Available online at www.sciencedirect.com

scrence @oimeer- PHYSICA [

Physica D 200 (2005) 47-59

www.elsevier.com/locate/physd

Renormalization for breakup of invariant tori

A. Apte*, A. Wurm, P.J. Morrison

Department of Physics and Institute for Fusion Studies, University of Texas, Austin, TX 78712, USA
Received 11 June 2003; accepted 24 September 2004

Communicated by I. Mezic

Abstract

We presentrenormalization group operators for the breakup of invariant tori with winding numbers that are quadratic irrationals.
We find the simple fixed points of these operators and interpret the map pairs with critical invariant tori as critical fixed points.
Coordinate transformations on the space of maps relate these fixed points, and also induce conjugacies between the correspondin
operators.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Area-preserving maps have been used extensively as low-dimensional models for physical systems, e.g., magnetic
field lines in tokamaks, experimental devices designed for confining hot plasmas to produce fusion energy. Maps
that are not too far away from being integrable, the map version of the existence of action-angle variables, exhibit
phase space plots with several different types of orpigsiodic orbits which are discrete sets of points that are
invariant under map iterationgvariant tori, which are one-dimensional curves that traverse phase space, and
chaotic orbits which randomly sample regions of phase space.

Of particular interest from a physics viewpoint are the invariant tori, because thegrasport barriersi.e., orbits
with initial conditions on one side of an invariant torus will remain on that side under an arbitrary number of map
iterations. Mathematical KAM theory guarantees the existence of a dense set of invariant tori for small perturbations
away from integrability, but large perturbations destroy most or all of these tori. Here we are interested in the behavior
of a certain kind of map under perturbations that push the system far away from the integrable limit.
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Numerical studiefl, 2] of invariant tori that are pushed to the point of break-up, so-caligidal invariant tori,
have found universal scaling behavior (i.e., the same behavior for different maps and different winding numbers) of
the torus and its phase space vicinity (see further below for details). This motivated the introduction of renormal-
ization techniques, analogous to those used in the study of phase transitions in condensed matter physics, for th
study of area-preserving majis3,4]. In contrast to KAM theory, the renormalization group approach addresses the
problem of destruction of an invariant torus with a specific winding number under strong perturbation. The detailed
implementation is based @reene’s residue criteriofor which we refer the reader to, e.{6].

An interesting and still open problem is the question of universality in the break-up of invariant tori: What classes
of area-preserving maps show the same scaling behavior of tori at break-up for a specific winding number? For a
specific map, what classes of winding numbers of invariant tori show the same scaling behavior at break-up?

In renormalization group language these questions are rephrased in terms of fixed points of renormalization
group operators (RGOs) defined on the space of area-preserving maps. There are two kinds of fixesimpplets:
fixed points andtritical fixed points. In the case of area-preserving maps one arrives at the following interpretation:
A simplefixed point is an integrable map, and its basin of attraction contains all the maps for which the invariant
torus exists. Acritical fixed point is a map for which the invariant torus under consideration is at criticality, i.e., at
the point of break-up. All the maps in its basin of attraction exhibit the same universal behavior at break-up.

The most studied renormalization group operator (RGO) is that for the winding numpewherey = (1 +
V/5)/2 is the golden med8,4]. The purpose of the present work is to construct RGOs for other winding numbers, to
describe coordinate transformations on the space of maps that relate fixed points of RGOs, and to describe conjugac
relations between RGOs. The RGO fohZ was previously constructd®,6] using the method presented here.

The RGOs we construct are similar to thosg#f which have been applied extensively to study renormalization
in Hamiltonian flows. In the remainder of this section we review the RGO fer &s both a means of introduction
and to set our notation.

