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New global periodic orbit collision and separatrix reconnection scenarios exhibited by the standard
nontwist map are described in detail, including exact methods for determining reconnection thresh-
olds, methods that are implemented numerically. Results are compared to a parameter space
breakup diagram for shearless invariant curves. The existence of meanders, invariant tori that are
not graphs, is demonstrated numerically fmoth odd and even period reconnection for certain
regions in parameter space. Implications for transport are discussed0®American Institute of
Physics [DOI: 10.1063/1.1915960

In recent years, area-preserving maps that locally violate of mathematical interest because important theorems con-
the twist condition in phase space have been studied in cerning area-preserving maps assume the twist condition,
physics and mathematics. Thes@ontwist maps show up  e.g., the KAM theorem and Aubry—Mather theory. Up to now
in a variety of physical models, e.g., in magnetic field line  only few mathematical results have been knd{i#* Re-
models for reversed magnetic shear tokamaks. An impor-  cently, it has been shoh? that the twist condition is vio-
tant problem is the determination and understanding of  |3teq generically in area-preserving maps that have a tripling
the transition to global chaos (global transport) in these bifurcation of an elliptic fixed point. For studies of hontwist

”?Ode's- NontW|st maps exhibit several d|_ffere|_'1t mecha- Hamiltonian flows, we refer the interested reader to Ref. 25
nisms for this transition: the breakup of invariant tori .
and references therein.

and separatrix reconnections. The latter may or may not : . .
P Y y Although the SNM is not generic because of its symme-

lead to global transport depending on the region of pa- ) _ ) :
rameter space. In this paper we conduct a detailed study tries (see Appendix B it captures the essential features of

of newly discovered reconnection scenarios in thetan- ~ Nontwist systems with a local, approximately quadratic ex-
dard nontwist map investigating their location in param-  tremum of the winding number profile.

eter space and their impact on global transport. Nontwist maps of the annulus exhibit interesting bifur-
cation phenomena: periodic orbit collision and separatrix re-
| INTRODUCTION connection. The former, which applies specifically to colli-

sions of periodic orbits of the same period, such as the so-
We consider thestandard nontwist magSNM) M as  called up and down periodic orbits that occur in the SNM,
introduced in Ref. 1: can be used to calculate torus destructibithe latter is a
— _\2 global bifurcation when the invariant manifolds of two or
Xn+1 - Xn + a(l yn+1) ’ P . . . .
more distinct hyperbolic orbits with the same rotation num-
1) ber connect, leading to a change in the phase space topology
in the nontwist region. We briefly review previous studies of
where (x,y) e T XR are phase space coordinates an®  reconnection in nontwist systems.
e R parameters. This map is area preserving and violates the Howard and Hol defined a guadratic nontwist map

Yne1=Yn—D Sin(27TXn) )

twist condition closely related to Eq.1) and studied numerically the recon-
Xon(X0yh) nection_of low-order resonances exhibiting horr_locli_nic and
—R 40 O (X, i) (2)  vortex-like structures. Defining an average Hamiltonian they
Wi predicted the reconnection threshold for period-one and

along a curve in phase space, callediibemonotone curve  period-two fixed points. Howard and Humpherys extended

Some basic concepts used throughout the paper are reviewBi study to cubic and quartic nontwist mépIhese recon-

in Appendix A. nection scenarios had been conjectured by®Stixhe con-
Nontwist maps are used to describe many physical sygext of the evolution of magnetic surfaces in the nonlinear

tems, e.g., magnetic field lines in tokamakse, e.g., Refs. double-tearing instability, and were seen by Gerasinbv

3-9 and stellaratord** (plasma physigs planetary orbit?  al.*®in a two-dimensional model of the beam—beam interac-

and stellar pulsatior (astronomy; traveling waves;'*co-  tion in a storage ring.

herent structures, and self-consistent tranéf)dftuid dy- The first systematic study of reconnection was done by

namicg. Additional references can be found in Refs. 16 andvan der Weeleet al?*? in the context of area-preserving

17. Apart from their physical importance, nontwist maps aremaps with a quadratic extremum. As far as we know the
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terminology “nontwist” and “meanders” originates from shearless curvd

symmetry lings3ses«==
there 0.4 | NONMONOIONE CUrVe Yrmeme=:

indicator points % W

Del-Castillo-Negretet al*’ devised an approximate cri- :
terion for the reconnection threshold of higher-order reso-
nances based on matching the slopes of the unstable mai
folds of the reconnecting hyperbolic orbits.

Continuing the work of Egydio de Carvalho and .
Almeida®® Voyatzis and Ichtiarogloi studied reconnection
phenomena in nontwist Hamiltonian systems under inte:
grable perturbation with cubic winding number profiles. Ap-  *°2
plying Melnikov's method, they showed the transverse inter-
section of manifolds for arbitrarily small nonintegrable
perturbations for one reconnection scenario when the wind

o

-0.4

ing number has a local extremuth. Y B o oz ”
The influence of manifold reconnection on diffusion was *
studied in the region of strong chaos by Coedoal. in a 0.605 . . . . . . . . .

