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Hamiltonian and action principle formulations of the basic equations of plasma physics are
reviewed. Various types of Lagrangian and Poisson bracket formulations for kinetic and fluid
theories are discussed, and it is described how such formulations can be used to derive and
approximate physical models. Additional uses are also described. Two applications are treated in
greater detail: an algorithm based on Dirac brackets for the calculation of V-states of contour
dynamics and the calculation of fluctuation spectra of Vlasov theory and shear flow dynamics by
methods of statistical mechanics. ©2005 American Institute of Physics. fDOI: 10.1063/1.1882353g

I. INTRODUCTION

Since antiquity there have been many attempts to ex-
plain nature by means of various kinds of minimization
principles.1 For example, in classic times Hero of Alexandria
sca. 75 ADd is reputed to have attributed the path taken by
reflected light to be that which minimizes the distance trav-
eled, while in the Renaissance Fermat produced his principle
of least time to offer an explanation for the path of light rays
in optics. Many great thinkers incorporated such principles
into their philosophies, natural and otherwise, but it is said
that this line of thought reached an apex with Hamilton who
developedsca. 1830d a mathematical formalism for both
light and particles. It is Hamilton’s principle, the prototype
action principle, that is most prevalent in modern expositions
of mechanics, and belowsSec. II Ad we take this as the start-
ing point for our exposition of the Hamiltonian and action
principle formulations of equations that describe plasma
physics. Of particular interest here are infinite-dimensional
systems or field theories such as fluid theories and the Vlasov
equation.

There are many reasons thinkers have been attracted to
the formulation of physical laws in terms of minimization or
extremal principles, which in contemporary language
amounts to the idea that laws of nature should come from
setting a derivative of some quantity, the action, to zero.
Early researchers espoused the teleological idea that “nature
does nothing in vain,” and their thought processes were usu-
ally imbued with theological opinions. Also aesthetics has
always played a role in physics, and the beauty and simplic-
ity of action principles motivated many. It is fair to say that
action principles provide a framework for 20th century phys-
ics: the most successful models of physics, Maxwell’s equa-
tions, Einstein’s equations for general relativity,
Schrödinger’s equation, Yang–Mills and other theories of
particle physics, etc. all have action principle and associated
Hamiltonian formulations. The same is true for the most im-
portant models of plasma physics, and we will describe some

of these in this paper. The subject is vast, and so we can only
touch on some aspects. More extended treatments are ob-
tained, for example, for fluid models in Ref. 2 and Vlasov
theory in Ref. 3, and many references therein.

There are many practical reasons for Hamiltonian and
action principlesHAPd formulations. One is that they pro-
vide a convenient setting for constructing theories, in par-
ticular, a setting for building in symmetries that one believes
a physical system should possess. For example, one can sys-
tematically build in symmetries such as the Poincaré group
sLorentz invariance etc.d into an action principle, and this is
much simpler than attempting to do this on the equations of
motion level. Conversely, if one already has equations of
motion, derived perhaps by the approximation of some
known general model, then if one constructs an action prin-
ciple one can use Noether’s theorem to obtain constants of
motion, constants that may not be evident. In very general
terms this is the only way, e.g., that energy can be unambigu-
ously defined.

Another attractive feature of HAP formulations is that
there are certain properties that are the same for all such
formulations. For example, if one knows that a system is
Hamiltonian, then one is assured by Liouville’s theorem that
phase space volume is conserved. This has ramifications
which are basic for statistical mechanicsscf. Sec. IVd, and it
also places a firm constraint on the types of eigenvalues one
can obtain from any linear theory calculation, e.g., it pre-
cludes the possibility that all eigenvalues represent decay.
sThis is described more fully in Sec. VI of Ref. 2.d Thus, in
a very large sense, demonstrating HAP form taps one into an
enormous lore that has been developed over centuries. Con-
versely, it can occur that if one shows something new about
a particular system with HAP form, then one has demon-
strated something for a large class of problems. The nature of
the destruction of invariant tori, both near to integrability as
described by Kolmogorov–Arnold–MosersKAM d theory
se.g., Ref. 4d and far from integrability as described by
Greene5 is a good example of this.

HAP formulations provide a setting for consistent ap-
proximations. If one abides by the idea that a HAP system
ought to be approximated by another HAP system, then there
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are algorithmic ways of achieving this. In action principle
formulations one has at one’s disposal the direct method of
the calculus of variationsse.g., chap. 4 of Ref. 6d. With this
method one inserts trial functions with undetermined param-
eters into the action, integrates out information, varies with
respect to the parameters, and thereby obtains a reduced de-
scription. sSee, e.g., Ref. 7 where this is done to describe
coherent structures in a simple drift-wave model.d Another
method is to time average the action8,9 in order to remove
fast time scales. In Hamiltonian systems many different
kinds of perturbation theories based on the Hamiltonian form
have been developed. A classic description of perturbation
theory based on Hamilton–Jacobi theory is contained in Ref.
10, while more recent perturbation theory using Lie trans-
forms is discussed in Refs. 11 and 12. A nice feature of all
these methods is that one is basically dealing with approxi-
mation of a single function that defines the action principle
or the Hamiltonian system, rather than all the functions that
define the equations of motion.

A particularly nice feature of Hamiltonian systems is that
they have an associated means for obtaining sufficient and
sometimes necessary conditions for stability. An example of
this is Lagrange’s theorem of mechanics, which is the es-
sence of the magnetohydrodynamicssMHDd energy prin-
ciple. Other energy principles such as that of Gardner13 and
others for Vlasov and other theories, which sometimes go by
the name of the energy-Casimir method, are based upon Di-
richlet’s theoremsand extensions thereofd of mechanicsse.g.,
Sec. VI of Ref. 2d. sExamples abound. For one presented at
this meeting see Ref. 14 where stability for Hall-MHD is
treated.d

In a somewhat less explicit way, HAP form motivates
calculations by providing a mindset. When one is aware of
the HAP lore, then one knows of certain things to try. In this
way HAP form serves as a beacon for illuminating paths one
might take. An example of this is provided by the ongoing
quest to understand how much of the lore of finite degree-
of-freedom Hamiltonian systems carries over to infinite
degree-of-freedom Hamiltonian systems. Because of soliton
theory15 we know infinite degree-of-freedom Hamiltonian
systems can be integrable, and thus we are led naturally to
the question of whether there is an infinite-dimensional ver-
sion of the KAM theorem. The HAP form can even provide
insight into dissipative systems, such as quasilinear theory,
by suggesting a natural set of coordinates.16

Clearly the line of discussion of this Introduction could
continue, but we bring it to a close by mentioning two more
areas where research based on HAP form has grown. The
first concerns numerical methods that preserve structure. Ex-
amples of these are symplecticse.g., Ref. 17d and conserva-
tive se.g., Ref. 18d integrators, differential equation iteration
schemes that preserve phase space volumesand appropriate
subvolumesd, and constants of motion, respectively. In Sec.
III we will discuss a numerical method based on infinite-
dimensional Hamiltonian structure for computing V-states
which are solutions of Euler’s fluid equation. The second
area where Hamiltonian methods are of basic importance is
statistical mechanics. In Sec. IV we generalize ideas from
finite degree-of-freedom statistical mechanics to obtain the

fluctuation spectra of Vlasov and fluid theory. In Sec. II we
review some of the HAP formulations of plasma physics and
en route to this end describe some of the tools that are
needed to understand it. Even this is an impossible task, so
we try to hit the high points and suggest some references.
There are many references given, but even so the list should
not be taken to be complete. Rather, our goal has been to
provide a gateway into this mode of research.