An area-preserving may of a cylinder,M : T x R — T x R, can be represented by its liff’, which is a map
of R? to itself that commutes wit®(x, y) = (x — 1, y), M'R = RM'. Commutation implies that iterations ofM’
followed by an appropriate number of application$a$ equivalent ta: iterations ofM. Thus, instead of studying
M, we can equivalently study the pair of commuting maRsX’) of R? to itself. The RGOs are defined on the
space of such commuting map pairs. The introduction of commuting map pairs is convenient because it removes
complications associated with spatial rescaling and periodicity (of the cylif¢l&f)

Let (U, T) be a pair of commuting maps. Thebit of a pointz = (x, y) € R? is the set of point§U™ 1"z}
for m, n € Z. An orbit has thewinding numberw if for some sequencép;/q;} of rationals withg; — co and
pi/qi — o, the sequencerU?i T%z)/q; — 0. (Hererz = x is the projection fronR?2 to R.) An orbit isperiodicof
type (p, q) if UPT9z = zand (p, q) are the smallest such integers. Such periodic orbits have winding nymdper
An invariant torusis a curve that extends from= —oo to +o0 that is invariant under bottd andT. Generically,
invariant tori have irrational winding numbers.

Invariant tori with irrational winding numbers are studied numerically by finding the periodic orbits with
winding numbers that approximade To facilitate calculation it is important to find the sequence of rationals that
converges the fastestén The convergents obtained by successive truncations of the continued fraction expansion
of w provide such a sequence. Also, as we shall see, such sequences of convergents are intimately connected
renormalization.

The convergents obtained by truncating the continued fraction expansiofyet I0,1,1,1,...] =: [0, 1]

(where we use standard continued fraction notation as inNf®)aqre F;/ F;+1 whereF; are the Fibonacci numbers
defined by

Fo=0, F1=1, and F,=F,_1+ F;_». 0}

Numerical studies of the break-up of invariant tori (see, ¢24,6] and[16]) have discovered two important
features of the phase space near a critical torus:
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1. The torus itself is invariant under rescaling of phase space, i.e, )i (ies on the torus, then so doesx( By)
for the specific values af, 8 € R that depend on the universality class under consideration.

2. The lower order periodic orbits that approximate the torus coincide with the higher order ones after rescaling
phase space by exactly the same factoasdf.

Thus, in renormalization group language, the map at criticality is on the stable manifold of a critical fixed point of
the RGO.

These observations motivate the explicit construction of the RGOs in Séttiangive a simple example, the
RGO for tori of winding number Ay, R1/,, maps a pair{(, T) of commuting maps onto a new paiv'( 7’) as
follows:

U':=By,oToBy,, T :=By,olUoToB, )

where o’ denotes composition. For convenience this is written compactly as

v R (YY) =, (T ) B2 (3)
A 1/y 7]~ 1/y UT 1y

This operator has two parts:

e Space renormalizatigwvhich is achieved by the coordinate charje, on R2, which rescales the phase space
coordinatesx, y) by (x, y) = B/, (x, y) = (ax, By).

¢ Time renormalizationwhich is achieved by the specific combinatiorn.b&dndT that maps a periodic orbit with
period equal to a convergent of 1 onto another one with period equal to a lower order convergent. To be
specific, an orbit of {, T) with winding numberF;/F;y1 is also an orbit of ', T’) = (T, UT) with winding
numberF;_1/F;:

(W) (T = (D)D) = UR Tt = gFipFin, (4)

The time renormalization also keeps the torus with winding numpeiirivariant, i.e., ifz lies on the }y-torus
of (U, T), then it also lies on the/}-torus of (U’ T").

This paper is organized as follows. In Sect®nwe present the construction of RGOs for winding numbers
that are quadratic irrationals. The main idea is to construct an operator such that the time renormalization part
maps into each other those periodic orbits that have winding numbers that are convergents of desired irrationals.
We find the coordinate transformations, on the space of maps, that relate the fixed points of these operators. These
transformations, presented in Sect®)also induce conjugacy relations between the different RGOs. In Séction
we find the simple (integrable) fixed points of the RGOs. In Sea@ig@rthe critical maps for various winding numbers
are interpreted as critical fixed points of these RGO operators. Finally, in Séctiensummarize and indicate
directions for further studies.