series of paper& =°
A very different criterion for the reconnection threshold 08
was proposed by Petrisor in Refs. 7 and 37: If two hyper-
bolic orbits have a heteroclinic connection, their actions co-
incide. As noted in Ref. 37, for odd-period hyperbolic orbits
in the SNM this criterion reduces to the action being zero a
the point of reconnection. This criterion was implemented
numerically in Ref. 38 to estimate some reconnection thresh
olds for odd-period orbits in the SNM. It has been noted thar .,
the above result about the equality of actions of reconnectin
hyperbolic orbits is only approximately true in the near- oss}
integrable limit>®
For completeness, we mention a few related studies: re ~ os7 ——b—bt——1—t———— 1
conn4%3tlion phenomena and transition to chaos in the Harpe . y
map, " degenerate resonances in Hamlltc.)man systems V.VlthG. 1. Example of the phase space for standard nontwist (tagp and
3/2 degrees of freedo#ﬁ’and zero dispersion resonance in corresponding winding number profile along tlyeaxis (bottom at a
the study of underdamped oscillatrs. =0.615,b=0.4. The symmetry lines, nonmonotone cui¥e G-invariant
Key to the analytical and numerical exploration of the curve ys and indicator points are displayed.
standard nontwist map is the map’s invariance under symme-
tries, reviewed in Appendix B. Of particular significance are
theindicator points* fixed points of some of the symmetries of Ref. 17. The resulting curves are compared with(td)
of the SNM, whose importance was first recognized by Shispace breakup diagrafeee Sec. Il E produced by a modi-
nohara and Aizawa. These points were independently redidied version of Refs. 16 and 46. Early results of this investi-
covered by Petriséiin the analysis of the reversing symme- gation were reported in Ref. 38, and some of them will be
try group” of nontwist standard-like area-preserving maps.elaborated upon below for completeness.
In Ref. 46, it was shown that a shearless invariant torus ~ The paper is organized as follows. We review some basic
crosses the axis at two points. This led the authors to deviseconcepts of nontwist systems and the SNM in Sec. Il. Some
a criterion to determine the approximate location in (#gb) novel reconnection and collision scenarios for orbits of even
parameter space of the breakup of shearless invariant tori f@&nd odd periods are described in Secs. Ill A and IlI B, re-
many winding numberg¢see Sec. Il E spectively, applying and extending methods from Refs. 17
Subsequently, based on numerical observations, Shin@nd 44. The results are discussed in the context of the
hara and Aizaw# used indicator points to propose exact Preakup diagram in Sec. IV. In Sec. V we give our conclu-
expressions for the collision threshold of even-period orbit$ions and indicate some directions of future research. The
and a method to determine numerically the reconnectio@pPpendices contain basic definitions and a brief summary of
threshold for odd-period hyperbolic orbits. symmetry properties of the SNM.
The goal of the present paper is to describe
reconnection—collision phenomena in detaikih regions of Il REVIEW OF NONTWIST MAPS
(a,b) parameter space for the standard nontwist map. The
details of the two main scenarigedd period and even pe- In this section, we review some fundamental concepts
riod) depend crucially on théa, b) region, and have not been that are required for further explorations of the SNM. Figure
discussed exhaustively up to now. The main tool we use heré shows a typical phase space plot, along with a plot of
is the numerical implementation of two criteria for collision winding numberw versusy (henceforth called thevinding
thresholds: the analytic one of Ref. 44 and the numerical onaumber profilg for the central section of thg axis.

0.595 |

0.585 -
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FIG. 2. The standard scenario of even-
period  reconnection/collision  se-
guencegupper rowy vs x) and wind-
ing number profiles along thg ands;
symmetry lineglower row o alongs

A Y Y A e I

The phase space of the SNM consists of two twist re-B. Periodic orbit collision and standard separatrix
gions, “above” and “below” the center, i.e., regions in which reconnection
Eq. (2) is satisfied. Since the twist condition is violated along
the nonmonotone curvegiven byy=b sin(2mx), only orbits
with points falling onC, referred to ashonmonotonerbits
by Petrisof and orbits with points on both sides ©f called
pseudomonotonare affected by the nontwist property. Note

As mentioned earlier, one consequence of the violation
of the twist condition is that the SNM has more than one
orbit (either invariant tori or chains of periodic orbjitsf the
same winding number. These orbits can collide and annihi-
late at certain parameter values. The collision of periodic

that for anyb+# 0 the curveC is not an invariant torus. e :
Like the phase space plot, the winding number profile inorblts involves another purely nontwist phenomenon, namely
he reconnection of the invariant manifolds of the corre-

the outer regions looks the same as that of a twist map}, ) . i > -
showing, e.g., the familiar plateaus associated with island§PoNding hyperbolic orbits. These reconnection—collision se-

around periodic orbitghere orbits with winding numbers duences in the SNM are distinctly different for orbits of even
3/5, 7/12, and 4/% The only distinctly nontwist effect, and odd periods. Here we give a brief account of the simplest
aside from the existence of the overall maximuhere at version of both sequences, which we will refer to as the
3/5) and of multiple periodic orbits of winding numbers less Standard scenario§’ We show phase space plots and wind-
than the maximum, is the valley below the 3/5 plateau,ing number profiles for several steps in these sequences. The
which gives rise to a variety of phenomena discussed in Seélescription of more intricate reconnection—collision sce-
[l narios appears in Secs. lll A and 1ll B. Upon changing the
parameter values of the SNM we see the following se-
A. Reversing symmetry group and shearless curve quences:
(i) For orbits with even period, i.e., with the same sta-

L o . bility type for both the up and down orbits on a symmetry
at an irrational value ob, the corresponding invariant torus line [Fig. 2a)]: collision of the hyperbolic orbits which is

is calledshearlessAs discussed by Petrisdthe SNM has at e i o
most one homotopically nontrivial shearless invariant torusaISO the t_hresh_old for reconne_ctlcﬁﬁlg. Ab)]; the “dipole
in which the hyperbolic orbits have moved off the

that is also invariant under the reversing symmetry grou opology”
gs(reviewed in Appendix B When it exists,ygs aI)go contﬁi?ls FEsyrnr‘r)etry ques{Fig. 2(9)]5 the collision of eIIiptic'orbits that .
the indicator points coincides with the collision of the nonsymmetric hyperbolic
orbits [Fig. 2(d)] leading to annihilation of these periodic
S = (+} . 9) and 2 = (i‘ L1 O) (3  Orbits[Fig. Ae)]. The winding number profile shows a maxi-
0 T4 2) ! 247 mum that is greater than, equal to, and less than the winding
and all their iterates, as described in Refs. 2 and 44. As Wregumber of the p_eriodic orbit before, during, and after this
will discuss in Sec. Il in some regions of parameter Spaceprocgss, respe.ctlve_ly. Lo . . .
there exist several shearless tori, but only one of theig is . (if) For orbits with odd perloq, I.e., with opposite S.tab"_
invariant. ity type for the up and down orbits on a symmetry I{iég.
g(a)]: reconnection of hyperbolic manifolds of up and down

