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Hamiltonian and action principle formulations of the basic equations of plasma physics are
reviewed. Various types of Lagrangian and Poisson bracket formulations for kinetic and fluid
theories are discussed, and it is described how such formulations can be used to derive and
approximate physical models. Additional uses are also described. Two applications are treated in
greater detail: an algorithm based on Dirac brackets for the calculation of V-states of contour
dynamics and the calculation of fluctuation spectra of Vlasov theory and shear flow dynamics by
methods of statistical mechanics.2005 American Institute of Physid®OIl: 10.1063/1.1882353

I. INTRODUCTION of these in this paper. The subject is vast, and so we can only
touch on some aspects. More extended treatments are ob-
Since antiquity there have been many attempts to extained, for example, for fluid models in Ref. 2 and Vlasov
plain nature by means of various kinds of minimizationtheory in Ref. 3, and many references therein.
principles: For example, in classic times Hero of Alexandria ~ There are many practical reasons for Hamiltonian and
(ca. 75 AD s reputed to have attributed the path taken byaction principle(HAP) formulations. One is that they pro-
reflected light to be that which minimizes the distance trav-vide a convenient setting for constructing theories, in par-
eled, while in the Renaissance Fermat produced his principlgcular, a setting for building in symmetries that one believes
of least time to offer an explanation for the path of light raysa physical system should possess. For example, one can sys-
in optics. Many great thinkers incorporated such principlesematically build in symmetries such as the Poincaré group
into their philosophies, natural and otherwise, but it is said|orentz invariance etginto an action principle, and this is
that this line of thought reached an apex with Hamilton whomch simpler than attempting to do this on the equations of
developed(ca. 1830 a mathematical formalism for both motion level. Conversely, if one already has equations of
light and particles. It is Hamilton's principle, the prototype motion, derived perhaps by the approximation of some
action principle, that is most prevalent in modern expositiongnown general model, then if one constructs an action prin-
of mechanics, and belo(@ec. Il A) we take this as the start- ¢jple one can use Noether’s theorem to obtain constants of
ing point for our exposition of the Hamiltonian and action motion, constants that may not be evident. In very general

principle formulations of equations that describe plasmgerms this is the only way, e.g., that energy can be unambigu-
physics. Of particular interest here are infinite-dimensionabus|y defined.

systems or field theories such as fluid theories and the VIasov  another attractive feature of HAP formulations is that

equation. _ there are certain properties that are the same for all such
There are many reasons thinkers have been attracted {g,n ations. For example, if one knows that a system is
the formula’ugn ,Of physwa! Iaw§ in terms of minimization or Hamiltonian, then one is assured by Liouville’s theorem that
extremal pr|nC|pIes, which in contemporary  language hase space volume is conserved. This has ramifications
amounts to the idea that laws of nature should come fro hich are basic for statistical mechanics. Sec. IV, and it

setting a derivative of some quantity, the a}ctlon, to “Zeroalso places a firm constraint on the types of eigenvalues one
Early researchers espoused the teleological idea that nature - Jpiain from any linear theory calculation, e.g., it pre-

does nothing in vain,” and their thought processes were UStudes the possibility that all eigenvalues represent decay.

ally imbued with theqloglcall opinions. Also aesthetlc§ h"J?S(This is described more fully in Sec. VI of Ref.)Zhus, in
always played a role in physics, and the beauty and simplic: . .
) : - . A a very large sense, demonstrating HAP form taps one into an
ity of action principles motivated many. It is fair to say that

action principles provide a framework for 20th century phys_enormous lore that has been developed over centuries. Con-

. . " versely, it can occur that if one shows something new about
ics: the most successful models of physics, Maxwell’s equa(;31 articular svstem with HAP form. then one has demon-
tions, Einstein’'s equations for general relativity, P Y '

Schrodinger's equation, Yang—Mills and other theories Ofstrated something for a large class of problems. The nature of

particle physics, etc. all have action principle and associatege dgstruction of invariant tori, both near to integrability as
Hamiltonian formulations. The same is true for the most im- escribed by Kolmogorov—-Amold-MoselKAM) theory

portant models of plasma physics, and we will describe som&e'g" R?f' 4 and far from inte-grability as described by
Greendis a good example of this.

HAP formulations provide a setting for consistent ap-

a)Paper CI1A 1, Bull. Am. Phys. Sod9, 57 (2004. In memory of Dieter

Pfirsch, colleague and friend, 19272004, proximations. If one abides by the idea that a HAP system
Pnvited speaker. ought to be approximated by another HAP system, then there
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are algorithmic ways of achieving this. In action principle fluctuation spectra of Vlasov and fluid theory. In Sec. Il we
formulations one has at one’s disposal the direct method ofeview some of the HAP formulations of plasma physics and
the calculus of variationge.g., chap. 4 of Ref.)6 With this  en route to this end describe some of the tools that are
method one inserts trial functions with undetermined paramneeded to understand it. Even this is an impossible task, so
eters into the action, integrates out information, varies withwe try to hit the high points and suggest some references.
respect to the parameters, and thereby obtains a reduced déiere are many references given, but even so the list should
scription. (See, e.g., Ref. 7 where this is done to describenot be taken to be complete. Rather, our goal has been to
coherent structures in a simple drift-wave modénother  provide a gateway into this mode of research.

