distinct hyperbolic orbits with the same rotation num-
ber connect, leading to a change in the phase space topology
in the nontwist region. We briefly review previous studies of
reconnection in nontwist systems.

Howard and Hohs26 defined a quadratic nontwist map
closely related to Eq.s1d and studied numerically the recon-
nection of low-order resonances exhibiting homoclinic and
vortex-like structures. Defining an average Hamiltonian they
predicted the reconnection threshold for period-one and
period-two fixed points. Howard and Humpherys extended
the study to cubic and quartic nontwist maps.27 These recon-
nection scenarios had been conjectured by Stix8 in the con-
text of the evolution of magnetic surfaces in the nonlinear
double-tearing instability, and were seen by Gerasimovet
al.28 in a two-dimensional model of the beam–beam interac-
tion in a storage ring.

The first systematic study of reconnection was done by
van der Weeleet al.24,29 in the context of area-preserving
maps with a quadratic extremum. As far as we know the
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terminology “nontwist” and “meanders” originates from
there.

Del-Castillo-Negreteet al.17 devised an approximate cri-
terion for the reconnection threshold of higher-order reso-
nances based on matching the slopes of the unstable mani-
folds of the reconnecting hyperbolic orbits.

Continuing the work of Egydio de Carvalho and
Almeida,30 Voyatzis and Ichtiaroglou31 studied reconnection
phenomena in nontwist Hamiltonian systems under inte-
grable perturbation with cubic winding number profiles. Ap-
plying Melnikov’s method, they showed the transverse inter-
section of manifolds for arbitrarily small nonintegrable
perturbations for one reconnection scenario when the wind-
ing number has a local extremum.32

The influence of manifold reconnection on diffusion was
studied in the region of strong chaos by Corsoet al. in a
series of papers.33–36

A very different criterion for the reconnection threshold
was proposed by Petrisor in Refs. 7 and 37: If two hyper-
bolic orbits have a heteroclinic connection, their actions co-
incide. As noted in Ref. 37, for odd-period hyperbolic orbits
in the SNM this criterion reduces to the action being zero at
the point of reconnection. This criterion was implemented
numerically in Ref. 38 to estimate some reconnection thresh-
olds for odd-period orbits in the SNM. It has been noted that
the above result about the equality of actions of reconnecting
hyperbolic orbits is only approximately true in the near-
integrable limit.39

For completeness, we mention a few related studies: re-
connection phenomena and transition to chaos in the Harper
map,40,41degenerate resonances in Hamiltonian systems with
3/2 degrees of freedom,42 and zero dispersion resonance in
the study of underdamped oscillators.43

Key to the analytical and numerical exploration of the
standard nontwist map is the map’s invariance under symme-
tries, reviewed in Appendix B. Of particular significance are
the indicator points,44 fixed points of some of the symmetries
of the SNM, whose importance was first recognized by Shi-
nohara and Aizawa. These points were independently redis-
covered by Petrisor2 in the analysis of the reversing symme-
try group45 of nontwist standard-like area-preserving maps.
In Ref. 46, it was shown that a shearless invariant torus
crosses thex axis at two points. This led the authors to devise
a criterion to determine the approximate location in thesa,bd
parameter space of the breakup of shearless invariant tori for
many winding numbersssee Sec. II Ed.

Subsequently, based on numerical observations, Shino-
hara and Aizawa44 used indicator points to propose exact
expressions for the collision threshold of even-period orbits
and a method to determine numerically the reconnection
threshold for odd-period hyperbolic orbits.

The goal of the present paper is to describe
reconnection–collision phenomena in detail inall regions of
sa,bd parameter space for the standard nontwist map. The
details of the two main scenariossodd period and even pe-
riodd depend crucially on thesa,bd region, and have not been
discussed exhaustively up to now. The main tool we use here
is the numerical implementation of two criteria for collision
thresholds: the analytic one of Ref. 44 and the numerical one

of Ref. 17. The resulting curves are compared with thesa,bd
space breakup diagramssee Sec. II Ed, produced by a modi-
fied version of Refs. 16 and 46. Early results of this investi-
gation were reported in Ref. 38, and some of them will be
elaborated upon below for completeness.

The paper is organized as follows. We review some basic
concepts of nontwist systems and the SNM in Sec. II. Some
novel reconnection and collision scenarios for orbits of even
and odd periods are described in Secs. III A and III B, re-
spectively, applying and extending methods from Refs. 17
and 44. The results are discussed in the context of the
breakup diagram in Sec. IV. In Sec. V we give our conclu-
sions and indicate some directions of future research. The
appendices contain basic definitions and a brief summary of
symmetry properties of the SNM.

II. REVIEW OF NONTWIST MAPS

In this section, we review some fundamental concepts
that are required for further explorations of the SNM. Figure
1 shows a typical phase space plot, along with a plot of
winding numberv versusy shenceforth called thewinding
number profiled for the central section of they axis.