The significance of a shearless torus is that it acts as g - _ -
barrier to transport, whereas the nonmonotone cdrdees ~ OrPits [Fig. 3b)]; appearance of non-KAM meandering or-

not, except forb=0 when(C coincides withy. Figure 1 b?ts (e'laborated. on ip Sec. IIDhomocquic se.pa.ratrice's,' and
shows the nonmonotone curve and the shearless torus, alofjnerized chaing(Fig. 3(c)]; hyperbolic-elliptic collision
with symmetry lines and indicator points. [Fig. 3(d)] leading to annihilation of these periodic orbits

The standard nontwist map is nongeneric because it i7i9. 3€)]. As above, the winding number profile shows a
time-reversal symmetric as well as invariant under a symmeglobal maximum that is greater than, equal to, and less than
try, as reviewed in Appendix B. Nevertheless, most of thethe winding number of the periodic orbit before, during, and
phase space phenomena described in this paper are also @lfter this process, respectively. But in addition, there is a
served in arbitrary nontwist systems, even though the exadocal minimum—associated with the appearance of the me-
definitions of many of the concepts introduced to study themandering orbits—which persists even after the collisisee
cannot be generalized to these systems. Sec. I D.

When the winding number profile has a local extremum
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-

FIG. 3. The standard scenario of odd-
period  reconnection/collision  se-
guencegupper rowy vs x) and wind-
ing number profiles along thg ands;
symmetry lineglower row o alongs
Vsy).

~—CT

C. Bifurcation and indicator curves Hence we will find it useful to introduce the notion iofdi-
gcator curves V. n(a) defined by Eq.(4) [or Eq. (5)].

The parameter values for the threshold of collision o ! . ] .
P When only two chains ofn/n orbits exist, eithei®,, or

periodic orbits with a fixed winding number are numericallyq) incid Y H label indicat
observed to lie on a smooth curve (ia, b) parameter space, =~ mn.3 coincides with™y,. Hence we 1abel indicator curves

called thebifurcation curve which was first defined in Ref. by symmetry Illnes., e'g}P"."”'l' (We wil dgnote these curves

17. by “ic1” and “ic3” in the figures for clarity.

Remark 1 Shinohara and Aizawa also proposed a nu-

(a,b) values for which then/n up and down periodic orbits merical critgrion to find the qdd-period reconnection thresh-

on’ the symmetry line (see Appendix Bare at the point of old. They discovered numerically that at the threshold suc-
cessive iterates of indicator points approach the same

collision. (For clarity, the figures in this paper denote thes:eh boli iodi int of th iy hains. For d
curves by *bcl,” “bc2” etc. for symmetry lines,, s,, etc) tgﬁ;egezlagferl& ic point of the reconnecting chains. For de-

The main property of this curve is that féa,b) values be-
low b=®,i(a), ther/s periodic orbits, withr/s<m/n, ex-
ist. Thus,m/n is the maximum winding number for param-
eter values along the/n bifurcation curve.

Forn odd, bifurcation curves along —s, coincide in the Another characteristic of nontwist maps is the occur-
SNM because of the map’s high degree of symmetry.iFor rence ofmeandering orbitswhich are readily observed in
even, bifurcation curves alorgg ands, are separate from the the standard reconnection—collision scenario for odd-period
ones alongs; ands, for anyb# 0. Shinohara and Aizawa  orbits, but not in the one for even-period orbitsor non-
used the numerical observation that at the point of hyperboligtandard even-period reconnection—collision scenarios in
collision [Fig. 2(b)] for even-period orbitgbut not for the  which meanders occur, see Sec. I)l As seen in Fig. &)
odd-period case two of the indicator pointdelongto the  (and also in Fig. }, in the region surroundings, confined by
hyperbolic periodic orbit. This implies thafor period ) two dimerized chains, new periodic orbits and non-KAM tori

M2M2(2) = 7 (4) appear, i.e., orbits and tori that did not exist at zero pertur-

) ! bation (b=0). These tori are not graphs over thexis and
for eitherj=0 or j=1, wherez®® are given in Eq(3). The  have been calledheandersor meandering curve¥?* Such
symmetries of the map further imply that the indicator pointsinvariant tori can occur only in nontwist maps because any
map onto each other afteriterations, i.e., invariant torus for a twist map must be a graph oxer

Mnz®) = 7(F) It is observed numerically that in the meandering region

7=z (5) o . .
the winding numbers of the meandering orbits are less than
By solving these equations for the two unknowasb), we  the winding number of the reconnecting periodic orbits. Con-
can obtain exact expressions for the bifurcation thresholdscersely, however, a “valley” in the winding number profile
Some of the resulting curves for low-period orbits are givendoes not imply the existence of meanders as seen, e.g., in
in Table I. They are related to the ones given in Ref. 44 by &ig. 3(e). The existence of the local minimum and the valley
simple transformation. leads to four or more chains of periodic orbits for certain

We will see later that when more than two chains ofwinding numbers. In Secs. 11l A and 11l B we will discuss the
periodic orbits exist, the collision threshold for some of reconnection and bifurcation phenomena in this scenario,
them, but not for the others, is given by the above criterionwhich we call thenonstandard scenario

The m/n bifurcation curveb=®,;(a) is the set of

D. Meandering orbits

TABLE I. Some exact expressions for indicator curves for even-period orbits.