method is to time average the acfidrin order to remove

fast time scales. In Hamiltonian systems many different. HAMILTONIAN AND ACTION PRINCIPLE

kinds of perturbation theories based on the Hamiltonian forrFORMULATIONS

have been developed. A classic description of perturbation ) i . ) ,
theory based on Hamilton—Jacobi theory is contained in Ref, !N this section we begin with some introductory ideas

10, while more recent perturbation theory using Lie trans-from classical mechanics, and then we describe some more

forms is discussed in Refs. 11 and 12. A nice feature of alpomplicated formalisms  for infinite-dimensional plasma

these methods is that one is basically dealing with approxi[n()dels'

mation of a single function that defines the action principle _ o _ _
or the Hamiltonian system, rather than all the functions that\- Hamilton’s principle and Hamilton’s equations

define the equations of motion. . _ We start by describing Hamilton’s principle in more de-

A particularly nice feature of Hamiltonian systems is that ;) 4 the associatggtocedurefor writing down the equa-
they have an associated means for obtaining sufficient anghns of motion of a mechanics problem. In this procedure
sometimes necessary conditions for stability. An example Ofjne pegins by determining the configuration space, i.e., de-
this is Lagrange's theorem of mechanics, which is the esgermining the coordinates, angles or displacements, neces-

sence of the magnetohydrodynami@dHD) energy prin-  gary 1o describe the system’s configuration. We denote these
ciple. Other energy principles such as that of Gartihend generalized coordinates lg(t), wherei=1,2, ... N andN
others for Vlasov and other theories, which sometimes go bys the number of degrees of freedom of the system. The

the name of the energy-Casimir method, are based upon Disgcond step is to construct functions of these coordinates that
richlet's theorentand extensions thergadf mechanicse.g.,  rgpresent the kinetic and potential energies, and thus obtain
Sec. VI of Ref. 2. (Examples abound. For one presented akq | agrangiani,: =T-V, which for good reason has been in
this meeting see Ref. 14 where stability for Hall-MHD is e past referred to as the kinetic potential. Given the La-

treated) o _ grangian, one is then able to write down the action functional
In a somewhat less explicit way, HAP form motivates 55 follows:

calculations by providing a mindset. When one is aware of Y
the HAP lore, then one knows of certalln thlngs_to try. In this 9q] :f L(q,q,dt. (1)
way HAP form serves as a beacon for illuminating paths one o
might take. An example of this is provided by the ongoing o ) ) )
quest to understand how much of the lore of finite degreeTNe action is an example of a functional, which given a path
of-freedom Hamiltonian systems carries over to infinited(t) réturns a number upon substitution intoand integra-
degree-of-freedom Hamiltonian systems. Because of solitoHOn over time. Different paths usually give different num-
theory”® we know infinite degree-of-freedom Hamiltonian be_rs. In Hamilton’s principle one fixes the beginning and end
systems can be integrable, and thus we are led naturally ®0ints of the pathg(to) andq(t,), and searches over such a
the question of whether there is an infinite-dimensional verSPace of paths for minimum or extremal values. Originally it
sion of the KAM theorem. The HAP form can even provide Was believed that physical paths were those for which the
insight into dissipative systems, such as quasilinear theorction obtains a minimum but nowadays we are content with
by suggesting a natural set of coordinai®s. the path being extrema(This issue was not settled unt!l the
Clearly the line of discussion of this Introduction could 20th century by Mors¢ Extremal means that the functional
continue, but we bring it to a close by mentioning two morederivative of the action vanishegd ql/éq'=0, and this re-
areas where research based on HAP form has grown. TH!Its in Lagrange’s equations of motion
first concerns numerical methods that preserve structure. Ex- 5. d gL
amples of these are symplectie.g., Ref. 17 and conserva- =
tive (e.g., Ref. 18integrators, differential equation iteration
schemes that preserve phase space voli@né appropriate (Since functional differentiation plays a big role in HAP for-
subvolumey and constants of motion, respectively. In Sec.mulations we review this in Sec. Il B, a review that can be
[l we will discuss a numerical method based on infinite- skipped by the cogniscenti.
dimensional Hamiltonian structure for computing V-states  From Hamilton’s principle one obtains Hamilton's equa-
which are solutions of Euler’s fluid equation. The secondtions by first constructing the canonical momentg,
area where Hamiltonian methods are of basic importance is=dL/dg, and then obtaining the Hamiltonian &d(q,p)
statistical mechanics. In Sec. IV we generalize ideas fron¥p,g'—L, where now the repeated indices are summed. This
finite degree-of-freedom statistical mechanics to obtain th@rocedure is generally known as the Legendre transforma-

oq  dtog
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tion, and it is a means of convertidgjLagrange’s equations, On a formal level evaluation of functional derivatives is
which are usually of second order, into thé&l Zirst-order  no more difficult than evaluation of ordinary derivatives. We
equations of Hamilton will present an algorithm for doing this along with a demon-
stration of what is meant by a functional derivative being a
, oH . _oH o . : . !
Pi=—"3 =—. (2) gradient in function space. We do this by comparing the first
99 Ipi variation of functions and functionals.
The Legendre transformation on|y Works for If we make a Sma” Change in the pOin'[ Of the domain Of