FIG. 1. Example of the phase space for standard nontwist mapstopd and
corresponding winding number profile along they axis sbottomd at a
=0.615, b=0.4. The symmetry lines, nonmonotone curveC, G-invariant
curvegS, and indicator points are displayed.
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The phase space of the SNM consists of two twist re-
gions, “above” and “below” the center, i.e., regions in which
Eq. s2d is satisfied. Since the twist condition is violated along
the nonmonotone curveC given byy=b sins2pxd, only orbits
with points falling onC, referred to asnonmonotoneorbits
by Petrisor,2 and orbits with points on both sides ofC, called
pseudomonotone, are affected by the nontwist property. Note
that for anybÞ0 the curveC is not an invariant torus.

Like the phase space plot, the winding number profile in
the outer regions looks the same as that of a twist map,
showing, e.g., the familiar plateaus associated with islands
around periodic orbitsshere orbits with winding numbers
3/5, 7/12, and 4/7d. The only distinctly nontwist effect,
aside from the existence of the overall maximumshere at
3/5d and of multiple periodic orbits of winding numbers less
than the maximum, is the valley below the 3/5 plateau,
which gives rise to a variety of phenomena discussed in Sec.
III.

A. Reversing symmetry group and shearless curve

When the winding number profile has a local extremum
at an irrational value ofv, the corresponding invariant torus
is calledshearless. As discussed by Petrisor,2 the SNM has at
most one homotopically nontrivial shearless invariant torus
gS that is also invariant under the reversing symmetry group
G sreviewed in Appendix Bd. When it exists,gS also contains
the indicator points

z0
s±d = S±

1

4
, ±

b

2
D, and z1

s±d = Sa

2
±

1

4
,0D , s3d

and all their iterates, as described in Refs. 2 and 44. As we
will discuss in Sec. III in some regions of parameter space,
there exist several shearless tori, but only one of them isG
invariant.

The significance of a shearless torus is that it acts as a
barrier to transport, whereas the nonmonotone curveC does
not, except forb=0 when C coincides withgs. Figure 1
shows the nonmonotone curve and the shearless torus, along
with symmetry lines and indicator points.

The standard nontwist map is nongeneric because it is
time-reversal symmetric as well as invariant under a symme-
try, as reviewed in Appendix B. Nevertheless, most of the
phase space phenomena described in this paper are also ob-
served in arbitrary nontwist systems, even though the exact
definitions of many of the concepts introduced to study them
cannot be generalized to these systems.

B. Periodic orbit collision and standard separatrix
reconnection

As mentioned earlier, one consequence of the violation
of the twist condition is that the SNM has more than one
orbit seither invariant tori or chains of periodic orbitsd of the
same winding number. These orbits can collide and annihi-
late at certain parameter values. The collision of periodic
orbits involves another purely nontwist phenomenon, namely
the reconnection of the invariant manifolds of the corre-
sponding hyperbolic orbits. These reconnection–collision se-
quences in the SNM are distinctly different for orbits of even
and odd periods. Here we give a brief account of the simplest
version of both sequences, which we will refer to as the
standard scenarios.29 We show phase space plots and wind-
ing number profiles for several steps in these sequences. The
description of more intricate reconnection–collision sce-
narios appears in Secs. III A and III B. Upon changing the
parameter values of the SNM we see the following se-
quences:

sid For orbits with even period, i.e., with the same sta-
bility type for both the up and down orbits on a symmetry
line fFig. 2sadg: collision of the hyperbolic orbits which is
also the threshold for reconnectionfFig. 2sbdg; the “dipole
topology” in which the hyperbolic orbits have moved off the
symmetry linesfFig. 2scdg; the collision of elliptic orbits that
coincides with the collision of the nonsymmetric hyperbolic
orbits fFig. 2sddg leading to annihilation of these periodic
orbits fFig. 2sedg. The winding number profile shows a maxi-
mum that is greater than, equal to, and less than the winding
number of the periodic orbit before, during, and after this
process, respectively.

sii d For orbits with odd period, i.e., with opposite stabil-
ity type for the up and down orbits on a symmetry linefFig.
3sadg: reconnection of hyperbolic manifolds of up and down
orbits fFig. 3sbdg; appearance of non-KAM meandering or-
bits selaborated on in Sec. II Dd, homoclinic separatrices, and
dimerized chainsfFig. 3scdg; hyperbolic–elliptic collision
fFig. 3sddg leading to annihilation of these periodic orbits
fFig. 3sedg. As above, the winding number profile shows a
global maximum that is greater than, equal to, and less than
the winding number of the periodic orbit before, during, and
after this process, respectively. But in addition, there is a
local minimum—associated with the appearance of the me-
andering orbits—which persists even after the collisionssee
Sec. II Dd.