Elliptic collision Hyperbolic reconnection
w=1/2 a=3 b?=4(1-1/2a)
w=1/4 b?= 2/c052(a1-r)(1—1/4a) b?=4(1-1/4a)
0=1/6 b?= 3/2 cog(am) (1-1/6a) b?=(1-1/6)/(2+{1+2 cog2ma(1-b%4)]})
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0.245 - ic3 .

0.235

FIG. 4. Indicator curvesicl and ic3
and bifurcation curvegbcl and bcy
for 7/8 periodic orbits.

0.225

0215 - I I I I I I
0.918 0.92 0.922 0.924 0.926 0.928 0.93 0.932
a
E. Breakup diagram winding numberssee Refs. 16 and 47 for discussiolVe

will comment in Sec. IV on the relation between the breakup
gdiagram, reconnection, and the indicator and bifurcation
rves.

Since the shearless curgg, whenever it exists, poses a
barrier to transport between the two twist regions, studyin
its breakup is of considerable practical interest. Highly de*Y
tailed studies of breakup of shearless curves were conducted
for a few winding numbers using Greene's residuey NONSTANDARD RECONNECTION AND COLLISION
criterion™~"""Though the method is very precise, it is not SCENARIOS
suitable at present for an exploration of all parameter space.

Shinohara and Aizaw4 obtained a rough estimate for the ~ As noted in Sec. Il D, the winding number profile can
breakup threshold of many shearless curves by investigatingave a valley and a local minimudenoted bywy,) be-
for a range of parameter values whether iterates of one of théveen two local maximédenoted bywmay< wmg,). (IN many
indicator points remain bounded. cases it is observed thatma)(: wr’nax, so we will not distin-

Here, we imp|ement the fo”owing S||ght|y different gUiSh between the two maXirT)aThUS there are four orbits
strategy, using the fact that if the winding number of the orbitfor each winding number in the ranggn,< o < wmay The
of any point exists, then the orbit is not chaotic—it is eithermaxima and the minimum are seen to decrease when the

periodic or quasiperiodic_ We calculate the sequenge perturbationb is increased. This giVes rise to the fO”OWing
=x;/i for the iterates(x;,y;)=M!(z) of one of the indicator ~Scenarios for reconnection and collisionrofn periodic or-

points zZY. The winding number is assumed to exist if we bits:

can find someN such that|i~wi.| <€ supn{ont>i (i)  For wy,>m/n, there are two chains ofi/n-periodic
and inf\{o}<w; for N<i<N+M. We use z=(a/2 orbits.

+1/4,0, €107, M=1C°, and the maximunN used is 2.9 (ji)  When wy,, reaches the rational value/n, periodic

X 1CP. If the winding number sequence displays larger fluc- orbits of winding numbem/n are born and subse-
tuations, we assume the orbit to be chaotic, i.e., the torus to quently reconnect, in addition to already existing or-
be destroyed. This criterion is also only approximate, since bits. We call the new orbitéinner orbits while the
the value of the winding number might converge for the already existing ones will be callezliter orbits.
number of iterations used, but further iterations would reveatiii) When wy,, reachesm/n, the inner orbits reconnect
fluctuations, or vice versa. and collide with the outer orbits.

The method of Ref. 46 and ours deliver similar results.i)  For w,,,,<m/n, no m/n-periodic orbits exist.
However, it seems that the computation of the winding num-
ber provides better means of monitoring and controlling itsThe reconnections and collisions that occur in the above sce-
accuracy(aside from giving us the winding number of the nario are locally the same as those seen in Sec. Il B. But
shearless curve as a useful side proguct because of the presence of four chains of periodic orbits, the
The boundary of the resultingreakup diagrandisplays  global topology is considerably more complicated as will be
a fractal-like structurgsee, e.g., Fig. 11 The analysis of seen below.
Refs. 16, 17, and 46 indicates that the highest peaks corre- A valley in the winding number profile shows up after
spond to the breakup of shearless invariant tori with nobleeconnection, together with meandering orbits, and also per-
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: }——*@\ ......

FIG. 5. 7/8 orbit reconnection a&=0.923. The upper plot shows yavs x phase space platx e [-0.25,0.253,y € [-0.5,0]) and the lower one the
corresponding winding number profiles along the two indicated symmetry(imafongs vsy, o € [7/8-0.0007,7/8+0.000% The plots correspond to the
b values:(a) 0.223 252 62~V5), (b) 0.223 35,(c) 0.223 460 60(d) 0.223 55,(e) 0.223 641 69d,), (f) 0.223 85,(g) 0.224 163 43V,), and(h) 0.224 65.