II. HAMILTONIAN AND ACTION PRINCIPLE
FORMULATIONS

In this section we begin with some introductory ideas
from classical mechanics, and then we describe some more
complicated formalisms for infinite-dimensional plasma
models.

A. Hamilton’s principle and Hamilton’s equations

We start by describing Hamilton’s principle in more de-
tail, and the associatedprocedurefor writing down the equa-
tions of motion of a mechanics problem. In this procedure
one begins by determining the configuration space, i.e., de-
termining the coordinates, angles or displacements, neces-
sary to describe the system’s configuration. We denote these
generalized coordinates byqistd, wherei =1,2, . . . ,N andN
is the number of degrees of freedom of the system. The
second step is to construct functions of these coordinates that
represent the kinetic and potential energies, and thus obtain
the Lagrangian,L : =T−V, which for good reason has been in
the past referred to as the kinetic potential. Given the La-
grangian, one is then able to write down the action functional
as follows:

Sfqg =E
t0

t1

Lsq,q̇,tddt. s1d

The action is an example of a functional, which given a path
qstd returns a number upon substitution intoL and integra-
tion over time. Different paths usually give different num-
bers. In Hamilton’s principle one fixes the beginning and end
points of the path,qst0d andqst1d, and searches over such a
space of paths for minimum or extremal values. Originally it
was believed that physical paths were those for which the
action obtains a minimum but nowadays we are content with
the path being extremal.sThis issue was not settled until the
20th century by Morse.d Extremal means that the functional
derivative of the action vanishes,dSfqg /dqi =0, and this re-
sults in Lagrange’s equations of motion

]L

]qi −
d

dt

]L

]q̇i = 0.

sSince functional differentiation plays a big role in HAP for-
mulations we review this in Sec. II B, a review that can be
skipped by the cogniscenti.d

From Hamilton’s principle one obtains Hamilton’s equa-
tions by first constructing the canonical momenta,pi

ª]L /]q̇i, and then obtaining the Hamiltonian as,Hsq,pd
=piq̇

i −L, where now the repeated indices are summed. This
procedure is generally known as the Legendre transforma-
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tion, and it is a means of convertingN Lagrange’s equations,
which are usually of second order, into the 2N first-order
equations of Hamilton

ṗi = −
]H

]qi , q̇i =
]H

]pi
. s2d

The Legendre transformation only works for
Lagrangians that possess a convexity property, but when this
fails Dirac’s constraint theoryssee, e.g., Ref. 19d can be used.
We will not pursue this further here, however, we will use a
product of this theory in Sec. III where we discuss the
V-state calculations.

If we introduce the phase space coordinates,z=sq,pd,
then Hamilton’s equations can be compactly written as fol-
lows:

żi = Jc
ij ]H

]zj , s3ad

where

sJc
ijd = S 0N IN

− IN 0N
D , s3bd

and now the labeli=1,2, . . . ,2N. This form can be taken as a
gateway into geometric mechanics where the
ssymplectic two-formd=scosymplectic formd−1, i.e., vi j

c Jc
jk

=di
k. We will also not pursue this further, but refer the inter-

ested reader to Ref. 4.

B. Functional differentiation

In order to understand action principles and infinite-
dimensional Hamiltonian systems it is necessary to under-
stand the notion of functional derivative, which as we will
show is a kind of gradient. In elementary analysis we learn
that a function is a mathematical object that returns a number
in its range given an element of its domain, or in mathemati-
cal notation for a functionf we would writef :Rn→R, where
the domain in this case is a region inn-dimensional space. In
common notation we would write this asfsz1,z2, . . . ,znd and,
for example, if we were interested in the temperature in a
region in three space we might write this asTsx,y,zd.

Alternatively, a functional is a function where the do-
main is a set of functions and the range is again composed of
numbers, i.e., it is a function of functions. For a functional
evaluated on a functionu we write Ffug, or in mathematical
notation we writeF :B→R, where B denotes a function
space, which couldsbut need notd be equal to Hilbert space.
Examples of functionals are the actionSfqg of Hamilton’s
principle ofs1d and the energy of the Vlasov–Poisson system
Hffg=mefv2dxdv /2+eE2dx/8p, where the first term is the
integral over the phase space kinetic energy density and the
second is the electrostatic energy, which upon making use of
Poisson’s equation, can be seen to be an expression quadratic
in the phase space densityf. A general form for functionals
in one dimension is given byFfug=eFsx,u,ux,uxx, . . .ddx,
whereF is an arbitrary function of a functionu and its de-
rivativesux, uxx, etc. We also allow it to be an explicit func-
tion of x.

On a formal level evaluation of functional derivatives is
no more difficult than evaluation of ordinary derivatives. We
will present an algorithm for doing this along with a demon-
stration of what is meant by a functional derivative being a
gradient in function space. We do this by comparing the first
variation of functions and functionals.

If we make a small change in the point of the domain of
a function, sayfsz1,z2, . . .znd, then there will be an induced
change in value of the range. This induced change is given
by the first variation

dfsz;dzd = o
i=1

n
] fszd
]zi

dzi = : ¹ f · dz. s4d

The analogous first variation for a functionalFfug is given
by

dFfu;dug = u
d

de
Ffu + eduge=0

=E
x0

x1

du
dF

dusxd
dx= :K dF

du
,duL , s5d

wheredusxd is a function that represents the change in the
point of the domain. The operations indicated by the second
term of s5d constitute a way of linearizing the functional in
du. Taking the derivative with respect to the parametere and
evaluating the result ate=0, plucks out the linear term indu.

Let us compare these two expressions. Ins4d we see that
there is a scalar product as indicated by the sum on the label
i or the “·” between the variation of the domain variabledz
and the gradient¹f. In s5d the role of the scalar product is
played by the integration over the variablex, denoted byk,l.
Note, the variablex is a continuous version of the labeli.
The domain variable analogous todz is of coursedu, and the
only remaining term to be compared is the gradient. Theith
component of the gradient ofs4d, ]fszd /]zi, is analogous to
dFfug /dusxd. One last comment is needed. In the last expres-
sion of s5d it is most important thatdu stands alone. When
one varies a functional with an integrand that involves de-
rivatives one obtains an expression involvingdux etc. All
derivatives or other operators acting ondu must be removed
by taking their adjoint. Thus, to take a functional derivative
one must do two things: vary and isolate. After isolating, the
integral is stripped away and the functional derivative is ex-
tracted.