2. RGO for quadratic irrational winding numbers

Any gquadratic irrationab has an eventually periodic continued fraction expanfbrHere we choose & o <
1. Then

o =10,91,92,...,91,P1, P2, - - - » Pkl» (5)
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wherep;, g; € N. For such winding numbers, the RGO is defined as follows:

) =Ru =By | . |Bh (6)
T T UST

whereB,, is a coordinate change on phase space. Here u € Z, with [ru — st| = 1, are the elements of a matrix
that relates approximants af In particular, convergents obtained by truncating the continued fraction expansion
of (5) are related to each other by a matrix as follows:

<m"+’<> - (”) (m> fori > 1+ 1. @)
Nitk tu ni

The existence of such a matrix was noted4h A method for constructing it in the present context is given in
Appendix A

It can be verified easily th&,, maps an;/n;-periodic orbit fori > [ 4+ 1 to am;4¢/ni+x-periodic orbit. Letz
be am;/n;1r-periodic orbit of U, T), i.e.,

UMitk Thitkz — 7. (8)

Then
Ui B,z = (BwUthBw—l)m,-(BwUsTu Bw—l)n,-BwZ — BwUrm,'+sn,-Ttmi+umiBw—leZ = B,z

Thus,B,zis am;/n;-periodic orbit of U/, T’). We can also verify that the torus with winding numhbss invariant
(up to a coordinate changdg,) under this operator, i.e., #lies on thew-torus of (U, T) thenB,,z lies on thew-torus
of (U', T).

The operatofR,, is of the same form as that given for maps associated with Hamiltonian flows in Proposition
1.1 of Koch[7]. We also note thaR,, defined here is slightly different from the one originally defined by MacKay
[3]. MacKay introduced an operatdk, defined by

L= Ny, =B " B . (9)
T T T"U

with the property that an orbit ofc( y) has the winding numbes = [m, m1, m», ...] under U, T) iff B(x, y) has
winding numberw’ = [m1, m», ...] under U’, T"). As a consequencd/( T) has an invariant curve of winding
numberw iff (U’, T") has an invariant curve of winding numhet, wherew ande’ are related byp = m + 1/o'.

The key difference between MacKay'’s operator and the one used here is that in his case the winding number of
the orbit under consideration changes after each applicatidf,pfvhile the operatoiR,, preserves the winding
number. As a consequence, in each step of the renormalization a diffé¢sastused, while here theameR,, is
applied every time. For numbers of the fomn= [0, p], the two operators coincide. On the other hand, the use
of N, is not restricted to quadratic irrational winding numbers. The operdtohas been further studied in, e.g.
[L0-12]and references therein.

For later use, we also write down the RGOs for winding numbers of the form

Ql=[07ql’q27""ql7ﬂ' (10)

Let us denote

wp =[p] = 11)

p+vp?+4
—
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Then,
b
= 400 (12)
¢ +dwp
wherea, b, ¢, d € Z are given by
£ =10,91.92,-...qi-1l, £ =10.91.92.....q] (13)

ands := ad — bc = (—1) [9]. The relation between the successive approximant®, i given by

mit1 ABY\ [(m; .
= fori > 1+ 1, 14

where

A = (1/8)(bd — ac — bcp), B = (1/8)(a® — b® + abp), C = (1/8)(d? — ¢? — cdp),

D = (1/8)(ac — bd + adp), (15)
andAD — BC = —1 (seeAppendix A). The RGO for this winding number is given by
U UATe\
Rail o ) =Ba\ yopo | Bar (16)
Thus, for the winding numbeRo = 1/w, = [0, p],
U T .
Rijw, T = Bijw, UT? Bl/a),,' a7)

3. Conjugacy relations between the RGOs

In this section, we find the coordinate changes, on the space of commuting map pairs, that induce conjugacies
between the RGOs of different winding numbers that have the same periodic ‘tail’ of the continued fraction expan-
sion. For simplicity, we will work with numbers of the form given in E¢E0)—(12) This can be generalized easily
to numbers with arbitrary periodic tails if we replaeg by wo = [pr, pi—1, - - -, P1l-

We will show that fors2; andw, as defined in Eq410) and (11)the following conjugacy holds between the
operatorskae, andR g,

Ra, =C 1 oRiw, oC, (18)

where

(Y UT N g1 (U Ly [ UAPTE ¢ 19
) =%\ vpra ’ r ) =% \ysqas | > (19)

andSis a particular phase space coordinate change.
To prove the above statement, note that the RHS of B).acting on (U, T) yields

1 U . sueres—1
C - o R1/w, © C T =C "o Rijw, SUbTdg-1
U(hd—ac—bcp)/8 T(dz—cz—cdp)/é

1 -1
U(az—b2+abp)/6 T(ac—bd+adp)/8 ) (S Bl/a)p S) ’