sists after the collision of the reconnecting orljfsg. 3e)]. bits. When a valley in the winding number profile exists, the
The scenario described in the above paragraph typically oawinding number of the shearless curve is the local minimum
curs for parameter values slightly abo@ie b versusa pa-  wnin, if wmin 1S irrational. Whenw,,;;=m/n, the reconnection
rameter space plotshe bifurcation curves of odd-period or- process of the innefmeandering orbits involves orbits,
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0.4 —
0.35
03 |
s1 split points .
7/8ic 1 e
| 7/8 iC 3 ...............
0.2 7/8bc 1 eeeees )
FIG. 6. Boundary of breakup diagram
8/9bcin e (dot9, indicator curvesic), and bifur-
a 02 O cation curves(bo) for two different
winding numbers. Points marke®)
correspond to points wheré$" and
0.15 - @' of close-by periodic orbits
separate.
0.1 |
0.05 -
o . ! .
0.8 0.85 0.9 0.95 1 1.05

called second-order meandef$ that meander around these The separation gives rise to the following two se-
inner orbits. The winding number profile shows a “hill” at quences:
the bottom of the valley. Such a process might give rise to  For 0.92<a< 0.925, the above curves are in the follow-
arbitrarily higher order meandef$*3# ing order: W< ®, <V, <®,.
1. Whereas for small perturbatiofis<V,), only the up
_ i ) and down(outen 7/8 chains existwmin>>7/8), wni, reaches
A. Nonstandard scenarios for even-period orbits 7/8, and inner orbits are born BE W, [Fig. 5a)]. Initially,

A first hint that for the nongeneric SNM the even-period this inner chain has the dipole topology, with elliptic orbits
reconnection scenario can be more complicated is found inns; ands,, and hyperbolic orbits not on any symmetry line.
Ref. 44. In some region ofa,b) parameter space, phase [Fig. 5b)].
space portraits show the appearance of meanders and addi- 2. Somewhere in the rangk;<b< d;, a reconnection
tional periodic orbits. For most regions 6d,b) space the petween these off-symmetry line hyperbolic orbits with the
indicator and bifurcation curves are seen to coincide. But irpyter hyperbolic orbits os; ands, occurs[Fig. 5c)]. At the
regions of parameter space where the winding number prasoint of reconnectionw,y is 7/8 and continues to be so
file has a valley, bifurcation curves and indicator Curvesihrough step 5. After this reconnection, meanders are born,

separateand can even cross each othierading to various  the inner and outer chains display a nested topology, and
reconnection scenarios and the appearance of meanders. wmin <718 [Fig. 5d)]
min . .

This is seen most clearly near 1, which is the bifur-

cation curve for the 1/1 periodic orbits but, as mentionedb . . . _ :

. . . olic orbits on thes; ands, symmetry line atb=®; [Fig.
apove, oceurs gbomeryodd-perlod b|fur-cat|.on curve. we 5(e)], leaving onlssfhe offflsyymmetryyline inner hf/p[ertg)olic
discuss in detail the example of 7/8 periodic orbits, whose " "’

indicator and bifurcation curves are shown in Fig. 4 for theorb'tS an_d the outer elliptic orbits on the symmetry lirggs
parameter space region of interest. For approximately ands, [Fig. 5(f)]. ) ) . _—
<0.92, the curves coincide, resulting in the standard sce- 4 At b=¥1, the inner hyperbolic orbits collidéFig.
nario (Sec. Il B. The lower curve, corresponding to bc3 and ©(@] and move onto the symmetry linsgands; [Fig. S(h)].
ic3, is the threshold for collisiofi.e., reconnectionof hy- 5. At b=®,, there is an hyperbolic-elliptic collision on
perbolic orbits, while the upper curve, corresponding to bciSt @nds;, after which 7/8 periodic orbits cease to exist and
and icl, is for the simultaneous collisidannihilation of Wmax<718.
elliptic and nonsymmetric hyperbolic orbits. Far-0.92 the Fora>0.925, the order of the curves is changedity
curves separate, and arouad0.925 the bifurcation curve <W¥1<®3<®;. Most steps of the above sequence remain
bc3, crosses the indicator curve icl. the same(with W, replacing®; in the second stgpexcept
Recall thato=®,5;(a) is the bifurcation curve for orbits for the following:
on the symmetry lines, and b=¥;;(a) is the indicator 3. At b=V, the inner hyperbolic orbits collide and
curve. In the following we drop the subscript 7/8 and themove onto the symmetry liness ands,, while the hyperbolic
dependence oa. Also, the symmetry of the SNM implies elliptic orbits ons; ands, merely continue to approach each
that®,=d, and ®,=D3. other.

3. The inner elliptic orbits collide with the outer hyper-
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0.9

4. The inner elliptic orbits collide with the outer hyper-
bolic orbits ons; ands, at b=®, leaving only the hyper- o8|
bolic and elliptic orbits ors, ands,.

The difference between the two scenarios is the order ii
which the collision alongs; and s, and the move of the o6 | /

0.7

hyperbolic points onts; ands, occur. Both occur simulta-
neously for the(a,b) value at whichd; andW¥, intersect. a
As in the standard scenario of odd-period orbits, mean o4r
ders appear in this case when the maximum of the winding
number profile is rational. But now there aveo meandering

05

03

regions, and none of the meanders @ravariant[Fig. 5(e), oz r
alongsy]. o1 |
Note that the indicator curves, which are obtained using , =1 spil peints

1 L I L L 1 L L L
.32 0.325 0.33 0.335 0.34 0.345 0.35 0.355 0.36 0.365 0.37
a

e

the symmetries of the map, track collisions occurring alonc
the G-invariant curve while the bifurcation curves track the
collisions occurring at maxima in the winding number pro-
file, which may or may not be shearless.

This motivates an extension of the definition of bifurca-  °°f
tion curves. Recall that in the original definition the bifurca-
tion curve determines thglobal boundary in parameter 04 b
space between existence and nonexistence of periodic orbi
of the corresponding winding number. These curves corre. oz}
spond to maxima in the winding number plot, and will be
denoted byd%: ; from now on.