Lagrangians that possess a convexity property, but when thi function, sayf(z, 2, ...z,), then there will be an induced
fails Dirac’s constraint theorisee, e.g., Ref. 1&an be used. change in value of the range. This induced change is given
We will not pursue this further here, however, we will use aby the first variation

product of this theory in Sec. lll where we discuss the n (2
V-state calculations. Nz 62)=>, ——>8z=:Vf-6oz (4)
If we introduce the phase space coordinates(q,p), i=1 9%

then Hamilton’s equations can be compactly written as foI-The analogous first variation for a functior@u] is given
lows:
by

oM
z':JC’E, (33 SF[u; éu] = d%F[U+EbU]Fo
where SR oF
) o | :f 5U5U(X)dxz: E’éu , (5
(Jg):<_|N ON)' (3b) 0
N N

where du(x) is a function that represents the change in the
and now the label-1,2, ..., . This form can be taken as a point of the domain. The operations indicated by the second
gateway into geometric mechanics where theterm of (5) constitute a way of linearizing the functional in
(symplectic two-form=(cosymplectic forni?, i.e., wfjJ‘ck éu. Taking the derivative with respect to the parametand
=&, We will also not pursue this further, but refer the inter- evaluating the result at=0, plucks out the linear term idu.
ested reader to Ref. 4. Let us compare these two expressionsidnwe see that
there is a scalar product as indicated by the sum on the label
i or the “.” between the variation of the domain variabe
B. Functional differentiation and the gradienVf. In (5) the role of the scalar product is
played by the integration over the varial¥edenoted by(,).

In order to understand action principles and infinite-

dimensional Hamiltonian systems it is necessary to underNOte: the variable is a continuous version of the label

stand the notion of functional derivative, which as we will 1"€ domain variable analogousais of coursedu, and the

show is a kind of gradient. In elementary analysis we IearrPnly remaining term to be compared is the gradient. ithe

that a function is a mathematical object that returns a numbggomponent of the gradient ¢#), df(z)/ 9z, is analogous to
SF[u]/ du(x). One last comment is needed. In the last expres-

in its range given an element of its domain, or in mathemati-"’ " )
cal notation for a functiori we would writef: R"— R, where ~ S'On of (5 it is most important thaéu stands alone. When
the domain in this case is a regionrirdimensional space. In one varies a functional with an integrand that involves de-
common notation we would write this 4&,,2,, ... .z, and rivatives one obtains an expression involviag, etc. All

for example, if we were interested in the temperature in éierlvaFlves or oth(.ar.operators acting ﬂmmust. be remqveq
region in three space we might write this B, Y, 2). by taking their adjoint. Thus, to take a functional derivative

Alternatively, a functional is a function where the do- one must do two things: vary and isolate. After isolating, the

main is a set of functions and the range is again composed lntegral is stripped away and the functional derivative is ex-
numbers, i.e., it is a function of functions. For a functional tracted- _ _ _
evaluated on a function we write F[u], or in mathematical T You can convince yourself that the functional deriva-
notation we writeF: 83— R, where B denotes a function t'V% of the K_ortevyeg de Vries Hamllt(2)n|ah1[u]:ffﬂ(u3/6
space, which couldbut need ndtbe equal to Hilbert space. ~Ux/2)d% is given Dby H/éu=u*/2+u, and that
Examples of functionals are the acti@hq] of Hamilton's ~ QU(X)/8u(X’)=8(x—x’), then you understand all you need to
principle of (1) and the energy of the Vlasov—Poisson systemMOW about .functlonall (_jerlvatlves for th|s paper. In the
H[f]=m/fo2dxdv/2+ [E2dx/8, where the first term is the course of takmgéH/éU it is necessary to integrate by parts
integral over the phase space kinetic energy density and tHfd'd eliminate the integrateurfacg terms. When the do-
second is the electrostatic energy, which upon making use gpain is chosen properly_these vanish, but in some problems
Poisson’s equation, can be seen to be an expression quadratgundary terms can be important.

in the phase space densityA general form for functionals
in one dimension is given biF[u]=F(X,u, Uy, Uy, ...)dX,
where F is an arbitrary function of a function and its de-
rivativesu,, Uy, etc. We also allow it to be an explicit func- To the extent that plasma physics is governed by classi-
tion of x. cal physics, the action principle we present in this section

C. The parent action principle of plasma physics
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embodiesall of plasma physics. This parent action principle be traced from the equations produced(Byto it. If one is

is that which describes the dynamicsiMftharged, relativis- interested in including more physics, such as quantum me-
tic particles, with charges and massesy, coupled to Max- chanical or general relativistic phenomena, then action prin-
well's equations, an action principle that only includes theciples, for example that couple to Einstein’s equation, are
electromagnetic fundamental force. also available.