If you can convince yourself that the functional deriva-
tive of the Korteweg de Vries Hamiltonian,Hfug=e−p

p su3/6
−ux

2/2ddx, is given by dH /du=u2/2+uxx and that
dusxd /dusx8d=dsx−x8d, then you understand all you need to
know about functional derivatives for this paper. In the
course of takingdH /du it is necessary to integrate by parts
and eliminate the integratedssurfaced terms. When the do-
main is chosen properly these vanish, but in some problems
boundary terms can be important.

C. The parent action principle of plasma physics

To the extent that plasma physics is governed by classi-
cal physics, the action principle we present in this section
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embodiesall of plasma physics. This parent action principle
is that which describes the dynamics ofN charged, relativis-
tic particles, with chargesei and massesmi, coupled to Max-
well’s equations, an action principle that only includes the
electromagnetic fundamental force.

The dynamical variables are the particle positions,qistd,
where i =1,2, . . . ,N, the electrostatic potentialfsx,td, and
the vector potentialAsx,td. We could divide up our particles
into electrons and ions, or any number of species, and easily
require that the total charge sum to zero, but we will not do
this. The action is given by

Sfq,f,Ag

= − o
i=1

N E
t0

t1

dtmic
2Î1 −

q̇i
2

c2

−E
t0

t1

dto
i=1

N

eiE dxFfsx,td −
q̇i

c
·Asx,tdGd„x − qistd…

+
1

8p
E

t0

t1

dtE dxfE2sx,td − B2sx,tdg. s6d

The first term ofs6d is the kinetic part of the action; in the
nonrelativistic limit this term becomes the usual expression
for the kinetic energy. Note that this term involves only the
particle variables. The second term accounts for the coupling
between the particles and the fieldsf and A. Note that it
involves both integration of space and summation overi. In
the last termE andB are to be viewed as shorthands for their
expressions in terms of the potentials:E=−=f−s]A/]td /c
andB= = 3A. Observe that the last term only involves the
field variables.

When we take the derivativedS/dqistd it is clear that
only the first two terms contribute. The first term is straight-
forward, but the second deserves comment. When we vary
and isolate this term, the process of varying presents no dif-
ficulty, but when we isolate we have to bear in mind that the
functional derivative notation tells us which variables are
involved in the isolation and eventual stripping away of the
integral or sum. When we writedS/dqistd with the argument
of qi displayed it is to signify that the isolation should take
place with respect to the integration overt and the summa-
tion on i. We leave it to the reader to show that setting
dS/dqistd=0 yields theith component of the relativistic ver-
sion of Newton’s second law with the Lorentz force given by
the derivative of the coupling term. Similarly, the derivatives
dS/df anddS/dAsx,td only involve the coupling terms and
the last term ofs6d. This gives the two Maxwell equations
that involve the sources, the two not determined by the in-
troduction of the potentials. The coupling terms provide the
sources while the last term provides the fields. Isolation in
this case leads to stripping away thex and t integrals.

Given the claim that the action ofs6d contains all of
plasma physics, it is natural to wonder how dissipation enters
into various plasma models. In general dissipation is not
“fundamental,” but arises from some sort of approximation
or modeling. For example, the Lenard–Balescu collision op-
erator is entirely electromagnetic in origin, and a route can

be traced from the equations produced bys6d to it. If one is
interested in including more physics, such as quantum me-
chanical or general relativistic phenomena, then action prin-
ciples, for example that couple to Einstein’s equation, are
also available.

Alas, given the great level of generality contained ins6d
one might conclude that we are all done. However, we have
the standard problem that is typically used to motivate sta-
tistical mechanics: becauseN is so large, even if we could
solve the equations of motion the wealth of information
would be too great to be of much use. Thus we seek simpli-
fications that usually follow from approximations. Approxi-
mations that remove irrelevant information can introduce or
remove constraints, either explicitly or implicitly, and this
makes the discipline interesting.

D. Approximations, reductions, and mutilations:
Action extration

There exist many kinds of approximations. We reserve
the word reduction for a procedure that is in some sense
exact. Reductions may result from a variable change that
exactly separates out information and allows one to solve a
complicated problem in stages. A standard example is the
system that describes a free rigid body in mechanicsse.g.
Ref. 20d. A complete specification of the motion would re-
quire the solution of the six coupled differential equations for
the Euler angles and their conjugate momenta. However, if
one writes the system in terms of the appropriate angular
velocities one obtains the three Euler’s equations for the
rigid body which is a closed system. After solving these three
one can then solve three more equations for the Euler angles.
The same kind of reduction occurs for the infinite-
dimensional equations of fluid mechanics, where the La-
grangian variable description is reduced to the Eulerian vari-
able description. The solution of the Lagrangian variable
description contains more information than the Eulerian,
namely, the positions of the fluid elements.

Another kind of reduction can occur when one has a
class of initial conditions that is invariant under the dynam-
ics. An example of this is point vortex dynamics associated
with the two-dimensional Euler fluid equation for vorticity
evolution. If one assumes that an initial vorticity distribution
is located on delta-function spikes, point vortices, at some
locations, then the spikes are maintained under the dynamics.
As is well-knownse.g., Ref. 21d, ordinary differential equa-
tions govern the positions of the point vortices. Upon solving
these differential equations one obtains an exact solution of
Euler’s equation, albeit one with a singular initial condition.
The family of fluid closures, based on the water bag reduc-
tion of the Vlasov equation, which were found in Ref. 22
constitute another example. A third example is contour dy-
namics, which we treat in Sec. III.

Because of their exactness, both types of reductions de-
scribed above inherit a Hamiltonian structure from their par-
ent models. This is not the case for many systems that are
obtained by approximation or other kinds of modeling.
Sometimes one is explicitly interested in deriving dissipative
models by coarse graining or other means, and the physical
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source of the dissipation is clear. These inherently dissipative
models should not be expected to have HAP form, and it is
generally clear which terms cause the dissipation, for they
are associated with transport coefficients, viscosities, etc.
However, when these terms are eliminated the model is ex-
pected to have HAP form. Any process that results in models
for which this is not the case we refer to asmutilation. Such
non-Hamiltonian models could be useful, but one needs to
worry about the introduction of unphysical dissipation that
could result in the violation of energy or other conservation
laws. Unlike physical dissipation there may be no phenom-
enological coefficients that govern the amount of dissipation
and in general this kind of dissipation would not be expected
to reflect any physical process.