= (S B/, S) (
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while the LHS of Eq(18)yields:

U UATe\
Re, | =B UBTD By (20)

Thus, if S~*B1/,, S = Bg,, then Eq(18) holds.
We have presented the operators for winding numbetse®< 1. The operator fow > 1 can be shown to be
conjugate to that for & 1/w < 1 by

Ry =T toRiwoL (21)

where

(YY) =5 (") s 1Y) o517 ) s (22)
]~ ""\u) ]~ \v)°"

If < 0, then we can writee = —p + @, where O< @ < 1 andp € N. The operator fow is conjugate to that for
w by

Ro =,/\/Llo7'\’,5, o N, (23)

where

N(?) =Sy <:Up> sy Nt (IT]) =Syt (lTJUp> Sy (24)

In Egs.(22) and (24) S; and Sy are phase space coordinate changes.
The important consequence of Efi8)is that the fixed pointsi(e,, ;) and U1/, T1/w,) Of Re, andRayq,,
respectively, are related by the coordinate chahge the space of maps, i.e.,

U Ut/
el )=(""). (25)
Ty, T1)w,

Recall that there are two kinds of fixed points of these R&mpleandcritical. A simplefixed point is an
integrable map, and its basin of attraction contains all the maps for which the invariant torus exisisahfixed
point is a map for which the invariant torus under consideration is at criticality. All the maps in its basin of attraction
exhibit the same universal behavior at critical breakup. The rel§@byalso implies that the maps corresponding
to the fixed pointsl¢, Te,) and U1/, T1/«,) belong to the same universality class, and exhibit the same universal
critical behavior. In general, since the maps with critical invariant tori of winding number with the same continued
fraction expansion tail are related to each other by coordinate transforms on the space of maps, they belong to the
same universality class.

4. Fixed points and cycles of RGOs for specific maps

In this section, we present some specific cycles of the RGOs presented above. The form of the simple cycles we
find is the same as the simple fixed point and the simple two-cydR, af found in[3] and[13], respectively. This
specific form is motivated by the integrable=£ 0) limit of the following widely studied maps:

y=y-— % sin(2rx), X =x+Y, (26)
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and
y =y — ksin(2rx), X =x+a(l—y?), 27)

where §, y) € T x Randq, k € R are parameters. We refer the readdBtd,14]for a detailed discussion of these
maps. Here we only recall that a migpis said to satisfy théwist conditionif

/
% #0, whereg’,y) = M(x,y). (28)

The former is thestandard mapthe most common example of a twist map while the latter istardard non-twist
map[15].

In Section4.1, we find the simple fixed points [with linear twist as in Eg6)] and two-cycles [with quadratic
twist as in Eq.(27)] of Rg,. In Section4.2, we find the critical nontwist 12-cycles for the RGOs for a few noble
winding numbers and find the critical conjugacy relations between them.

4.1. Simple fixed points and two-cycles

In this section, we present the integrable fixed points and two-cycl®yp{Eq. (16)). Motivated by the maps
of Egs.(26) and (27)we find the twist fixed pointl{g,, T;,) and nontwist two-cyclel{o,+, T,+) of the following
form:

Ug(x,y) =(x+ey+ £ ) andTq,(x,y) = (x + gy +h, y)

Ug(x,y) = (x + ex)? + fi, y) andTo+(x, y) = (x + gy + h. y) (29)
by solving the following equations

BQIU?Zng,BEZIl(xv y) = Ug(x, y), B_Q,U_g[ T_ngéll(x, y) = T (x, y), (30)
and

Bo U TG Bo (v, )) = Uas(x.y).  BoUS.ThiBoi(x.y) = Ta=(x. ). (31)

where Bg, (x, y) = (xg,x, Be,y) is the space renormalization. We also tried to find the nontwist fixed point and
twist two-cycle. They are not presented here because the winding number for the nontwist fixed point is found to
be constant (as a function gf, which we refer to as an integralbilen-twistmap and the twist two-cycle is simply
a multiple of the twist fixed point.