FIG. 2. The standard scenario of even-
period reconnection/collision se-
quencessupper rowy vs xd and wind-
ing number profiles along thes1 ands3

symmetry linesslower row v alongsi

vs yd.
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C. Bifurcation and indicator curves

The parameter values for the threshold of collision of
periodic orbits with a fixed winding number are numerically
observed to lie on a smooth curve insa,bd parameter space,
called thebifurcation curve, which was first defined in Ref.
17.

The m/n bifurcation curveb=Fm/n,isad is the set of
sa,bd values for which them/n up and down periodic orbits
on the symmetry linesi ssee Appendix Bd are at the point of
collision. sFor clarity, the figures in this paper denote these
curves by “bc1,” “bc2” etc. for symmetry liness1, s2, etc.d
The main property of this curve is that forsa,bd values be-
low b=Fm/n,isad, ther /s periodic orbits, withr /s,m/n, ex-
ist. Thus,m/n is the maximum winding number for param-
eter values along them/n bifurcation curve.

For n odd, bifurcation curves alongs1–s4 coincide in the
SNM because of the map’s high degree of symmetry. Forn
even, bifurcation curves alongs1 ands2 are separate from the
ones alongs3 ands4 for any bÞ0. Shinohara and Aizawa44

used the numerical observation that at the point of hyperbolic
collision fFig. 2sbdg for even-period orbitssbut not for the
odd-period cased, two of the indicator pointsbelong to the
hyperbolic periodic orbit. This implies thatsfor period 2nd

M2nzj
s±d = zj

s±d s4d

for either j =0 or j =1, wherezj
s±d are given in Eq.s3d. The

symmetries of the map further imply that the indicator points
map onto each other aftern iterations, i.e.,

Mnzj
s±d = zj

s7d. s5d

By solving these equations for the two unknownssa,bd, we
can obtain exact expressions for the bifurcation thresholds.
Some of the resulting curves for low-period orbits are given
in Table I. They are related to the ones given in Ref. 44 by a
simple transformation.

We will see later that when more than two chains of
periodic orbits exist, the collision threshold for some of
them, but not for the others, is given by the above criterion.

Hence we will find it useful to introduce the notion ofindi-
cator curves b=Cm/nsad defined by Eq.s4d for Eq. s5dg.
When only two chains ofm/n orbits exist, eitherFm/n,1 or
Fm/n,3 coincides withCm/n. Hence we label indicator curves
by symmetry lines, e.g.,Cm/n,1. sWe will denote these curves
by “ic1” and “ic3” in the figures for clarity.d

Remark 1. Shinohara and Aizawa also proposed a nu-
merical criterion to find the odd-period reconnection thresh-
old. They discovered numerically that at the threshold suc-
cessive iterates of indicator points approach the same
hyperbolic periodic point of the reconnecting chains. For de-
tails see Ref. 44.

D. Meandering orbits

Another characteristic of nontwist maps is the occur-
rence ofmeandering orbits, which are readily observed in
the standard reconnection–collision scenario for odd-period
orbits, but not in the one for even-period orbits.sFor non-
standard even-period reconnection–collision scenarios in
which meanders occur, see Sec. III Ad As seen in Fig. 3scd
sand also in Fig. 1d, in the region surroundinggS, confined by
two dimerized chains, new periodic orbits and non-KAM tori
appear, i.e., orbits and tori that did not exist at zero pertur-
bation sb=0d. These tori are not graphs over thex axis and
have been calledmeandersor meandering curves.22,24 Such
invariant tori can occur only in nontwist maps because any
invariant torus for a twist map must be a graph overx.

It is observed numerically that in the meandering region
the winding numbers of the meandering orbits are less than
the winding number of the reconnecting periodic orbits. Con-
versely, however, a “valley” in the winding number profile
does not imply the existence of meanders as seen, e.g., in
Fig. 3sed. The existence of the local minimum and the valley
leads to four or more chains of periodic orbits for certain
winding numbers. In Secs. III A and III B we will discuss the
reconnection and bifurcation phenomena in this scenario,
which we call thenonstandard scenario.

FIG. 3. The standard scenario of odd-
period reconnection/collision se-
quencessupper rowy vs xd and wind-
ing number profiles along thes1 ands3

symmetry linesslower row v alongsi

vs yd.

TABLE I. Some exact expressions for indicator curves for even-period orbits.

Elliptic collision Hyperbolic reconnection

v= 1/2 a= 1
2 b2=4s1−1/2ad

v= 1/4 b2= 2/ cos2sapd s1−1/4ad b2=4s1−1/4ad
v= 1/6 b2= 3/2 cos2sapd s1−1/6ad b2=s1−1/6ad / s2+h1+2 cosf2pas1−b2/4dgjd
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E. Breakup diagram

Since the shearless curvegS, whenever it exists, poses a
barrier to transport between the two twist regions, studying
its breakup is of considerable practical interest. Highly de-
tailed studies of breakup of shearless curves were conducted
for a few winding numbers using Greene’s residue
criterion.16,17,47Though the method is very precise, it is not
suitable at present for an exploration of all parameter space.
Shinohara and Aizawa46 obtained a rough estimate for the
breakup threshold of many shearless curves by investigating
for a range of parameter values whether iterates of one of the
indicator points remain bounded.