The dynamical variables are the particle positiapé,), Alas, given the great level of generality containedh
wherei=1,2,... N, the electrostatic potentiab(x,t), and one might conclude that we are all done. However, we have
the vector potential\(x,t). We could divide up our particles the standard problem that is typically used to motivate sta-
into electrons and ions, or any number of species, and easilystical mechanics: becaud¢ is so large, even if we could
require that the total charge sum to zero, but we will not dosolve the equations of motion the wealth of information

this. The action is given by would be too great to be of much use. Thus we seek simpli-
fications that usually follow from approximations. Approxi-
9a,$,A] mations that remove irrelevant information can introduce or
N — remove constraints, either explicitly or implicitly, and this
1 ‘ . T . .
-3 | dtmey/1 _% makes the discipline interesting.

to

D. Approximations, reductions, and mutilations:
- f th g f d(xt) = — A(X t) [o(x = qi(t)) Action extration
t

0
There exist many kinds of approximations. We reserve

+ il dtJ dXE2(x,t) — BA(x,1)]. (6)  the wordreductionfor a procedure that is in some sense
exact. Reductions may result from a variable change that
exactly separates out information and allows one to solve a
The first term of(6) is the kinetic part of the action; in the complicated problem in stages. A standard example is the
nonrelativistic limit this term becomes the usual expressiorsystem that describes a free rigid body in mechaiécs.
for the kinetic energy. Note that this term involves only theRef. 20. A complete specification of the motion would re-
particle variables. The second term accounts for the couplinguire the solution of the six coupled differential equations for
between the particles and the fieldsand A. Note that it the Euler angles and their conjugate momenta. However, if
involves both integration of space and summation avén  one writes the system in terms of the appropriate angular
the last ternE andB are to be viewed as shorthands for their velocities one obtains the three Euler’'s equations for the
expressions in terms of the potentials=-V ¢—(dA/dt)/c  rigid body which is a closed system. After solving these three
andB=V X A. Observe that the last term only involves the one can then solve three more equations for the Euler angles.
field variables. The same kind of reduction occurs for the infinite-

When we take the derivativéS/5q'(t) it is clear that dimensional equations of fluid mechanics, where the La-
only the first two terms contribute. The first term is straight-grangian variable description is reduced to the Eulerian vari-
forward, but the second deserves comment. When we vargble description. The solution of the Lagrangian variable
and isolate this term, the process of varying presents no difdescription contains more information than the Eulerian,
ficulty, but when we isolate we have to bear in mind that thenamely, the positions of the fluid elements.
functional derivative notation tells us which variables are  Another kind of reduction can occur when one has a
involved in the isolation and eventual stripping away of theclass of initial conditions that is invariant under the dynam-
integral or sum. When we writS/ 59/(t) with the argument ics. An example of this is point vortex dynamics associated
of g; displayed it is to signify that the isolation should take with the two-dimensional Euler fluid equation for vorticity
place with respect to the integration oweand the summa- evolution. If one assumes that an initial vorticity distribution
tion oni. We leave it to the reader to show that settingis located on delta-function spikes, point vortices, at some
83/ 59/(t)=0 yields theith component of the relativistic ver- locations, then the spikes are maintained under the dynamics.
sion of Newton'’s second law with the Lorentz force given by As is well-known(e.g., Ref. 2], ordinary differential equa-
the derivative of the coupling term. Similarly, the derivativestions govern the positions of the point vortices. Upon solving
58S/ 8¢ and 8S/ 5A(x,t) only involve the coupling terms and these differential equations one obtains an exact solution of
the last term of(6). This gives the two Maxwell equations Euler’s equation, albeit one with a singular initial condition.
that involve the sources, the two not determined by the inThe family of fluid closures, based on the water bag reduc-
troduction of the potentials. The coupling terms provide thetion of the Vlasov equation, which were found in Ref. 22
sources while the last term provides the fields. Isolation irconstitute another example. A third example is contour dy-
this case leads to stripping away thendt integrals. namics, which we treat in Sec. Ill.