In the region of parameter space where féor more
orbits of a particular winding number exist,rew kind of
bifurcation curve can be defined that corresponds to paran
eter values at which the inner orbits are born, denote®By stiepli poifts
In this case, the Wlndlng number profile hal®eal minimum 3 ees o..e7 o.als75 o.lsa o.tlaes o.lsg o.zlses ol.7 o.;os 0.71
(or local maximum for higher order curvigs-or even-period @
orbits, as expected and verified numerically=®;". To es-  FiG. 7. Boundary of breakup diagrafdots and bcl for 1/3 orbitstop)
timate the region of parameter space in which there are morand 2/3 orbit{bottom. Points marked®) correspond to points wherb{""
than two chains of periodic orbits, we plot the points of a1d®7' of close-by periodic orbits separate.
separation of indicator and bifurcation curves for several dif-
ferent (odd and evenwinding numbers. The results are
shown in Fig. 6. Within numerical uncertainty, close to the

1/1“ blfurcettlon curve the points seem to lie on a curve. S|m|—:q):n. Thus, we have implemented a version of the numerical
lar “curves” have been numerically observed for a few other,

' ; , method for finding bifurcation curvé$®’ for both the inner
winding numbers(e.g., Fig. 7, where we mark the points at

) L : . ) and outer orbits in the parameter space region where more
which the indicator curves split from the bifurcation curves

: L ) than two chains exist. Figure 6 shows the bifurcation curves
(alongs,) for several inner orbits, in the region of parameterso. ihe outer orbits, b= ®Ut

o ; ‘ gioj(@, and inner orbits, b
Space ﬁfﬁ;ﬁiiﬁé S D?r“'e“) and 2/3 orbitlright) bifur-  _qn (a) of winding number 8/9(Recall that in the odd-

_ _ . period standard scenario the bifurcation curee®", are the
Remark 2 In Ref. 7 Petrisoret al. conjectured that in

) . ) _ i same for all four symmetry lingsFor the remainder of this
generic nontwist maps the dipole formation scenario fo

. ) ) "Olsection, we will drop the dependence amand the subscript
even-period orbits does not occur. Instead, their numerlcaé/9 for brevity

studies showed that one of the elliptic chains bifurcates, cre- A magpnification of(a,b) space around the separation

atiljg and subsequently f:les_troying a sf’:lddle_-center paif)oint (Fig. 8) reveals the birth of a new hyperbolic—elliptic
Wh'(.:h h_as the effect O,f allg_nmg the elliptic points of one pair of periodic orbits along each of the symmetry lines at
chain with the hyperbolic points of the other one. Reconnec _ gin for a>0.9295(lowest curve in Fig. B This pair of

tion occurs then according to the standard scenario for Odd(Srbits moves apart and eventually collides/annihilates with

period reconnection. the outer, up and down, orbits on the symmetry lines. These
collisions do not occur simultaneously in parameter sgjace
contrast to the even cgsavhich explains the existence of
two outer bifurcation curves along each symmetry line, one
Since there is no analog of the criterion E§) for the  for the outer up orbit and one for the outer down orbit, de-

odd-period orbits, we cannot define indicator curves for thesaoted by ®PU"UP and G4 respectively. Because of the
orbits. But we note that the indicator curves for even-periodsymmetry of the SNM,®ULUP =PULdown gng @uLdown

orbits are the bifurcation curves for the inner orbits;,  =®3“U , To illustrate this nonstandard reconnection—

0.6

02

0.1 [

B. Nonstandard reconnection for odd-period orbits
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0.1865 |- ] this interplay between the different reconnection scenarios
and transition to global chaos by looking at the magnification
of the breakup diagram around the indicator and bifurcation
curves of the 5/6 orbitsFig. 12.

(i) For approximatelya<0.883, indicator and bifurca-
tion curves along the different symmetry lines coincide, and
lie within the nonchaotic region of the breakup diagram. Fix-
ing a and increasing the perturbatibrthrough the reconnec-
tion process does not lead to global chaos. This is because of
the presence of invariant tori “above” and “below” the re-
connecting chains of orbitgFor the remaining discussion,
we will refer to these as “twist” tor).

(i) For approximately 0.888 a<0.893, the lower pair

0.186 [

0.1855 -

0.185 |-

0.1845 |-

09294 09296 09298 083 09302 09304 of curves follows the boundary of the breakup diagram. In-

a

creasing the perturbation through the boundary corresponds
FIG. 8. Magnification of split region in parameter space for 8/9 bifurcationto a reconnection that results in global chaos. The reason for
curves. The curves appear in the ordef < @7 gfraee this can be understood as follows: For parameter values
slightly below the lower pair of curves, no twist invariant tori
@(ist above or below the shearless region. Only the tori in the
region between the two chains of 5/6 orbits inhibit transport.
When the perturbatioh reaches the lower pair of curves, the