Here, we implement the following slightly different
strategy, using the fact that if the winding number of the orbit
of any point exists, then the orbit is not chaotic—it is either
periodic or quasiperiodic. We calculate the sequencevi

=xi / i for the iteratessxi ,yid=Miszd of one of the indicator
points zj

s±d. The winding number is assumed to exist if we
can find someN such thatuvi −vi+1u,e, supn,Nhvnj.vi,
and infn,Nhvnj,vi for N, i ,N+M. We use z=sa/2
+1/4,0d, e=10−7, M =105, and the maximumN used is 2.9
3106. If the winding number sequence displays larger fluc-
tuations, we assume the orbit to be chaotic, i.e., the torus to
be destroyed. This criterion is also only approximate, since
the value of the winding number might converge for the
number of iterations used, but further iterations would reveal
fluctuations, or vice versa.

The method of Ref. 46 and ours deliver similar results.
However, it seems that the computation of the winding num-
ber provides better means of monitoring and controlling its
accuracysaside from giving us the winding number of the
shearless curve as a useful side productd.

The boundary of the resultingbreakup diagramdisplays
a fractal-like structuressee, e.g., Fig. 11d. The analysis of
Refs. 16, 17, and 46 indicates that the highest peaks corre-
spond to the breakup of shearless invariant tori with noble

winding numbersssee Refs. 16 and 47 for discussiond. We
will comment in Sec. IV on the relation between the breakup
diagram, reconnection, and the indicator and bifurcation
curves.

III. NONSTANDARD RECONNECTION AND COLLISION
SCENARIOS

As noted in Sec. II D, the winding number profile can
have a valley and a local minimumsdenoted byvmind be-
tween two local maximasdenoted byvmaxøvmax8 d. sIn many
cases it is observed thatvmax=vmax8 , so we will not distin-
guish between the two maxima.d Thus there are four orbits
for each winding number in the rangevmin,v,vmax. The
maxima and the minimum are seen to decrease when the
perturbationb is increased. This gives rise to the following
scenarios for reconnection and collision ofm/n periodic or-
bits:

sid For vmin.m/n, there are two chains ofm/n-periodic
orbits.

sii d When vmin reaches the rational valuem/n, periodic
orbits of winding numberm/n are born and subse-
quently reconnect, in addition to already existing or-
bits. We call the new orbitsinner orbits while the
already existing ones will be calledouter orbits.

siii d When vmax reachesm/n, the inner orbits reconnect
and collide with the outer orbits.

sivd For vmax,m/n, no m/n-periodic orbits exist.

The reconnections and collisions that occur in the above sce-
nario are locally the same as those seen in Sec. II B. But
because of the presence of four chains of periodic orbits, the
global topology is considerably more complicated as will be
seen below.

A valley in the winding number profile shows up after
reconnection, together with meandering orbits, and also per-

FIG. 4. Indicator curvessic1 and ic3d
and bifurcation curvessbc1 and bc3d
for 7/8 periodic orbits.
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sists after the collision of the reconnecting orbitsfFig. 3sedg.
The scenario described in the above paragraph typically oc-
curs for parameter values slightly abovesin b versusa pa-
rameter space plotsd the bifurcation curves of odd-period or-

bits. When a valley in the winding number profile exists, the
winding number of the shearless curve is the local minimum
vmin, if vmin is irrational. Whenvmin=m/n, the reconnection
process of the innersmeanderingd orbits involves orbits,

FIG. 5. 7/8 orbit reconnection ata=0.923. The upper plot shows ay vs x phase space plotsxP f−0.25,0.25g ,yP f−0.5,0gd and the lower one the
corresponding winding number profiles along the two indicated symmetry linessv alongsi vs y, vP f7/8−0.0007,7/8+0.0005gd. The plots correspond to the
b values:sad 0.223 252 62s<C3d, sbd 0.223 35,scd 0.223 460 60,sdd 0.223 55,sed 0.223 641 69sF3d, sfd 0.223 85,sgd 0.224 163 43sC1d, andshd 0.224 65.
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called second-order meanders,22 that meander around these
inner orbits. The winding number profile shows a “hill” at
the bottom of the valley. Such a process might give rise to
arbitrarily higher order meanders.2,22,38

A. Nonstandard scenarios for even-period orbits

A first hint that for the nongeneric SNM the even-period
reconnection scenario can be more complicated is found in
Ref. 44. In some region ofsa,bd parameter space, phase
space portraits show the appearance of meanders and addi-
tional periodic orbits. For most regions ofsa,bd space the
indicator and bifurcation curves are seen to coincide. But in
regions of parameter space where the winding number pro-
file has a valley, bifurcation curves and indicator curves
separatesand can even cross each otherd leading to various
reconnection scenarios and the appearance of meanders.