Given the claim that the action db) contains all of Because of their exactness, both types of reductions de-
plasma physics, it is natural to wonder how dissipation enterscribed above inherit a Hamiltonian structure from their par-
into various plasma models. In general dissipation is noent models. This is not the case for many systems that are
“fundamental,” but arises from some sort of approximationobtained by approximation or other kinds of modeling.
or modeling. For example, the Lenard—Balescu collision op-Sometimes one is explicitly interested in deriving dissipative
erator is entirely electromagnetic in origin, and a route carmodels by coarse graining or other means, and the physical
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source of the dissipation is clear. These inherently dissipativéheir destruction by thésland overlapor considerably more
models should not be expected to have HAP form, and it igrecisely byGreene’s residue criterianWe have an under-
generally clear which terms cause the dissipation, for thewgtanding of the behavior of ahaotic phase space in the
are associated with transport coefficients, viscosities, etaicinity of tori at criticality, because of notions eénormal-
However, when these terms are eliminated the model is exzationanduniversality And, if we are lucky enough to iden-
pected to have HAP form. Any process that results in modelsify an integrable system, because of KAM-type theorems we
for which this is not the case we refer to msitilation Such  know how the system will behave under small perturbations.
non-Hamiltonian models could be useful, but one needs t®ur understanding of phase space also allows us to construct
worry about the introduction of unphysical dissipation thatmaps, such as thstandard (Chirikov—Tayloy or standard
could result in the violation of energy or other conservationnontwist mapswhich, e.g., describe qualitatively the nature
laws. Unlike physical dissipation there may be no phenomof magnetic field lines in tokamaks with monotonic and non-
enological coefficients that govern the amount of dissipatiormonotonicq proflles. We know, on a very basic level, that
and in general this kind of dissipation would not be expectedshearless toriare resilient. We know that none of these sys-
to reflect any physical process. tems can have an attractor, strange or otherwise, and that the

In the remainder of this section we discuss a meansgigenvalues obtained in any linear analysis must conform to
which is essentially the direct or trial function method of thethe constraints imposed by the Hamiltonian form: for every
calculus of variations described above, for extracting fromgrowing mode there must be a damped mode, for every over-
(6), actions that govern models that contain less physicsgamped mode there must be an underdamped mode, etc.
These actions yield finite degree-of-freedom systems upomhus, none of these systems can relax to an equilibrium
variation. point, i.e., we never havasymptotic stabilityAlso, as men-

The equations that describe magnetic field lines havéioned in the Introduction, we havenergy stability criteria
been known for a long time to possess HAP fdeng., Refs.  that can be used to prove nonlinear stability. We have a
23 and 24. This form is easily extracted fror6) by speci-  theory ofnormal forms which states that all linear systems
fying theB, setting$=0, writing the results in dimensionless \ith the same eigenvalues can be transformed by a coordi-
form, and then letting the gyroradius go to zero. This yieldsnate change into the same system. For example, all stable
the Cary-Littlejohn action,Sg,[r]=/A(r)-dr, which was  Hamiltonian systems can be mapped to the Hamiltonian sys-
given in Ref. 25. Variation of the above gives the equationgem with HamiltonianH=Sw(q?+p?/2, which is merely
for the field lines of8=V X A. _ _ that of a collection of independent simple harmonic oscilla-

In a similar manner the HAP form for particle orbits can o5 And, this is only a fraction of the lore at our disposal.

be gotten by specifying botip and B, inserting them into It is natural to wonder to what extent these notions carry

(6), and integrating by parts. This yields the standard nonger 1o infinite degree-of-freedom systems. All these ideas

self-consistent action for particles in given electric and magdyrvive. and some new things can happen too, such as the

netic fields. A variant of this can be used to obtain models,yisience of a continuous spectrum as discussed in Sec. IV,
that are partly self-consistent. This proceeds by spemfymgs() let us turn to such infinite systems
the spatial dependence ¢fandB but with time dependent ’ '

parameters. For example, one can spegify correspond to
a single sine wave with a time dependent amplitude and
phase. The single-wave model, originally obtained for de-
scri_bing beam-plasma in_stabili(ye.g., Refs. 26-31 can be_ E. Continuum systems—Particles to fields
derived in this manner if one separates the particles into
beam and background components and exp%me can In this section we show how one can smooth out the
also derive by this means multiwvave modédsg., Ref. 33  particles of(6) and obtain an action principle where the par-
that include electromagnetic waves as Wefl Refs. 34 and ticles are treated as a continuum. In this way we will obtain
35). the action principle of Lo®’ of (1958 for the Maxwell-
The procedures described above, in which the field variVlasov equations, which treats the particles by means of a
ables were restricted, produced systems that, unlike the sykagrangian or material variable labeled by its initial condi-
tem described by the parent action(6j, have a finite num- tion, a continuum phase space variable. For simplicity we
ber of degrees of freedom. Consequently, as alluded to in theonsider only a single species. There are several other kinds
Introduction, we have at our disposal the large body ofof action principles and ways of describing a continuum of
knowledge of finite degree-of freedom Hamiltonian systemsparticles, in various kinds of fluid and kinetic theories; at the
This knowledge has produced a vocabulary that is commorend of this section we will briefly describe some of them,
place in plasma physics. For example, we can ask whethénany of which are treated in greater detail in Ref. 3.
such a finite system imtegrable and we can construct vari- At t=0 we suppose a particle is located at every point
ous kinds ofPoincaré sectionto address this question. If the zy:=(Xg,vo) of phase space. Thus, in the action (6§ we
system is nearly integrable and the frequencies of periodiceplace the discrete label by this continuum labs,
motion are disparate, we can use the theoryadiabatic = —q(zy,t), and we replace the sums as foIIovin“i1
invariants as made rigorous in plasma physics! If the  —[fy(z)dz, wheref, can be viewed as a probabilility or
system has few degrees of freedom, then in Poincaré sectionsimber density attached to each point of phase space. This
we can look forinvariant tori (good surfacesand investigate procedure results in the following action:
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m., and an associated density function to describe particles. It
S[q,¢,A]:J dtf d2ofo(20) 567201 was described in Ref. 50 how this formulation is a mixed
Lagrangian—Eulerian variable theory. In Ref. 3 the Leaf ac-
_ tion, a Hamiltonian—Jacobi action that manifestly preserves
fdtf dzOfO(zO)f dx[¢(x,t) Casimir invariants(cf. Sec. Il B, was introduced. It was