up and dowr{outed orbits exist andv,;,>8/9, inner chains hyp_erbolic 5/6 orbits coI.Iide and the_tqri betvyeen the two
of orbits are born[Fig. %a)] at b=®", and subsequently chglns are destroygd. Since the collldlpg orbits are hyper-
form a nested topology with meandering ortiiig. 9(b)]. bolic, their separatrices form a heteroclinic tangle that con-
As seen in the corresponding winding number profile along'€cts the up and down chaotic regions, resulting in global
s,, the bottom of the valley exhibits a hill whose edges havechaos, consistent with the observation that the lower pair of
the valuew,;=8/9. Theleft edge, corresponding to the new curves form a boundary of the breakup diagram.
periodic orbit pair, broadens as its hyperbolic and elliptic (i) For approximately 0.898a<0.91, we see the first
orbits start to move apaffig. 10, whereas the right one, of the two nonstandard scenari@f§g. 5) discussed in Sec.
corresponding to the heteroclinic connection between new! A. Here again, no twist tori exist for parameter values
pairs on other symmetry lines, continues to toueh;,,  close to the lowest curv&;. The inner orbits, which are
=8/9 atonly one point. The winding number of the shearlessborn atb=¥3, move apart and reconnect with the outer hy-
curve, corresponding to tHecal maximum(top of hill), and  perbolic orbits for some¥;<b<®d;. At this point, global
those of the meandering orbits, are greater than 8/9. chaos ensues because the up and down chaotic regions are
(2) Somewhere in the range™ <b< ®{""*F the nested joined through the reconnecting invariant manifolds. Thus
orbits reconnect[Fig. 9c)], resulting in four regular the lower boundary of the breakup diagram lies betwédgn
Poincaré-Birkhoff chaingFig. Ad)], two on each side of the and ®,. Also, for b>W,, the off-symmetry line hyperbolic
central shearless curve. orbits move onto thes; symmetry line and their invariant
(3) At a higherb value in the same range, the two up manifolds are no longer connectédleconnection). Mean-
chains and two down chains reconnfélg. 9e)], resulting  dering orbits are created as these hyperbolic orbits move
in two regions of nested orbits with meandering tfig.  apart alongs,. These meandering orbif§ig. 5(h)] inhibit
9(f)]. Again, the winding numbers of the meanders is lessylobal chaos. Thuh=V, (seen as the threshold for “decon-
than that of the reconnecting orbit8/9). Each of these re- nection”) forms the upper boundary of the breakup diagram.

collision sequence, we discuss in some detail the case of 8
periodic orbits alongs; ata=0.94(Fig. 9). .
(1) Whereas for small perturbatiorifp<<®'"), only the

gions contains aijt‘fpa”es& but goinvariant, meander. (iv) It was noted in Ref. 38 that if the up and down twist
(4) At b=@7™% the outer up orbits undergo a regions of the map exhibit chaos when the odd-period orbits
hyperbolic—elliptic collisionFig. A(g)]. reconnect, the reconnection leads to global chaos for the

— ,d H
(5) At b‘fD(iUt ', the outer down orbits undergo a gpove-mentioned reasofie., because of the heteroclinic
hyperbolic-elliptic collision[Fig. Ah)], after which no fur- 13016 of the invariant manifoldls

ther 8/9 periodic orbits exist. Thus we see that, in general, reconnecti@nd the
breakup of twist toni has a significant effect on the transition
IV. DISCUSSION to global chaos. Many, if not all, of the “smooth” boundaries

To understand the effect of the different reconnection-0f the breakup diagram can be conjectured to be the result of
collision scenarios on the global transport properties of theeconnections of invariant manifolds. Indeed, the reconnec-
map, we compare the computed bifurcation and indicatotions of orbits with higher periods can give rise to finer struc-
curves with the breakup diagram, obtained using the procetures in the breakup diagram. Thus, the “fractal” nature of
dure of Sec. Il E. The results are presented in Fig. 11. We sethis diagram might be related to the reconnections in phase
that these curves serve as a scaffolding for the diagram, espace happening at smaller and smaller scales. A reliable
observation also made in Refs. 38 and 44. We will illustratecriterion for determining the reconnection threshold and its
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s4 . sl

FIG. 9. 8/9 orbit reconnection at=0.94. The upper plot showsyavs x phase space plék  [-0.25,0.23,y € [-0.5,0)) and the lower one the corresponding
winding number profiles along the two indicated symmetry lieslongs vsy, » € [8/9-0.00208/9+00016). The plots correspond to thevalues:(a)
0.2015781 (=®™"), (b) 0.2018, (c) 0.202 155, (d) 0.2036, () 0.20515, (f) 0.2059, (g) 0.206 7917 (=d"'A, and (h) 0.208 108 4
(xq)(lmt,duwr)_

numerical implementation will be extremely useful for test- nontwist map, but are not observed in twist maps. The bifur-

ing these ideas. cations are locally of three types: collision and annihilation
of hyperbolic—elliptic orbit pairs; collision of two symmetric
V. CONCLUSION hyperbolic orbits resulting in two nonsymmetric hyperbolic

In this paper we presented a unified view of variousorbits; and the simultaneos parameter and phase space
bifurcations and reconnections that occur in the standardollision and annihilation of two hyperbolic and two elliptic
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FIG. 10. Magnification of the winding number profiles alan®f Figs. 9a)
(top) and 9b) (bottom).

Chaos 15, 023108 (2005)

We have demonstrated that the nongeneric standard non-
twist map has more types of periodic orbit reconnection sce-
narios than previously known, resulting from the presence of
four (or more chains of periodic orbits of the same winding
number. Meandering tori, associated with the odd-period re-
connection in the SNM, have been shown to exist for certain
regions of parameter space for nonstandard even-period re-
connection. Petrisor and co-workétsve started to compile
a list of possible reconnection scenarios for nontwist maps.
Our investigation contributes new global scenarios for the
case of nontwist maps with a reversing symmetry group,
including a spatial symmetry.

We also conjecturéand present heuristic observatipns
that the reconnection of hyperbolic separatrices leads to glo-
bal chaos if no “twist” tori exist in the region “outside” the
reconnecting chains of orbits. Determination of the breakup
threshold of the last twist tori and a precise criterion for
calculating reconnection thresholds will shed more light on
the accuracy and usefulness of these observations.
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APPENDIX A: BASIC DEFINITIONS

For reference, we list a few basic definitions used
throughout the main text. Aarbit of an area-preserving map
M is a sequence of point¥x;,yi)}-_. such thatM(x;,y;)
=(X+1,Yi+1)- Thewinding numbew of an orbit is defined as
the limit w=lim;_ .(x;/1), when it exists. Here thg coordi-

orbits. The latter is seen only in the SN&Ind closely related nate is “lifted” fromT to R. A periodic orbitof periodn is an
maps because of its high degree of symmetry. The twoorbit M"(x;,y;)=(x+m,y;), Oi, wherem is an integer. Peri-
former bifurcations are observed in all nontwist maps.