In the remainder of this section we discuss a means,
which is essentially the direct or trial function method of the
calculus of variations described above, for extracting from
s6d, actions that govern models that contain less physics.
These actions yield finite degree-of-freedom systems upon
variation.

The equations that describe magnetic field lines have
been known for a long time to possess HAP formse.g., Refs.
23 and 24d. This form is easily extracted froms6d by speci-
fying theB, settingf=0, writing the results in dimensionless
form, and then letting the gyroradius go to zero. This yields
the Cary–Littlejohn action,SCLfrg=eAsrd ·dr, which was
given in Ref. 25. Variation of the above gives the equations
for the field lines ofB= = 3A.

In a similar manner the HAP form for particle orbits can
be gotten by specifying bothf and B, inserting them into
s6d, and integrating by parts. This yields the standard non-
self-consistent action for particles in given electric and mag-
netic fields. A variant of this can be used to obtain models
that are partly self-consistent. This proceeds by specifying
the spatial dependence off andB but with time dependent
parameters. For example, one can specifyf to correspond to
a single sine wave with a time dependent amplitude and
phase. The single-wave model, originally obtained for de-
scribing beam-plasma instabilityse.g., Refs. 26–31d, can be
derived in this manner if one separates the particles into
beam and background components and expands.32 One can
also derive by this means multiwave modelsse.g., Ref. 33d
that include electromagnetic waves as wellscf. Refs. 34 and
35d.

The procedures described above, in which the field vari-
ables were restricted, produced systems that, unlike the sys-
tem described by the parent action ofs6d, have a finite num-
ber of degrees of freedom. Consequently, as alluded to in the
Introduction, we have at our disposal the large body of
knowledge of finite degree-of freedom Hamiltonian systems.
This knowledge has produced a vocabulary that is common-
place in plasma physics. For example, we can ask whether
such a finite system isintegrable, and we can construct vari-
ous kinds ofPoincaré sectionsto address this question. If the
system is nearly integrable and the frequencies of periodic
motion are disparate, we can use the theory ofadiabatic
invariants as made rigorous in plasma physics.36,37 If the
system has few degrees of freedom, then in Poincaré sections
we can look forinvariant tori sgood surfacesd and investigate

their destruction by theisland overlapor considerably more
precisely byGreene’s residue criterion. We have an under-
standing of the behavior of achaotic phase space in the
vicinity of tori at criticality, because of notions ofrenormal-
izationanduniversality. And, if we are lucky enough to iden-
tify an integrable system, because of KAM-type theorems we
know how the system will behave under small perturbations.
Our understanding of phase space also allows us to construct
maps, such as thestandard sChirikov–Taylord or standard
nontwist maps, which, e.g., describe qualitatively the nature
of magnetic field lines in tokamaks with monotonic and non-
monotonicq proflles. We know, on a very basic level, that
shearless toriare resilient. We know that none of these sys-
tems can have an attractor, strange or otherwise, and that the
eigenvalues obtained in any linear analysis must conform to
the constraints imposed by the Hamiltonian form: for every
growing mode there must be a damped mode, for every over-
damped mode there must be an underdamped mode, etc.
Thus, none of these systems can relax to an equilibrium
point, i.e., we never haveasymptotic stability. Also, as men-
tioned in the Introduction, we haveenergy stability criteria
that can be used to prove nonlinear stability. We have a
theory ofnormal forms, which states that all linear systems
with the same eigenvalues can be transformed by a coordi-
nate change into the same system. For example, all stable
Hamiltonian systems can be mapped to the Hamiltonian sys-
tem with HamiltonianH=ovsq2+p2d /2, which is merely
that of a collection of independent simple harmonic oscilla-
tors. And, this is only a fraction of the lore at our disposal.

It is natural to wonder to what extent these notions carry
over to infinite degree-of-freedom systems. All these ideas
survive, and some new things can happen too, such as the
existence of a continuous spectrum as discussed in Sec. IV.
So, let us turn to such infinite systems.

E. Continuum systems—Particles to fields

In this section we show how one can smooth out the
particles ofs6d and obtain an action principle where the par-
ticles are treated as a continuum. In this way we will obtain
the action principle of Low38 of s1958d for the Maxwell–
Vlasov equations, which treats the particles by means of a
Lagrangian or material variable labeled by its initial condi-
tion, a continuum phase space variable. For simplicity we
consider only a single species. There are several other kinds
of action principles and ways of describing a continuum of
particles, in various kinds of fluid and kinetic theories; at the
end of this section we will briefly describe some of them,
many of which are treated in greater detail in Ref. 3.

At t=0 we suppose a particle is located at every point
z0ª sx0,v0d of phase space. Thus, in the action ofs6d we
replace the discrete label by this continuum label,qi

→qsz0,td, and we replace the sums as followsoi=1
N

→ef0sz0ddz0, where f0 can be viewed as a probablility or
number density attached to each point of phase space. This
procedure results in the following action:
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Sfq,f,Ag =E dtE dz0f0sz0d
m

2
q̇2sz0,td

− eE dtE dz0f0sz0dE dxFfsx,td

−
q̇

c
·Asx,tdG d„x − qsz0,td…

+
1

8p
E dtE dx„E2sx,td − B2sx,td…, s7d

where now all variables are fields, the particle phase space
field qsz0,td, and the electromagnetic fieldsfsx,td and
Asx,td. This is essentially the action principle of Low. The
derivativedSfq,f ,Ag /dqsz0,td produces the equation for La-
grangian particle orbits, which can be shown to be equivalent
to the Vlasov equation if we consider the Eulerian variable
fsz,tdª f0sz0d, wherez0 is the initial condition of the particle
that is located atz at timet, i.e.,z0 is determined by inverting
z=qsz0,td, which is always possible because of uniqueness.
Faraday’s law and= ·B=0 follow from the introduction of
the potentials,f and A, and the remaining two Maxwell
equations follow as fors6d, with the sources seen to be the
usual expressions of Vlasov theory by usingfsz,tdª f0sz0d
and the fact that the mapz0→z has unit Jacobian. Note that
s7d reverts tos6d if we suppose that initially particles are
located atN isolated points, i.e., upon usingf0sz0d=oi

Ndsz0

−z0
i d andqistdªqsz0

i ,td
In order to bring a sense of order to the many different

types of continuum action principles, we divide them into
two dichotomies: Lagrangian vs Eulerian and fluid vs ki-
netic. Since we are on the topic we will first discuss kinetic
theories and then make some brief remarks about fluid action
principles.

1. Action principles for kinetic theories

Kinetic theories are distinguished by the nature of the
particle orbits described. For example, Vlasov theory has
characteristics that satisfy the usual electromagnetic force
law, while gyrokinetic or oscillation-center theories have
characteristics based on guiding-centerse.g., Ref. 39d or
oscillation-center equations. In any case, the basic variable is
a phase space density, a naturally Eulerian variable, and the
treatment of this variable distinguishes the different action
principles.