shown there how the density variable can be removed.
- -A(x,t)} 8(x - (zo,1)) Kinetic Clebsch actionsClebsch obtained an action
principle for the ideal fluid by introducing potentials to de-
1 scribe the velocity field. It was shown in Refs. 3, 51, and 52
+ —f dtf dx(E%(x,t) - B%(x1)), (7 that this idea could be adapted to obtain a purely Eulerian
8 action principle for the Vlasov equation. By writing the
where now all variables are fields, the particle phase spadehase space density &s[a, 8], wherea and 3, the poten-
field q(z,t), and the electromagnetic fieldg(x,t) and tials, are functions defined on phase space[andenotes the
A(x,t). This is essentially the action principle of Low. The ordinary Poisson bracket, one can write a phase space action
derivatives9q, ¢,Al/ 8q(zy,t) produces the equation for La- for kinetic theories.
grangian particle orbits, which can be shown to be equivalent Sometimes one can eliminate the electromagnetic field
to the Vlasov equation if we consider the Eulerian variablevariables from the action altogether. For example, if all the
f(z,1):= fo(zy), Wherez, is the initial condition of the particle forces are electrostatic, then one can solve Poisson’s equa-
that is located at at timet, i.e.,z, is determined by inverting  tion for the electric field in terms of the phase space density
z=0(zy,1), which is always possible because of uniquenessand insert this into the action, and thereby obtain a pure
Faraday’s law andv -B=0 follow from the introduction of particle action. This was done for all the actions above in
the potentials,¢ and A, and the remaining two Maxwell Ref. 3. It can also be done in the Darwin approximatfon
equations follow as fof6), with the sources seen to be the Where relativistic effects are included.
usual expressions of Vlasov theory by usifig,t) := fy(zy) The above action principles have been used for many
and the fact that the mag— z has unit Jacobian. Note that things, but of special importance is the relationship between
(7) reverts to(6) if we suppose that initially particles are Symmetries and constants of motion. Noether’s theorem has
located atN isolated points, i.e., upon usirfg(zo):EiNé(zO been used to obtain various constants of motion, including
-7 andq/(t):=q(z,,1) the energy-momentum tensor, in Refs. 44, 45, 48, 54, and 66.
In order to bring a sense of order to the many differentThis is the only consistently reliable way to physically iden-
types of continuum action principles, we divide them into tify energy and other invariants.
two dichotomies: Lagrangian vs Eulerian and fluid vs ki-
netic. Since we are on the topic we will first discuss kinetic
thgor.iels and then make some brief remarks about fluid actio 4 i, principles for fluid theories
principles.

O |1Q

The situation for ideal fluid theories such as MHD, the
two fluid equations, gyrofluid models, etc. is similar to that
above. We briefly describe some action principles for these

Kinetic theories are distinguished by the nature of thesystems in Lagrangian and Eulerian variables.
particle orbits described. For example, Vlasov theory has Lagrangian variable actionsThe basic Lagrangian fluid
characteristics that satisfy the usual electromagnetic forceariable isq(a,t), which unlike the Lagrangian variable for
law, while gyrokinetic or oscillation-center theories have kinetic theory is labeled by a configuration space variadle,
characteristics based on guiding-centerg., Ref. 39 or  which can be taken to be the position of a fluid element at
oscillation-center equations. In any case, the basic variable ts=0. Descriptions of these action principles can be found in
a phase space density, a naturally Eulerian variable, and theefs. 56 and 57 and 2 for classical fluids, and a particularly
treatment of this variable distinguishes the different actiomice discussion is given in Ref. 58 for MHD.
principles. Eulerian variable actionsWhile action principles for

Lagrangian variable actionsThe Low action(see also fluids in terms of Lagrangian variables are a natural exten-
Refs. 40-42 is the prototype Lagrangian variable action, sion of Hamilton’s principle of classical mechanics, the situ-
and, as described above, one treats a continuum of particktion for Eulerian variables, which are not canonical vari-
orbits and uses the relatidfz, ) := fy(z,) to map back to the ables, requires some artifice. We describe three ways to
Eulerian variable. The Low action is essentially Hamilton’s accomplish this. First, one can introduce so-called Lin con-
principle in infinite dimensions. An alternative to this is to straints, in which one enforces the continuity and entropy
consider the phase space actioii*®in which q is replaced  equations(and possibly othejsby the method of Lagrange
by a canonical momentum, and these quantities are varied multipliers (see, e.g., Ref. 56 A second approach is to in-
independently. The derivative$S/ 5g=0 andéS/ 6m=0 pro-  troduce the Clebsch potential representation of the velocity
duce directly equations that are of Hamiltonian form. field (see, e.g., Refs. 2, 52, 56, and)5%he third method is

Hamiltonian—Jacobi actionsThese actions, which were to directly constrain the Eulerian variable variations to a
introduced by Pfirsch in Ref. 47 and improved and extendedorm induced by underlying Lagrangian variable variations.
in Refs. 48 and 49, use a mixed variable generating functiomhere is a good description of this method in Ref. 57.