This is seen most clearly neara=1, which is the bifur-
cation curve for the 1/1 periodic orbits but, as mentioned
above, occurs aboveeveryodd-period bifurcation curve. We
discuss in detail the example of 7/8 periodic orbits, whose
indicator and bifurcation curves are shown in Fig. 4 for the
parameter space region of interest. For approximatelya
,0.92, the curves coincide, resulting in the standard sce-
nario sSec. II Bd. The lower curve, corresponding to bc3 and
ic3, is the threshold for collisionsi.e., reconnectiond of hy-
perbolic orbits, while the upper curve, corresponding to bc1
and ic1, is for the simultaneous collisionsannihilationd of
elliptic and nonsymmetric hyperbolic orbits. Fora.0.92 the
curves separate, and arounda=0.925 the bifurcation curve
bc3, crosses the indicator curve ic1.

Recall thatb=F7/8,isad is the bifurcation curve for orbits
on the symmetry linesi, and b=C7/8,isad is the indicator
curve. In the following we drop the subscript 7/8 and the
dependence ona. Also, the symmetry of the SNM implies
that F1=F2 andF4=F3.

The separation gives rise to the following two se-
quences:

For 0.92,a,0.925, the above curves are in the follow-
ing order:C3,F3,C1,F1.

1. Whereas for small perturbationssb,C3d, only the up
and downsouterd 7/8 chains existsvmin.7/8d, vmin reaches
7/8, and inner orbits are born atb=C3 fFig. 5sadg. Initially,
this inner chain has the dipole topology, with elliptic orbits
on s3 ands4, and hyperbolic orbits not on any symmetry line.
fFig. 5sbdg.

2. Somewhere in the rangeC3,b,F3, a reconnection
between these off-symmetry line hyperbolic orbits with the
outer hyperbolic orbits ons3 ands4 occursfFig. 5scdg. At the
point of reconnection,vmax is 7/8 and continues to be so
through step 5. After this reconnection, meanders are born,
the inner and outer chains display a nested topology, and
vmin,7/8 fFig. 5sddg.

3. The inner elliptic orbits collide with the outer hyper-
bolic orbits on thes3 and s4 symmetry line atb=F3 fFig.
5sedg, leaving only the off-symmetry line inner hyperbolic
orbits and the outer elliptic orbits on the symmetry liness1

ands2 fFig. 5sfdg.
4. At b=C1, the inner hyperbolic orbits collidefFig.

5sgdg and move onto the symmetry liness1 ands2 fFig. 5shdg.
5. At b=F1, there is an hyperbolic–elliptic collision on

s1 ands2, after which 7/8 periodic orbits cease to exist and
vmax,7/8.

For a.0.925, the order of the curves is changed toC3

,C1,F3,F1. Most steps of the above sequence remain
the sameswith C1 replacingF3 in the second stepd, except
for the following:

3. At b=C1, the inner hyperbolic orbits collide and
move onto the symmetry liness1 ands2, while the hyperbolic
elliptic orbits ons3 ands4 merely continue to approach each
other.

FIG. 6. Boundary of breakup diagram
sdotsd, indicator curvessicd, and bifur-
cation curvessbcd for two different
winding numbers. Points markedsPd
correspond to points whereF1

out and
F1

in of close-by periodic orbits
separate.
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4. The inner elliptic orbits collide with the outer hyper-
bolic orbits ons3 and s4 at b=F3, leaving only the hyper-
bolic and elliptic orbits ons1 ands2.

The difference between the two scenarios is the order in
which the collision alongs3 and s4 and the move of the
hyperbolic points ontos1 ands2 occur. Both occur simulta-
neously for thesa,bd value at whichF3 andC1 intersect.

As in the standard scenario of odd-period orbits, mean-
ders appear in this case when the maximum of the winding
number profile is rational. But now there aretwo meandering
regions, and none of the meanders areG invariantfFig. 5sed,
alongs4g.

Note that the indicator curves, which are obtained using
the symmetries of the map, track collisions occurring along
the G-invariant curve while the bifurcation curves track the
collisions occurring at maxima in the winding number pro-
file, which may or may not be shearless.