Lagrangian variable actions.The Low actionssee also
Refs. 40–42d is the prototype Lagrangian variable action,
and, as described above, one treats a continuum of particle
orbits and uses the relationfsz,tdª f0sz0d to map back to the
Eulerian variable. The Low action is essentially Hamilton’s
principle in infinite dimensions. An alternative to this is to
consider the phase space action3,43–46in which q̇ is replaced
by a canonical momentum,p, and these quantities are varied
independently. The derivativesdS/dq=0 anddS/dp=0 pro-
duce directly equations that are of Hamiltonian form.

Hamiltonian–Jacobi actions. These actions, which were
introduced by Pfirsch in Ref. 47 and improved and extended
in Refs. 48 and 49, use a mixed variable generating function

and an associated density function to describe particles. It
was described in Ref. 50 how this formulation is a mixed
Lagrangian–Eulerian variable theory. In Ref. 3 the Leaf ac-
tion, a Hamiltonian–Jacobi action that manifestly preserves
Casimir invariantsscf. Sec. II Fd, was introduced. It was
shown there how the density variable can be removed.

Kinetic Clebsch actions. Clebsch obtained an action
principle for the ideal fluid by introducing potentials to de-
scribe the velocity field. It was shown in Refs. 3, 51, and 52
that this idea could be adapted to obtain a purely Eulerian
action principle for the Vlasov equation. By writing the
phase space density asf =fa ,bg, wherea andb, the poten-
tials, are functions defined on phase space andf,g denotes the
ordinary Poisson bracket, one can write a phase space action
for kinetic theories.

Sometimes one can eliminate the electromagnetic field
variables from the action altogether. For example, if all the
forces are electrostatic, then one can solve Poisson’s equa-
tion for the electric field in terms of the phase space density
and insert this into the action, and thereby obtain a pure
particle action. This was done for all the actions above in
Ref. 3. It can also be done in the Darwin approximation53

where relativistic effects are included.
The above action principles have been used for many

things, but of special importance is the relationship between
symmetries and constants of motion. Noether’s theorem has
been used to obtain various constants of motion, including
the energy-momentum tensor, in Refs. 44, 45, 48, 54, and 66.
This is the only consistently reliable way to physically iden-
tify energy and other invariants.

2. Action principles for fluid theories

The situation for ideal fluid theories such as MHD, the
two fluid equations, gyrofluid models, etc. is similar to that
above. We briefly describe some action principles for these
systems in Lagrangian and Eulerian variables.

Lagrangian variable actions. The basic Lagrangian fluid
variable isqsa,td, which unlike the Lagrangian variable for
kinetic theory is labeled by a configuration space variable,a,
which can be taken to be the position of a fluid element at
t=0. Descriptions of these action principles can be found in
Refs. 56 and 57 and 2 for classical fluids, and a particularly
nice discussion is given in Ref. 58 for MHD.

Eulerian variable actions. While action principles for
fluids in terms of Lagrangian variables are a natural exten-
sion of Hamilton’s principle of classical mechanics, the situ-
ation for Eulerian variables, which are not canonical vari-
ables, requires some artifice. We describe three ways to
accomplish this. First, one can introduce so-called Lin con-
straints, in which one enforces the continuity and entropy
equationssand possibly othersd by the method of Lagrange
multipliers ssee, e.g., Ref. 56d. A second approach is to in-
troduce the Clebsch potential representation of the velocity
field ssee, e.g., Refs. 2, 52, 56, and 59d. The third method is
to directly constrain the Eulerian variable variations to a
form induced by underlying Lagrangian variable variations.
There is a good description of this method in Ref. 57.
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Various fluid action principles have been used for vari-
ous physical applications, including the construction of vari-
ous kinds of fluid theories, gyro, and otherwise.60 One can
also construct generalized fluid action principles based on
symmetry.61

F. Noncanonical Hamiltonian structure

Because Lagrangian variables are a continuum particle
description, both action principles and Hamiltonian structure
in terms of these variables match those of classical particle
mechanics. However, the transformation from Lagrangian
variables to Eulerian variables is not a canonical transforma-
tion, and consequently the form of Hamilton’s equations in
Eulerain variables is not of the canonical form ofs2d or s3ad
and s3bd, or its infinite-dimensional generalization.62 In this
section we will describe the universal Hamiltonian form that
plasmasand other continuous mediad equations take when
expressed in terms of Eulerian variables. Since this material
has been extensively covered elsewherese.g., Ref. 2d we
give a brief review, as is needed for the applications of Secs.
III and IV. We begin with finite systems and then turn to
infinite systems.

The usual dictum of classical mechanics is that one only
considers transformations of Hamilton’s equations that are
canonical transformations, these being transformations that
preserve the form of Hamilton’s equations. However, a
Hamiltonian system in noncanonical coordinates is still a
Hamiltonian system, albeit with a possibly obscured form.
Because the cosymplectic form ofs3ad and s3bd transforms
as a second rank contravariant tensor and a Hamiltonian
transforms as a scalar, Hamilton’s equations and the Poisson
bracket take the forms

żi = Jij ]H

]zj = fzi,Hg, ff,gg =
] f

]zi J
ijszd

]g

]zj .

The essence of being Hamiltonian lies in two properties of
the Poisson bracket that are transformation invariant

s1d antisymmetry:ff ,gg=−fg, fg,
s2d Jacobi identity:[ f ,fg,hg] + [g,fh, fg] + [h,ff ,gg] =0,

which are to be satisfied for all functions of phase spacef, g,
andh.

Given the above two properties and the requirement that
det JÞ0, a 19th century theorem due to Darboux says that
there exists a transformation that takesJ→Jc. Thus we can
get back to canonical coordinates and the usual form of
Hamilton’s equations. The understanding of this and the use
of noncanonical coordinates for perturbation theory in par-
ticle orbit theory were introduced into plasma physics in Ref.
63.

For the case where detJ=0, another 19th century theo-
rem was proven by Lie. This theorem states that one can
transform to a set of coordinates, part of which are canonical
and part of which are in a sense redundant. The canonical
coordinates describe a space of dimension equal to the rank
of J and the remaining coordinates are described by a set of
functions that have become known as Casimir invariants,

because they are invariant under the dynamics. Casimir in-
variants are in this sense built into the original phase space,
and this structure explains the “mysterious” invariants that
are sprinkled throughout plasma theory.

The case where detJ=0 is of interest because it tran-
spires universally when one has equations for media in terms
of Eulerian variables. Moreover, it is usually the case that the
Poisson bracket takes a form whereJ is linear in the dynami-
cal variables. In finite dimensions this form is given byJij

=ck
ijzk, where the constantsck

ij are structure constants of a Lie
algebra, but this will not concern us here. Brackets of this
form have become known as Lie–Poisson bracketsse.g., Ref.
64d, and below we briefly describe this form in infinite di-
mensions.