1. Action principles for kinetic theories
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Various fluid action principles have been used for vari-because they are invariant under the dynamics. Casimir in-
ous physical applications, including the construction of vari-variants are in this sense built into the original phase space,
ous kinds of fluid theories, gyro, and otherwideOne can  and this structure explains the “mysterious” invariants that
also construct generalized fluid action principles based omre sprinkled throughout plasma theory.
symmetr;f.31 The case where dét=0 is of interest because it tran-
spires universally when one has equations for media in terms
of Eulerian variables. Moreover, it is usually the case that the
Poisson bracket takes a form whéars linear in the dynami-

Because Lagrangian variables are a continuum particleal variables. In finite dimensions this form is given By
description, both action principles and Hamiltonian structure=c}!z, where the constantj are structure constants of a Lie
in terms of these variables match those of classical particlalgebra, but this will not concern us here. Brackets of this
mechanics. However, the transformation from Lagrangiarform have become known as Lie—Poisson brackets., Ref.
variables to Eulerian variables is not a canonical transformag4), and below we briefly describe this form in infinite di-
tion, and consequently the form of Hamilton’s equations inmensions.

Eulerain variables is not of the canonical form(@j or (3a) In infinite dimensions we represent a general field by
and (3b), or its infinite-dimensional generalizatiéhin this (e ,t) labeled byu, where, e.g., for fluid theorieg=x and
section we will describe the universal Hamiltonian form thatVlasov-type kinetic theorieg.=(x,v). The Poisson brackets
plasma(and other continuous medi@quations take when of interest have the form
expressed in terms of Eulerian variables. Since this material
has been extensively covered elsewhéra., Ref. 2 we {F G}:f ﬁj( G

, ) du,
give a brief review, as is needed for the applications of Secs. oY oY

Il and IV. We begin with finite systems and then turn t0 \yhere we now have a cosymplectic operagband if the
infinite systems. , o field ¢ has multicomponents additional sums are implied. We
The usual dictum of classical mechanics is that one only,,\\ see why it is necessary to understand the functional

considers transformations of Hamilton’s equations that ar@yerjyatives of Sec. Il B. The Lie—Poisson form of continuous
canonical transformations, these being transformations thaf«qis is given by

preserve the form of Hamilton’s equations. However, a
Hamiltonian system in noncanonical coordinates is still a = G}:<¢[§F 6G}>

F. Noncanonical Hamiltonian structure

Hamiltonian system, albeit with a possibly obscured form. Epgﬁ

Because the cosymplectic fofm (84 and (3b) transforms . where[,] is a Lie product and the cosymplectic operator is
as a second rank contravariant tensor and a Hamiltonia

=y i i i
transforms as a scalar, Hamilton’s equations and the Poissorz L ]'. We give an exgmple below in Sec. II G that wil
bracket take the forms give some meaning to this formula.

This is the general noncanonical Hamiltonian form pos-
'z‘—J”ﬁ—[z‘ H [f ]—‘?_f\]ii(z)@ sessed by ideal fluid equations, the Vlasov equation, the
TS gd T 01= o7 E R Liouville equation, the BBGKY hierarchy, gyrokinetic theo-

) o o ) ries, MHD, tokamak reduced fluid models, such as reduced
The essence of being Hamiltonian lies in two properties ol yp the Hasagawa—Mima equation, ITG models, etc. In-
the Poisson bracket that are transformation invariant deed it is a universal form.

(1) antisymmetry{f,gl=-[g,f],

(2) Jacobi identity{f,[g,h]]+[g.[h,f]]+[h,[f,g]]=0, G. Vlasov and two-dimensional Euler

which are to be satisfied for all functions of phase sagg ~ Hamiltonian structure

andh. The noncanonical Poisson bracket for the Vlasov—

. _ _ Poisson systeffi is given by
Given the above two properties and the requirement that

detJ+0, a 19th century theorem due to Darboux says that (F G}:f ¢ {f ﬁ}dxdu ®)
there exists a transformation that takes J.. Thus we can ' of ' 5f '

get back to canonical coordinates and the usual form of ,

Hamilton’s equations. The understanding of this and the usg/here the cosymplectic operator has the form

of noncanonical coordinates for perturbation theory in par- _1(of9- 9-0f
ticle orbit theory were introduced into plasma physics in Ref. CTm\axar  axav /)
63.