0.8

06

04

0.2

odic orbits have rational winding numbets=m/n. An in-

3/4 b3 e

FIG. 11. Parameter space showing the
points for which shearless invariant
tori exist. Also shown are some bifur-
cation and indicator curves and two
critical points (marked byO) found
using Greene’s residue criterion.

0.2

0.4

0.6

0.8
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variant torusis a one-dimensional sef that is invariant preserving maps consist of points in phase space, called in-
under the mapC=M(C). Of particular importance are the dicator points. For the SNM, fixed points of,&ind S} are,
invariant tori that are homeomorphic to a circle and Windrespectively,zgi):(ii,ib/2), and z(f):(a/Zi;ll, ), where
around thex domain because, in two-dimensional maps, theyz;=(+1, +b/2) etc.
act as transport barriers. Orbits belonging to such a torus The involutionsly, |4, S, and their products form a group
generically have an irrational winding number. G called thereversing symmetry groudhere is at most one
homotopically nontrivial invariant torus that is invariant un-
APPENDIX B: SYMMETRY PROPERTIES OF THE SNM der the action ofg.? This torus is called thecentral or

In thi di iew th ; i fg—invariant shearless torugs. The indicator points belong
n this appendix, we review the symmetry properties of, vs when it exist440

the SNM. A detailed discussion of these types of symmetries
In gen_eral can be_found in Ref. 48 and, in the context of !D. Del-Castillo-Negrete and P. J. Morrison, Phys. Fluid$,048(1993.
nontwist systems, in Ref. 2. %E. petrisor, Chaod1, 497 (2001).

The standard nontwist ma is time-reversal symmet- °R. Balescu, Phys. Rev. B8, 3781(1998.
ric with respect to two involutionli) andll ie M—1:|_—1 M “W. Horton, H. B. Park, J. M. Kwon, D. Strozzi, P. J. Morrison, and D. I.

. P ! Choi, Phys. Plasma$, 3910(1998.

2_ - ) )
li, If=Id, for i=0,1. It then follpyvs thaF the SNM can pe 5P. J. Morrison, Phys. Plasmag 2279(2000.
decomposed aM =l,°l,. In addition,M is also symmetric  ®G. A. Oda and I. L. Caldas, Chaos, Solitons Fracld5 (1995.
under an involutiorS which commutes with botly, i.e., M ’E. Petrisor, J. H. Misguich, D. Constantinescu, Chaos, Solitons Fractals

=gl 2= = i ; 18, 1085(2003.
S+ M S $=Id, andS |=I; S The involutions have the T. 1, Stix, Phys. Rev, Lett36, 10 (1976.

following form: lo(x,y)=[-X,y=bsin2mx)], 11(X,y)=[-X 9 Yjimann and 1. L. Caldas, Chaos, Solitons Fractals 2129(2000.

+a(1-y?),y], andS(x,y)=(x+1/2,-y). %\, G. Davidson, R. L. Dewar, H. J. Gardner, and J. Howard, Aust. J.
Since thel; are orientation reversing, their fixed point 11PhyS- 48, 871(1995. _

sets, Fi:{(x,y) | |i(X,Y):(X,Y)}, are one-dimensional sets, T. Hayashi, T. Sato, H. J. Gardner, and J. D. Meiss, Phys. Plagm#s2

. 1995.
called thesymmetry linesf the map. For the SNM, con- 125/\/. T_S)Kyner' Mem. Am. Math. Soc81, 1 (1968.

sists ofs;={(x,y)|x=0}, s,={(x,y)|x=1/2}, while T'; con-  3A. Munteanu, E. Garcia-Berro, J. Jos¢, and E. Petrisor, CHap$32

sists of s;={(X, =a(1-vy9)/12}, s,={(x, za(1-y?)/2 (2002.
+I1/2}_ ={(0y)[x=a(l-y")/2}h s={(x,y)[x=a(l-y") 3. B. Weiss, Phys. Fluids /8, 1379(1991).

: i . 5D, Del-Castillo-Negrete and Marie-Christine Firpo, Chak® 496 (2002.
It is easy to check the® does not have any fixed points. 165 apte  A. wurm, and P. J. Morrison, Chadi8, 421 (2003.

Symmetry lines are useful because the numerical search féf. Del-Castillo-Negrete, J. M. Greene, and P. J. Morrison, Physi&1D
symmetric periodic orbits, i.e., orbits with a point belonging 1 (1996. . _
to one of the symmetry lines, is a one-dimensional root find- A. Apte, R. de la Llave, and N. Petrdunpublisheg, draft available at
. ' . (http://www.ma.utexas.edu/mgrc-bin/mpa?yr04-320).
ing problem anc_j henpegggn&derably easier than the searehy peishams and R. de la Liave, SIAM J. Math. AndlL, 1235(2000.
for nonsymmetric orbitd>*° For the SNM, there are gener- . Franks and P. Le Calvez, Ergod. Theory Dyn. S@&. 111 (2003.
. . . . 21,
ally two orbits along any symmetry line of any winding 222- Moeckel, Erlgod. r'l\'heory Dyn. Sys(LO, 18?5(1990_
: . Sim6, Regular Chaotic Dyr3, 180(1998.
num_l?her' g?\llll\e/ld _the!p anddown IOI’bItS. . ith 234 R. Dullin, J. D. Meiss, and D. Sterling, Nonlinearity3, 203 (2000.
€ IS time-reversal symmetric with respect t0 243 p yan der Weele, T. P. Valkering, H. W. Capel, and T. Post, Physica A

maps Sl as well. The fixed point sets of these orientation 153 283(1988.
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