Let us introduce some notation for representing the solutions. We will us¢IB}s(12), and (15)The quadratic
equation satisfied by:= —1/2; can be shown to be the following:

B?s> + (2D — p)s +(D*— Dp— 1) = 0. (32)
Let us denote by the other solution of this equation. The following relation can be established:

—C C
=%  and 5= .
1+ Awp wp— A

N

(33)

Solving Eqgs.(30), we get four fixed points: two of these are trivial because the winding number is a constant;
one of them ha$ as the winding number of the= 0 orbit. Thus, the only one which has the winding numier
aty=0is

Ug/(x,y) = (x+ey+ £ ), To(x.y) = (x+ £y —2£y), Bg(x.y) = (—wpx, —aby).  (34)
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This is really a two-parameter family of fixed points. Using the definiﬁlﬁ)Tgl(x, y) = (x, y) of a periodic orbit
of winding numberp/q, we obtain the winding number as a functionyof

_ %y—sz_ e e _1_ 1)\ e 5
o) =~ = (1o ) (1 ) = e (1 ) o ()]

We see that the invariant torusyat= 0 has the winding numbe®;, and the winding number changes linearly with
y. Thus, this is the twist fixed point G2 ;.
Solving Egs(31)results in 16 two-cycles: half of these are trivial because they have constant winding numbers;
four of them havé as the winding number of the= 0 orbit; for two of themUg, 1. (respectivelyl'p, ) differs from
Ug,— (respectivelyTp,,—) only in the constant termg. (respectivelyk). Thus, the only non-trivial two-cycles
with the winding number?; aty = 0 are

Ugs(x,y) = (x £ ey? + f ), Toa(x,y) = (£ 52— 21 y), Bgo,(x,y) = (—wpx, Twpy).

(35)

This again is a two-parameter family of two-cycles. As above, we obtain the winding number
=—— - =1F(1+—) = @) . 36
ws) = -2 a1z (14 o) 20 ()] @)

We see thay = 0 is the torus with winding numbe®; and w(y) has an extremum at= 0. Thus, this is the
non-twist two-cycle ofR o,.

Replacings2; by (1/w)), i.e., settingr = 1, b = 0, c = 0, andd = 1 gives the integrable twist fixed point and
non-twist two-cycle ofRy,,,. These are given by

Ujo,(6, ) =+ ey + £3), Tiyo, (6. 0) =@ +ewpy = £.3). By, (x.5) = (~opx, —03y).
(37)
and
Uto, (e y) =t ey + £3). Tiyoalry) = k£ ewpy — L),
B/, (x, y) = (~wpx, £wpy). (38)

Here, we explicitly verify that the fixed point (two-cycle) &, is related to the fixed point (two-cycle) &,
by the coordinate changkof Eq. (19). Thus, we show that

SUS TG, S™Hx, ¥) = Uy, (x,y) and  SUL TE STHx, 3) = Tajw, (%, ). (39)
Evaluating the LHS of each of these equations, we get
SU?ZlTélS_l(x, y) = SUG, TG, (x/w, y/v) =S (% +c(§2—f)+a(el+f). %)
=+ (E+a) Ly+fla—c2)p)= (x+ey+ [,

and

SUL, T4 S74(x, y) = (x + (% + b) Lyt f(b— ds2) M) = (x+gy+h).
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For Egs.(39) to hold, we need that'/f' = —1/w, andg’ /¢’ = w,. Using the relations

d— b
5 = &’ and _Q[ — H—wp’ (40)
—b +aw, c+dwp
we obtain
a+bw
W b-d2 b-dmg, 1 @)
1 a—cS2; a— C‘Clizzi wp ’
and
Codtbs At b
g—/ = = _ +a(l)p = a)p_ (42)

An almost identical calculation shows that the two-cycle®Ref andR1,,, are also related b¢ of Eq. (19).
Note that the phase space scaliigs and B1,.,,, for the fixed points ok, andR1.,,,, respectively, are identical
while the scaling given b$to relate them to each other is undetermined. We will see later that for the critical fixed
points of different winding numbers, the phase space scaling8¢hare the same whereas the scalings that relate
them to each other (tHss) have different specific values.

4.2. Critical fixed points and their relation to each other

We have studied the breakup of shearless invariant tori in the standard non-twist map for the following winding
numbers:

oM =10,1,1,1,..]=1/y,
0@ =00,2111..]=1//
0®=100,22111..]=y%/1+27.