In infinite dimensions we represent a general field by
csm ,td labeled bym, where, e.g., for fluid theoriesm=x and
Vlasov-type kinetic theoriesm=sx,vd. The Poisson brackets
of interest have the form

hF,Gj =E dF

dc
Jscd

dG

dc
dm,

where we now have a cosymplectic operatorJ and if the
field c has multicomponents additional sums are implied. We
now see why it is necessary to understand the functional
derivatives of Sec. II B. The Lie–Poisson form of continuous
media is given by

hF,Gj =Kc,FdF

dc
,
dG

dc
GL ,

wheref,g is a Lie product and the cosymplectic operator is
J · =fc , ·g†. We give an example below in Sec. II G that will
give some meaning to this formula.

This is the general noncanonical Hamiltonian form pos-
sessed by ideal fluid equations, the Vlasov equation, the
Liouville equation, the BBGKY hierarchy, gyrokinetic theo-
ries, MHD, tokamak reduced fluid models, such as reduced
MHD, the Hasagawa–Mima equation, ITG models, etc. In-
deed it is a universal form.

G. Vlasov and two-dimensional Euler
Hamiltonian structure

The noncanonical Poisson bracket for the Vlasov–
Poisson system65 is given by

hF,Gj =E f FdF

df
,
dG

df
Gdxdv, s8d

where the cosymplectic operator has the form

J · =
1

m
S ]f

]x

]·

]v
−

]·

]x

]f

]v
D .

Note thath,j is a bracket defined on functionals, whilef,g is
a bracket defined on functions. With the bracket ofs8d the
one-dimensional Vlasov equation is represented by

]f

]t
= hf,Hj = ff,Eg,

with the Hamiltonian being the total energy
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Hffg =
m

2
E fv2dxdv +

1

8p
E E2dx.

It is easy to show that the particle energyE results as fol-
lows: E=mv2/2+ef=dH /df.

The bracket for Euler’s fluid equation in two
dimensions52,65is identical to the above with the independent
variablessx,vd replaced bysx,yd, f replaced by the scalar
vorticity v, and the Hamiltonian being Hfvg
=−evc dx dy. We will use this structure in Secs. III and IV.

H. Approximation and organization

Noncanoncial Poisson bracket such as those above have
been used in a variety of Hamiltonian approximation
schemes. An example using Fourier expansion was used to
describe beam-plasma instability in Refs. 67 and 68. Alter-
natively, Hamiltonian reductions can be achieved by using
moments of the dynamical variables. This was recognized,
perhaps first, in Ref. 69. Moment reductions have been used
to describe beam systems,70 vortex dynamics,71,72 and re-
cently models of short-pulse laser-plasma interactions.73

Poisson brackets also provide an organizational scheme.
For many years, reduced fluid models have been derived in
order to describe as much physics as possible in tractable
models of plasma devices and systems. The reduction pro-
cess, based on aspect ratio and other quantities, produces
two-dimensional s2Dd or quasi-three-dimensional models
with Poisson bracket nonlinearities. In Refs. 74 and 75 it was
shown that RMHDsboth 2D and 3D, high and lowbd has a
Lie–Poisson bracket. Subsequently, many other systems were
shown to have this form, which constitutes an algebraic ex-
tension of brackets involving the group of canonical trans-
formations. Based on Ref. 76 it was shown that this structure
could be used to derive a model with FLR physics, e.g., the
four-field model of Ref. 77. The Hamiltonian theory provides
a way to obtain constants of motion and to use them for
constructing equilibria, coherent structures, and stability ar-
guments. Various other models were considered in Refs.
78–80. A general theory for such brackets was worked out in
Ref. 81.

III. CALCULATION OF V-STATES
OF CONTOUR DYNAMICS

The water bag model and contour dynamics are ex-
amples of reductions of the Vlasov–Poisson and two-
dimensional Euler fluidlike equations, respectively. Both are
based on initial conditions where the dynamical variable is
constant in a region bounded by a contour. Because both the
Vlasov and Euler equations have the common Hamiltonian
form of Sec. II G a similar formulation applies to both. In
this section we will consider the 2D Euler case. We present a
Poisson bracket for contours that bound a region that need
not be star shaped, and show how this bracket can be used to
obtain a numericalsrelaxation or simulated annealingd algo-
rithm for calculating equilibrium states.82 In particular
V-states,83 rigidly rotating vortex states that are claimed to be
exact solutions of Euler’s fluid equations, are obtained by
searching for critical points of the Hamiltonian in a rotating

reference frame,dsH+VLd=0, where hereL is the angular
momentum. V-states have been found numerically with
m-fold symmetry. Examples for the case of twofold symme-
try sthe Kirchoff ellipsed and threefold symmetry are shown
in Fig. 1.

A. Hamiltonian structure of contour dynamics

The reduction to contour dynamics proceeds by replac-
ing the vorticity variablevsx,y,td by a plane curve that
bounds a vortex patch,Xssd=(Xssd ,Yssd). Here the curve
parameters is not chosen to be arc length because arc length
is not conserved by the dynamics of interest.

Because plane curves are geometrical objects, their
Hamiltonian theory should be based on parametrization in-
variant functionals, i.e, functionals of the formFfX,Yg
=rds FsX,Y,Xs ,Ys ,Yss ,Xss , . . .d, where Xsª] /]s, etc.
andF has an Euler homogeneity property. A consequence of
parametrization invariance is the Bianchi-like identity,

dF

dXssd
Xs +

dF

dYssd
Ys ; 0, s9d

relating functional derivatives, a result which follows from
E. Noether’s second theorem.84

FIG. 1. Depiction of V-states with twofoldsupperd and threefoldslowerd
symmetry.
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The noncanonical Poisson bracket for the contours is
given by

hF,Gj =R ds3Ys

dF

dX
− Xs

dF

dY

Xs
2 + Ys

2 4 ]

]s
3Ys

dG

dX
− Xs

dG

dY

Xs
2 + Ys

2 4
s10d

and the equations for the contour are generated by inserting
the following compact form for the Hamiltonian into this
bracket,

H =R ds R ds8 fn̂ · n̂8,

wheren̂ andn̂8 are unit vectors tangent to the contours,fsrd
satisfies¹82fsrd=Gsrd, where the functionr= ux−x8u andG
is the Green’s function of the two-dimensional Laplacian.

It is easy to show that this bracket has the area functional
2GªrsXYs−YXsdds as a Casimir invariant, i.e.,hG ,Fj;0
for all functionalsF.