This motivates an extension of the definition of bifurca-
tion curves. Recall that in the original definition the bifurca-
tion curve determines theglobal boundary in parameter
space between existence and nonexistence of periodic orbits
of the corresponding winding number. These curves corre-
spond to maxima in the winding number plot, and will be
denoted byFm/n,i

out from now on.
In the region of parameter space where foursor mored

orbits of a particular winding number exist, anew kind of
bifurcation curve can be defined that corresponds to param-
eter values at which the inner orbits are born, denoted byFin.
In this case, the winding number profile has alocal minimum
sor local maximum for higher order curvesd. For even-period
orbits, as expected and verified numerically,Ci =Fi

in. To es-
timate the region of parameter space in which there are more
than two chains of periodic orbits, we plot the points of
separation of indicator and bifurcation curves for several dif-
ferent sodd and evend winding numbers. The results are
shown in Fig. 6. Within numerical uncertainty, close to the
1/1 bifurcation curve the points seem to lie on a curve. Simi-
lar “curves” have been numerically observed for a few other
winding numbers,se.g., Fig. 7d, where we mark the points at
which the indicator curves split from the bifurcation curves
salongs1d for several inner orbits, in the region of parameter
space close to the 1/3 orbitsleftd and 2/3 orbitsrightd bifur-
cation curvesalso shownd.

Remark 2. In Ref. 7 Petrisoret al. conjectured that in
generic nontwist maps the dipole formation scenario for
even-period orbits does not occur. Instead, their numerical
studies showed that one of the elliptic chains bifurcates, cre-
ating and subsequently destroying a saddle-center pair,
which has the effect of aligning the elliptic points of one
chain with the hyperbolic points of the other one. Reconnec-
tion occurs then according to the standard scenario for odd-
period reconnection.

B. Nonstandard reconnection for odd-period orbits

Since there is no analog of the criterion Eq.s5d for the
odd-period orbits, we cannot define indicator curves for these
orbits. But we note that the indicator curves for even-period
orbits are the bifurcation curves for the inner orbits,Ci

=Fi
in. Thus, we have implemented a version of the numerical

method for finding bifurcation curves16,17 for both the inner
and outer orbits in the parameter space region where more
than two chains exist. Figure 6 shows the bifurcation curves
for the outer orbits, b=F8/9,i

out sad, and inner orbits, b
=F8/9,i

in sad, of winding number 8/9.sRecall that in the odd-
period standard scenario the bifurcation curves,Fi

out, are the
same for all four symmetry lines.d For the remainder of this
section, we will drop the dependence ona and the subscript
8/9 for brevity.

A magnification of sa,bd space around the separation
point sFig. 8d reveals the birth of a new hyperbolic–elliptic
pair of periodic orbits along each of the symmetry lines at
b=Fin for a.0.9295slowest curve in Fig. 8d. This pair of
orbits moves apart and eventually collides/annihilates with
the outer, up and down, orbits on the symmetry lines. These
collisions do not occur simultaneously in parameter spacesin
contrast to the even cased, which explains the existence of
two outer bifurcation curves along each symmetry line, one
for the outer up orbit and one for the outer down orbit, de-
noted byFi

out,up and Fi
out,down, respectively. Because of the

symmetry of the SNM,F1 and 2
out,up =F3 and 4

out,down and F1 and 2
out,down

=F3 and 4
out,up . To illustrate this nonstandard reconnection–

FIG. 7. Boundary of breakup diagramsdotsd and bc1 for 1/3 orbitsstopd
and 2/3 orbitssbottomd. Points markedsPd correspond to points whereF1

out

andF1
in of close-by periodic orbits separate.
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collision sequence, we discuss in some detail the case of 8/9
periodic orbits alongs1 at a=0.94 sFig. 9d.

s1d Whereas for small perturbationssb,Find, only the
up and downsouterd orbits exist andvmin.8/9, inner chains
of orbits are bornfFig. 9sadg at b=Fin, and subsequently
form a nested topology with meandering orbitsfFig. 9sbdg.
As seen in the corresponding winding number profile along
s1, the bottom of the valley exhibits a hill whose edges have
the valuevmin=8/9. Theleft edge, corresponding to the new
periodic orbit pair, broadens as its hyperbolic and elliptic
orbits start to move apartsFig. 10d, whereas the right one,
corresponding to the heteroclinic connection between new
pairs on other symmetry lines, continues to touchvmin

=8/9 atonly one point. The winding number of the shearless
curve, corresponding to thelocal maximumstop of hilld, and
those of the meandering orbits, are greater than 8/9.

s2d Somewhere in the rangeFin,b,F1
out,up, the nested

orbits reconnect fFig. 9scdg, resulting in four regular
Poincaré–Birkhoff chainsfFig. 9sddg, two on each side of the
central shearless curve.

s3d At a higherb value in the same range, the two up
chains and two down chains reconnectfFig. 9sedg, resulting
in two regions of nested orbits with meandering torifFig.
9sfdg. Again, the winding numbers of the meanders is less
than that of the reconnecting orbitss8/9d. Each of these re-
gions contains a shearless, but notG invariant, meander.

s4d At b=F1
out,up, the outer up orbits undergo a

hyperbolic–elliptic collisionfFig. 9sgdg.
s5d At b=F1

out,down, the outer down orbits undergo a
hyperbolic–elliptic collisionfFig. 9shdg, after which no fur-
ther 8/9 periodic orbits exist.