Here we will not present the details of the numerical results but refer the redéet 3016] It is observed that the
convergence pattern (the six-cycle) of Greene’s resifRigspatial scalings, and the eigenvalues of the RGOs at
these fixed points are all the same within numerical accuracy for these three cases. This is expected because the)
are all nobles and hence the fixed points (or higher order cycles; in this case, 12-cycles) must be related to each
other by coordinate transformations on the space of maps. Here we present evidence that such is indeed the case.

We discuss in detail the relation betweendltE-invariant torus and the(@-invariant torus. The relation between
thew®-invariant torus and the(®-invariant torus is the same (except that the numerical values for the scalings are
different). We also note that the operatorsdéf) andw(® are

—-17-1 4p—1
R vl - B, vr B ), R,® vl - B, vr B . (43)
(2} T [ UTZ @) w T [} UllT73 @)

R @ was first presented ifb] and[6].
Itis observed that the positioné,@, yﬁ“)) of thenth convergent ob(@ for « = 1-3 scale in the following manner:

) =A™ and ¥ = B2, (44)

whereAﬁ,“) andB,(f) are period-six functions of. Note that: is a dummy index, i.e., it can be shifted by an integer
without changing the above statement. Also, though the result is true for all the symmetry lines, we will be using the
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o1 torus

@ torus rescaled by (8.14,-3.81)

o) torus rescaled by (6.11,-1.43)
f‘.

\ \‘ \ )/h \ /
\ S \M\
\ A
>
A\ //
. \_'“M /
N
v
N /
\ Y/
1 1 I 1 \g\ -4 1 I I 1
-1e-06 -8e-07 -6e-07 -4e-07 -2e-07 0 2e-07 4e-07 6e-07 8e-07 1e-06
X

Fig. 1. Mapping of critical invariant tori of different winding numbers onto each other. Note that all three tori lie on top of each other but have
been shifted iry for clarity. (Hence the scale gnaxis has not been shown.)

s3 symmetry line in the following discussion (sge3,16]for details about defining symmetry lines and symmetry
line coordinates). It follows from Eq44) that
1 1

Xn Ay

Ay = = (45)
n @740

is a period-six function ofi. (Similarly fory andB,,.) But we observe numerically that, is in fact a constant,
independent of if, in Eq. (45), we choose th& coordinates of orbits which have the same value of residue. This
is shown inTable 1 We see tha#A ~ 8.14 andB ~ —3.81.

We also observe that the critical®-torus maps, locally around the symmetry line, onto the criticab®)-torus
under exactly the rescalingd ( B) of the phase space. Numerical investigation shows that the periodic orbits, not
just their positions along the symmetry lines, also map locally onto each other. This is depi€igs. ih and 2

Table 1
Scaling of periodic orbits approximating tori with winding numbefd andw®
q1 x1 1 q2 x2 ¥2 A=71 B=1
75025 2.012943e5 3.932996e-6 17711 1.638693e4 —1.497908e-5 8.140783 —3.808567
196418 4.783568e6 2.466482e 6 46368 3.894257e5 —9.393067e-6 8.140903 —3.808286
514229 1.932103e6 1.874730e6 121393 1.572945e5 —7.139952e-6 8.141104 —3.808524
1346269 7.24158%e7 2.572146e7 317811 5.895735e6 —9.718763e-7 8.141502 —3.778464
3524578 2.600689¢e7 9.238172e8 832040 2.117285€6 —3.450858e-7 8.141246 —3.735433
9227465 1.187355e7 3.614236e-8 2178309 9.667462¢€7 —1.319071e-7 8.142016 —3.649653
24157817 6.2588718 9.617356e-9 5702887 5.100913€7 —3.147145e-8 8.149892 —3.272360

(x4, ya) are coordinates of the orbit with perigg at criticality for breakup ofs@ torus ¢ = 1 and 2).
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1.5e-06 T T T T T

1e-06 iwﬁ\f\\‘: / ﬂ/hw\ -
A B, pa iy
/ Vi AV \
5e-07 |- 23] @\ /& | -
r | / 4
~J \ b
B B [
0r ey k]I 4
/F : a‘\\

> -5e-07 | / \ E

/8 LN

7 \
-16-06 |- / N -
) |
-1.5e-06 | period=3524578 for (1)  + \\ -
@ Period=832040 for (@) rescaled by (8.14,-3.81) O |

-2e-06 - J (W
!E-g period=1224876 for »(3 rescaled by (6.11,-1.43) o ;)“

_2.5e_06 1 1 1 1 1
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Fig. 2. Mapping of periodic orbits approximating the three invariant tori. The invariant torm&)i shown for reference.