B. Dirac brackets and simulated annealing

Given any Poisson bracket and Hamiltonian one can
construct a dynamics that relaxes to critical equilibrium
points of the system. This can be done with thesimulated
annealingsSAd bracket, which in finite dimensions has the
form

ff,ggSA= ff,z,gfz,,gg =
] f

]zi J
i,J, j ]g

]zj . s11d

That this bracket generates relaxation dynamics follows from
dH/dt=fH ,HgSAù0. This means we have asymptotic stabil-
ity by Lyapunov’s theorem, the idea behind the H-theorem
relaxation of the Boltzmann equation to thermal equilibrium.

Attempts to calculate V-states usings10d in an infinite-
dimensional version ofs11d with the rotating frame Hamil-
tonian H+VL resulted in failure. Probably this is because
there are many equilibria and different parts of the initial
conditions can lie in the basins of attraction of different equi-
libria. To rectify this we construct aDirac bracketwhich can
be used to constrain the system.

En route to his theory of quantization, which required
generalizing the Legendre transformation to cases that were
degenerate, Dirac discovered a way to construct degenerate
Poisson brackets that satisfy the two conditions of Sec. II F,
while building in invariance of pairs of functions. The pairs
then satisfy the same condition as Casimir invariants, i.e.,
fC1,2, fg;0 for all functions f. Dirac’s theory was built on
canonical Poisson brackets, and in the case of a single pair,
C1,2, his bracket has the following form:

ff,ggGD =
1

fC1,C2g
sfC1,C2gff,gg − ff,C1gfg,C2g

+ fg,C1gff,C2gd. s12d

We have shown85 that one can construct good brackets
with Dirac’s construction out of Poisson brackets that need
not be canonical. To obtain practicable Poisson brackets for

simulated annealing, we consider the infinite-dimensional
generalization of Dirac’s construction with the bracketf,g of
s12d replaced by that ofs10d. We choose one constraint to be
the angular momentumL=esx2+y2ddxdy, and the other is
chosen to enforce the symmetry of the desired V-state. For
example, for Kirchoff’s ellipse we choose the second con-
straint to be thexy-moment,K=eDxydxdy. Figure 2 shows a
sequence of states relaxing into Kirchoff’s ellipse. We have
successfully applied this algorithm to a variety of V-states
and other known rotating equilibrium contour dynamics so-
lutions. These results will be reported elsewhere.

IV. FLUCTUATION SPECTRA

We now turn to our last application,86 the calculation of
the spectrum of electron phase space density fluctuations of a
plasma and vorticity fluctuations about shear flow. This is
done by a novel method that parallels conventional calcula-
tions using the partition function in statistical physics and the
Hamiltonian formulation. Expressions for the electric field
fluctuations in a Maxwellian plasma agree with known re-
sults. New results are obtained for non-Maxwellian equilib-
ria and vorticity fluctuations. The latter results have been
compared to fluid experimental results, which we briefly dis-
cuss below.

Fluctuation spectra in plasmas can be calculated by
many means that are treated in standard plasma physics text-
books. For example, one can follow Klimontovich and
smooth d-functions located on particles, construct the
BBGKY hierarchy from Liouville’s equation, follow
Thompson87 and Rostoker88 and treat dressed test particles,
or one can approximate theN-body partition function. In
fluids, statistical mechanics of fluctuations have been treated
by Onsager,89 Lee,90 and others using point vorticies, Fourier
modes, or amplitudes at lattice sites as degrees of freedom
ssee, e.g., Refs. 21 and 91d. We differ from all these ap-
proaches in that we do statistical mechanics using eigen-
modes associated with the continuous spectrumsvan Ka-
mpen modesd as degrees of freedom.

Our calculation is modeled after early statistical me-
chanical treatments of the lattice vibrations of a simple solid.
We suppose the existence of stable dynamical equilibrium
states for our plasma and fluid systems, which are analogous
to the stationary lattice of the solid. Our equilibria are chosen
so that they support a complete continuous spectrum of
stable eigenmodes. Because plasmas can exist for long times
in equilibrium states that are out of thermal equilibrium,
these distribution functions need not be Maxwellian. Simi-
larly, shear flow equilibria are chosen to have Rayleigh stable
profiles. In experiments, such profiles can be selected by the
competition between forcing and damping. The oscillations
that occur on top of these equilibria are treated analogously
to the solid lattice vibrations that are assumed to be weakly
interacting and the partition function is evaluated. From the
partition function the fluctuation spectra are obtained.

A. Partition functions

Einstein and Debye calculated the specific heat of a solid
by treating it as a collection of 3N quantized simple har-
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monic oscillators. They summed the partition function ex-
plicitly and then used it to obtain an expression that repro-
duced the Dulong–Petit relation in the classical limit,Cv
=3NkB. Thus they obtained the well-known equipartition re-
sult for a solid that the average energy contains a fullkBTb

per degree of freedom, whereTb is the temperature of the
heat bath.

For classical systems the expression for the partition
function is given by the following:

Z =E e−bEp
i

N

dqi dpi . s13d

From s13d it is seen that there are two requirements needed
to define this object: a conserved energyEsp,qd and a notion
of measure, which is provided by phase space volume. Both
requirement are assured when the dynamics of the systems is
Hamiltonian: the Hamiltonian defines the energy of a state,
and a well-defined notion of measure arises from Liouville’s
theorem on the preservation of phase space volume under the
dynamics.

Partition functions are easily evaluated for stable Hamil-
tonian systems that are quadratic forms in the phase space
variables,H=ospMp/2+qGp+qVq/2d, by using canonical

FIG. 2. sColor onlined Relaxation onto Kirchoff’s ellipse.
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transformations to diagonalize and then perform the resulting
Gaussian integrals. The canonical transformation results in
any of the following normal forms:

H = o
i

N

visQi
2 + Pi

2d/2 = o
i

N

iviQ̂iP̂i = o
i

N

viuAiu2. s14d

The equipartition theorem then states that for each quantity
sup to the frequenciesvid that appears as a square in the
Hamiltonian, there occurs akBTb/2 contribution to the aver-
aged energy of the system interacting with a heat bath.

We effect an analog of the calculation above for the Vla-
sov and Euler systems. In doing so we must evaluate the
partition function for a field theory and this amounts to a
functional integral of the form

Z =E e−bHfq,pgDqDp, s15d

whereqszd andpszd are fields labeled byz. Functional inte-
grals were introduced by Wiener92 and used in Feynman’s
path integral formulation of quantum mechanics. They are
not always mathematically well-defined objects, but when
the Hamiltonian is a quadratic function one can consistently
do calculations by discretizing and reducing the calculation
to a sequence of ordinary integrals. Fortunately, this is the
case we wish to do.

B. Two Hamiltonian systems

The Vlasov system of interest is defined in Sec. II G. To
be definite we give the 2D Euler equation below:

]v

]t
+ fc,vg = 0, s16d

where herefc ,vgªcxvy−cyvx and the streamfunction and
vorticity are related byc=D−1v or in the case of quasigeo-
strophy another integral relation.