IV. DISCUSSION

To understand the effect of the different reconnection–
collision scenarios on the global transport properties of the
map, we compare the computed bifurcation and indicator
curves with the breakup diagram, obtained using the proce-
dure of Sec. II E. The results are presented in Fig. 11. We see
that these curves serve as a scaffolding for the diagram, an
observation also made in Refs. 38 and 44. We will illustrate

this interplay between the different reconnection scenarios
and transition to global chaos by looking at the magnification
of the breakup diagram around the indicator and bifurcation
curves of the 5/6 orbitssFig. 12d.

sid For approximatelya,0.883, indicator and bifurca-
tion curves along the different symmetry lines coincide, and
lie within the nonchaotic region of the breakup diagram. Fix-
ing a and increasing the perturbationb through the reconnec-
tion process does not lead to global chaos. This is because of
the presence of invariant tori “above” and “below” the re-
connecting chains of orbits.sFor the remaining discussion,
we will refer to these as “twist” tori.d

sii d For approximately 0.883,a,0.893, the lower pair
of curves follows the boundary of the breakup diagram. In-
creasing the perturbation through the boundary corresponds
to a reconnection that results in global chaos. The reason for
this can be understood as follows: For parameter values
slightly below the lower pair of curves, no twist invariant tori
exist above or below the shearless region. Only the tori in the
region between the two chains of 5/6 orbits inhibit transport.
When the perturbationb reaches the lower pair of curves, the
hyperbolic 5/6 orbits collide and the tori between the two
chains are destroyed. Since the colliding orbits are hyper-
bolic, their separatrices form a heteroclinic tangle that con-
nects the up and down chaotic regions, resulting in global
chaos, consistent with the observation that the lower pair of
curves form a boundary of the breakup diagram.

siii d For approximately 0.893,a,0.91, we see the first
of the two nonstandard scenariossFig. 5d discussed in Sec.
III A. Here again, no twist tori exist for parameter values
close to the lowest curveC3. The inner orbits, which are
born atb=C3, move apart and reconnect with the outer hy-
perbolic orbits for someC3,b,F3. At this point, global
chaos ensues because the up and down chaotic regions are
joined through the reconnecting invariant manifolds. Thus
the lower boundary of the breakup diagram lies betweenC3

and F3. Also, for b.C1, the off-symmetry line hyperbolic
orbits move onto thes1 symmetry line and their invariant
manifolds are no longer connecteds“deconnection”d. Mean-
dering orbits are created as these hyperbolic orbits move
apart alongs1. These meandering orbitsfFig. 5shdg inhibit
global chaos. Thus,b=C1 sseen as the threshold for “decon-
nection”d forms the upper boundary of the breakup diagram.

sivd It was noted in Ref. 38 that if the up and down twist
regions of the map exhibit chaos when the odd-period orbits
reconnect, the reconnection leads to global chaos for the
above-mentioned reasonsi.e., because of the heteroclinic
tangle of the invariant manifoldsd.

Thus we see that, in general, reconnectionsand the
breakup of twist torid has a significant effect on the transition
to global chaos. Many, if not all, of the “smooth” boundaries
of the breakup diagram can be conjectured to be the result of
reconnections of invariant manifolds. Indeed, the reconnec-
tions of orbits with higher periods can give rise to finer struc-
tures in the breakup diagram. Thus, the “fractal” nature of
this diagram might be related to the reconnections in phase
space happening at smaller and smaller scales. A reliable
criterion for determining the reconnection threshold and its

FIG. 8. Magnification of split region in parameter space for 8/9 bifurcation
curves. The curves appear in the orderFin,F1

out,up,F1
out,down.
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numerical implementation will be extremely useful for test-
ing these ideas.

V. CONCLUSION

In this paper we presented a unified view of various
bifurcations and reconnections that occur in the standard

nontwist map, but are not observed in twist maps. The bifur-
cations are locally of three types: collision and annihilation
of hyperbolic–elliptic orbit pairs; collision of two symmetric
hyperbolic orbits resulting in two nonsymmetric hyperbolic
orbits; and the simultaneoussin parameter and phase spaced
collision and annihilation of two hyperbolic and two elliptic

FIG. 9. 8/9 orbit reconnection ata=0.94. The upper plot shows ay vsx phase space plotsxP f−0.25,0.25g ,yP f−0.5,0gd and the lower one the corresponding
winding number profiles along the two indicated symmetry linessv alongsi vs y, vP f8/9−0.0020,8/9+0.0016gd. The plots correspond to theb values:sad
0.201 5781 s<Find, sbd 0.2018, scd 0.202 155, sdd 0.2036, sed 0.205 15, sfd 0.2059, sgd 0.206 791 7 s<F1

out,upd, and shd 0.208 108 4
s<F1

out,downd.
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orbits. The latter is seen only in the SNMsand closely related
mapsd because of its high degree of symmetry. The two
former bifurcations are observed in all nontwist maps.