This is interpreted as follows: the mapg® with critical o®-torus is related to the mapf@ with critical
w®@-torus by the coordinate transformatiGn(Eq. (19)) on the space of mapa7® = cM®. The phase space
coordinate chang§ involved inC is diagonal:S(x, y) = (Ax, By) = (8.14x, —3.81y). We note that the coordinate
transformC provides not only a phase space rescaling but alswpping of periodic orbits of different winding
numbers onto each otherFhis is necessary because we are relating periodic orbits with winding numbers equal to
convergents ob() to those with winding numbers equal to convergentséf.

5. Conclusions and future work

We have presented renormalization group operators for studying the breakup of invariant tori with any quadratic
irrational winding number. The simple (integrable) cycles were calculated. We also presented coordinate transfor-
mations on the space of maps inducing conjugacies between different RGOs. The evidence for extending this picture
to the critical fixed points is presented for the case of the standard non-twist map.

These results prompt a re-examination of the breakup of tori in twist maps. For example, we note that the
residue behavior for quadratic irrationals for the standard map{3¢and references therein) can be interpreted
as follows: if a quadratic irrational has periodicityn its continued fraction expansion [as in E)], the residues
of convergents of the continued fraction expansion convergé&-tyale at criticality. This is interpreted as a critical
fixed point of R,, and not ak-cycle of R,, because the RGOs for such numbers relatettheonvergent to the
(i + k)th convergent [see the discussion following Eg)]. Studying twist maps is also useful because the numerical
results for them can be obtained much faster, giving us an opportunity to study a multitude of winding numbers.
Some steps in this direction have been taken.
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Another direction for investigating these RGOs is to study sequences of rationals other than the convergents of
continued fraction expansions such that consecutive elements are still related by the RGO. Preliminary results shov
that the residue convergence patterns for such sequences are similar to those of continued fraction convergents, b
the limiting residue values are differdd8]. These results will be reported elsewhere. Finally, quoting John Greene,
whose pioneering numerical studies and deep insights peppered throughout his work were a constant motivatior
for this investigation, “much work remains to be dorig].
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Appendix A

Here, we derive the relatiafl5) and present a method to calculate the integer matrix givenshy, u in (7).

1. To get(15), letg;/ h; be the convergents of/d,,. Then,

-0
hiva 1p) \ ki

The convergent:;;1/n;1 of £2;, given by
mijy1
ni+1

:[O’ql""7ql7p""’p]’ (A.2)

wherep appearsi(— [ 4+ 1) times, is related t@;_;+1/ hi—1+1 by

Mmiy1  agi—i+1+ bhi—41 (A.3)

nit1  cgii+1+dhipa

where a—d are the same as in EIB) [9]. From Eqs(A.1)—(A.3) it follows that

()= () () ()

which leads tq15) by multiplying the matrices above. Note that £4.3) is valid only fori > [ — 1.
2. To getr—uin Eq(7), let us denote bys;/ H; the convergents of [(p1, p2, - .., pxl]- Then,

()= (2) (), ~
Hiy dd H;

whered’, b, ¢/, d' € Z are given by

/ /

a b
ZZ[O’ p19p2"'7pk—l]7 E:[OvPLPZ’--ka]a (A6)
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andd’d’ — b'c’ = (—1). The convergents, i /ni4x of w are related ta@,_;.x/ Hi_i+x by

Mmivk _ aGi—j1k +bHi— 4k

- , (A.7)
nivk  ¢Giojrk +dHi 1y
where a—d are the same as those in(#8) [9]. From Eqs(A.5)—(A.7) it follows that
-1
m; ab alb ab m;
i+k _ o N (A.8)
Ntk cd cd cd n;

Multiplying the matrices and comparing wiffd) results in explicit, though not very illuminating, expressions
for r—u. We note that

! 1/

a k
ru —ts = det cd = (—2)~. (A.9)
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