We consider linear fluctuations about the following class
of stable equilibria for the two systems. For Vlasov we sup-
pose the phase space density is given by a Maxwellian,f0

,exps−mv2/2kBTed or any stable homogeneous form,
f0sv ;T1,T2, . . .d, where we note that the temperature is
merely a parameter that describes the equilibrium state. In
our second form we allow for the possibility of more than a
single parameter. By Gardner’s theorem we can be assured of
stability if this function is a monotonic function ofv2. Be-
cause plasmas can reside for a long time in equilibrium states
away from Maxwellian, we can distinguish between the
equilibrium temperatureTe and the bath temperature of the
fluctuationsTb. In the case of shear flow, we suppose the
equilibrium is a flow along a finite channel with a cross
stream variation:Usy;a1,a2, . . .d. By Rayleigh’s criterion we
are assured of stability if U8Þ0. Setting f = f0svd
+dfsx,v ,td and linearizing we obtain linearized Vlasov
theory for plasma oscillations, the system investigated by
Landau, van Kampen, and others. We follow Refs. 93 and 94
and solve it as one would solve a Hamiltonian system, albeit
an infinite-dimensional one. The situation is similar for the
shear flow problem.

The linear theories of the two systems are Hamiltonian
with the Poisson bracket

hF,GjL =E f0F dF

ddf
,

dG

ddf
Gdx dv, s17d

and the linear Vlasov theory has

HL = −
m

2
E

p
E

R

vsdfd2

f08
dvdx+

1

8p
E

p
sdfxd2dx, s18d

the Kruskal and Oberman95 energy, as Hamiltonian. It is easy
to verify that the linear Vlasov theory can be written as

]df

]t
= hdf,HLjL.

The situation is similar for the shear flow problem, but we
refer the reader to Ref. 96 for details.

C. Canonization and diagonalization

In order to calculate the functional integral ofs15d we
transform the bracket ofs17d into canonical form and then
find a canonical transformation to variables in whichHL is
diagonal. Expandingdfsx,v ,td=ok=−`

` fksv ,tdeikx and writing
s17d and s18d in terms of the variablefk yields

hF,GjL = o
k=1

`
ik

m
E

R
f08S dF

dfk

dG

df−k
−

dG

dfk

dF

df−k
Ddv s19d

and

HL = −
m

2o
k
E

R

v
f08

ufku2dv +
1

8p
o

k

k2ufku2

= :o
k,k8
E

R
E

R
fksvdAk,k8svuv8dfk8sv8ddvdv8. s20d

Details are given in Refs. 93 and 94 for Vlasov and in Ref.
96 for shear flow.

Equations19d is not quite of canonical form. However,
by definingqk=mfk/ sikf08d andpk= f−k the Poisson bracket is
canonized, i.e., it becomes

hF,GjL = o
k=1

` E
R
S dF

dqk

dG

dpk
−

dG

dqk

dF

dpk
Ddv.

Because of the electrostatic energy term ofHL, the en-
ergy is not a diagonal quadratic form. This is achieved by
using the type-2 mixed variable generating functional

Ffq,Pg = o
k=1

` E
R

qksvdGfPkgsvddv s21d

to effect the canonical coordinate changesq,pd↔ sQ,Pd ac-
cording to

pksvd =
dFfq,Pg
dqksvd

= GfPkgsvd,

Qksud =
dFfq,Pg
dPksud

= G†fqkgsud. s22d
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The essential ingredient ofs21d is the integral transform
G defined by

fsvd = Gfggsvd ª eRsvdgsvd + eIsvdHfggsvd, s23d

where eIsvd=−pvp
2f08svd /k2 and eRsvd=1+HfeIgsvd, with

Hfgg being the Hilbert transform

Hfggsvd ª
P

p
E

R

gsud
u − v

du,

with P denoting the Cauchy principal value. The mathemat-
ics of this transform is discussed in Ref. 94. The transforma-
tion generated byF is designed to diagonalize the Hamil-
tonian, i.e., it becomes

HL = o
k=1

` E
R

ivksudQksudPksuddu

= o
k=1

` E
R

vksuduAksudu2du, s24d

where vksud=ku. Equations24d represents a generalization
to infinite dimensions of two well-known normal forms of
Hamiltonian dynamicsfcf. s14dg. Now we are in a position to
obtain fluctuation spectra.

D. Fluctuation spectra

The ensemble average of a quantityO is given in terms
of Z according tokOl=eDqDp O e−bH /Z. We leave the
details of the evaluation to a later publication, but the diago-
nalization allows the following:

Z =E e−bHLfq,pgDqDp =E e−bokevkuAku2dupk
DAkDAk

* ,

whencekAkAk
*l is obtained. It turns out thatAk~Ek, whereEk

is the electric field associated with a van Kampen mode.
Writing the result in terms ofEk, a noncanonical variable,
gives

kEksudEksu8d*l = dk,k8
16

Vb

eIsud
uueu2

dsu − u8d. s25d

We make two observations abouts25d. First, because of
the factor involvinge, this result is not in an obvious equi-
partition form. However, if one transforms fromEk, to the
correct canonical variables, the variables in which the Hamil-
tonian is diagonal, then equipartion is obtained for allk val-
ues. Second, in the case wheref0 is Maxwellian and the bath
and equilibrium temperatures are equal,s25d agrees with a
result first given by Thompson.87 However, for general equi-
libria of the form f0sv ;T1,T2, . . .d, the result differs from Th-
ompson’s. Derivationsse.g., Ref. 88d are not performed as
asymptotic expansions in a dimensionless number, so it is at
present unclear why the results differ.

An advantage of the present formalism is that it is pos-
sible to transform from the variableAksud back to fksvd and
obtain the following result for phase space fluctuations:

kfksvdfk8
* sv8dl = dk,k8

k2

p2e2Vb
H eIsvd

v
dsv − v8d

−
1

p

eRs0d
ues0du2

eIsv8deIsvd
vv8

J . s26d

The analogous result for the shear flow problem is given by

kvksydvk
*sy8dl = dk,k8hmsyddsy − y8d + vksy,y8dj. s27d

wherem andvk are determined by the equilibrium shear flow
profile. The details of this calculation are too lengthy to
present here.

We have compared the results27d with particle tracking
sPIVd and hot film probe measurements of the pumped rotat-
ing tank experiment of Swinney’s laboratoryse.g., Ref. 97d,
with surprising agreement. The details will be presented else-
where, but note that the functionm is independent ofk. Thus,
near the liney=y8 the d-function term dominates and we
expect the vorticity spectrum to be independent ofk, which
implies the velocity spectrum should vary ask−2. Indeed, this
is surprisingly close to what is seen.
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