We have demonstrated that the nongeneric standard non-
twist map has more types of periodic orbit reconnection sce-
narios than previously known, resulting from the presence of
four sor mored chains of periodic orbits of the same winding
number. Meandering tori, associated with the odd-period re-
connection in the SNM, have been shown to exist for certain
regions of parameter space for nonstandard even-period re-
connection. Petrisor and co-workers7 have started to compile
a list of possible reconnection scenarios for nontwist maps.
Our investigation contributes new global scenarios for the
case of nontwist maps with a reversing symmetry group,
including a spatial symmetry.

We also conjecturesand present heuristic observationsd
that the reconnection of hyperbolic separatrices leads to glo-
bal chaos if no “twist” tori exist in the region “outside” the
reconnecting chains of orbits. Determination of the breakup
threshold of the last twist tori and a precise criterion for
calculating reconnection thresholds will shed more light on
the accuracy and usefulness of these observations.
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APPENDIX A: BASIC DEFINITIONS

For reference, we list a few basic definitions used
throughout the main text. Anorbit of an area-preserving map
M is a sequence of pointshsxi ,yidji=−`

` such thatMsxi ,yid
=sxi+1,yi+1d. Thewinding numberv of an orbit is defined as
the limit v=limi→`sxi / id, when it exists. Here thex coordi-
nate is “lifted” fromT to R. A periodic orbitof periodn is an
orbit Mnsxi ,yid=sxi +m,yid, ∀i, wherem is an integer. Peri-
odic orbits have rational winding numbersv=m/n. An in-

FIG. 10. Magnification of the winding number profiles alongs1 of Figs. 9sad
stopd and 9sbd sbottomd.

FIG. 11. Parameter space showing the
points for which shearless invariant
tori exist. Also shown are some bifur-
cation and indicator curves and two
critical points smarked bysd found
using Greene’s residue criterion.
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variant torus is a one-dimensional setC that is invariant
under the mapC=MsCd. Of particular importance are the
invariant tori that are homeomorphic to a circle and wind
around thex domain because, in two-dimensional maps, they
act as transport barriers. Orbits belonging to such a torus
generically have an irrational winding number.

APPENDIX B: SYMMETRY PROPERTIES OF THE SNM

In this appendix, we review the symmetry properties of
the SNM. A detailed discussion of these types of symmetries
in general can be found in Ref. 48 and, in the context of
nontwist systems, in Ref. 2.

The standard nontwist mapM is time-reversal symmet-
ric with respect to two involutionsI0 andI1, i.e.,M−1= I i

−1 M
Ii, I i

2=Id, for i =0,1. It then follows that the SNM can be
decomposed asM = I1+ I0. In addition,M is also symmetric
under an involutionS which commutes with bothI i, i.e., M
=S−1 M S, S2=Id, andS Ii = I i S. The involutions have the
following form: I0sx,yd=f−x,y−b sins2pxdg, I1sx,yd=f−x
+as1−y2d ,yg, andSsx,yd=sx+1/2,−yd.

Since theI i are orientation reversing, their fixed point
sets, Gi =hsx,yd u I isx,yd=sx,ydj, are one-dimensional sets,
called thesymmetry linesof the map. For the SNM,G0 con-
sists of s1=hsx,yd ux=0j, s2=hsx,yd ux=1/2j, while G1 con-
sists of s3=hsx,yd ux=as1−y2d /2j, s4=hsx,yd ux=as1−y2d /2
+1/2j.

It is easy to check thatS does not have any fixed points.
Symmetry lines are useful because the numerical search for
symmetric periodic orbits, i.e., orbits with a point belonging
to one of the symmetry lines, is a one-dimensional root find-
ing problem and hence considerably easier than the search
for nonsymmetric orbits.49,50 For the SNM, there are gener-
ally two orbits along any symmetry line of any winding
number, called theup anddownorbits.

The SNM is time-reversal symmetric with respect to
maps SIi as well. The fixed point sets of these orientation

preserving maps consist of points in phase space, called in-
dicator points. For the SNM, fixed points of SI0 and SI1 are,
respectively,z0

s±d= s± 1
4 , ±b/2d, and z1

s±d= sa/2± 1
4 ,0d, where

z0
+= s+1

4 , +b/2d etc.
The involutionsI0, I1, S, and their products form a group

G called thereversing symmetry group. There is at most one
homotopically nontrivial invariant torus that is invariant un-
der the action ofG.2 This torus is called thecentral or
G-invariant shearless torusgS. The indicator points belong
to gS when it exists.2,44,46
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