For the case where dét0, another 19th century theo- Note that{,} is a bracket defined on functionals, whilg is
rem was proven by Lie. This theorem states that one cad bracket defined on functions. With the bracket(®f the
transform to a set of coordinates, part of which are canonicaPne-dimensional Vlasov equation is represented by
and part of which are in a sense redundant. The canonical
coordinates describe a space of dimension equal to the rank — ={f,H} =[f,£],
of J and the remaining coordinates are described by a set of
functions that have become known as Casimir invariantswith the Hamiltonian being the total energy
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1
H[f] = 2 f fo2dxdy + — f E2dx.
2 8

It is easy to show that the particle ener§yresults as fol-
lows: E=mv?/2+e¢p=3H/ 5f.

The bracket for Euler's fluid equation in two ©°sf ]
dimension¥®°is identical to the above with the independent
variables(x,v) replaced by(x,y), f replaced by the scalar
vorticity , and the Hamiltonian being Hlw] o8 ]
=—[wi dx dy. We will use this structure in Secs. lll and IV.

H. Approximation and organization rer 1

Noncanoncial Poisson bracket such as those above hav * 2 A o 1 z

been used in a variety of Hamiltonian approximation ,
schemes. An example using Fourier expansion was used t
describe beam-plasma instability in Refs. 67 and 68. Alter- *5r 1
natively, Hamiltonian reductions can be achieved by using
moments of the dynamical variables. This was recognized, !
perhaps first, in Ref. 69. Moment reductions have been use(,s|
to describe beam systerffsyortex dynamic<’? and re-
cently models of short-pulse laser-plasma interactidns. oF
Poisson brackets also provide an organizational scheme
For many years, reduced fluid models have been derived ir’|
order to describe as much physics as possible in tractable |
models of plasma devices and systems. The reduction pro
cess, based on aspect ratio and other quantities, produces| 1
two-dimensional (2D) or quasi-three-dimensional models ‘
with Poisson bracket nonlinearities. In Refs. 74 and 75 it was ~ 2 i 0 . 2
Shown .that RMHD(both 2D and 3D, high and log) has a FIG. 1. Depiction of V-states with twofolduppey and threefold(lower)
Lie—Poisson bracket. Subsequently, many other systems WeLE metry.
shown to have this form, which constitutes an algebraic ex-
tension of brackets involving the group of canonical trans-
formations. Based on Ref. 76 it was shown that this structure
could be used to derive a model with FLR physics, e.g., theeference framed(H+QL)=0, where herd is the angular
four-field model of Ref. 77. The Hamiltonian theory provides momentum. V-states have been found numerically with
a way to obtain constants of motion and to use them foim-fold symmetry. Examples for the case of twofold symme-
constructing equilibria, coherent structures, and stability artry (the Kirchoff ellips¢ and threefold symmetry are shown
guments. Various other models were considered in Refsn Fig. 1.
78-80. A general theory for such brackets was worked out in
Ref. 81.

A. Hamiltonian structure of contour dynamics
IIl. CALCULATION OF V-STATES ) )
OF CONTOUR DYNAMICS The reduction to contour dynamics proceeds by replac-

. ing the vorticity variablew(x,y,t) by a plane curve that
The water bag model and contour dynamics are eXpounds a vortex patch¥(o)=(X(0),Y(c)). Here the curve

amples of reductions of the Vlasov-Poisson and tWoparameterr is not chosen to be arc length because arc length
dimensional Euler fluidlike equations, respectively. Both argg not conserved by the dynamics of interest.

based on initial conditions where the dynamical variable is  Because plane curves are geometrical objects, their
constant in a region bounded by a contour. Because both thgamiltonian theory should be based on parametrization in-
Vlasov and Euler equations have the common HamiltoniaR,ariant functionals, i.e, functionals of the forf[X,Y]
form of Sec. Il G a similar formulation applies to both. In =¢da FOGY, X, Y, Yoo X0 L), where X, :=dl do, etc.

oo og*

thi§ section we will consider the 2D Euler case. We present 34.F has an Euler homogeneity property. A consequence of
Poisson bracket for contours that bound a region that neegarametrization invariance is the Bianchi-like identity,

not be star shaped, and show how this bracket can be used to

obtain a numerica(relaxation or simulated annealinglgo- oF oF
rithm for calculating equilibrium statéé. In particular X0 oY(o)
V-states® rigidly rotating vortex states that are claimed to be

exact solutions of Euler’s fluid equations, are obtained byrelating functional derivatives, a result which follows from
searching for critical points of the Hamiltonian in a rotating E. Noether’s second theorefh.

Y

+=0, 9)
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The noncanonical Poisson bracket for the contours isimulated annealing, we consider the infinite-dimensional

given by generalization of Dirac’s construction with the brackgtof
SE SF 5G 5G (12) replaced by that of10). We choose one constraint to be
Yoo~ Xo Yo— = Xo— the angular momenturh=f(x?+y?)dxdy, and the other is
{F,G} =j§ do ‘»; 25\( 4 5>§ > oY chosen to enforce the symmetry of the desired V-state. For
X +Y: do XE+Ye example, for Kirchoff's ellipse we choose the second con-

(10) straint to be thexy-moment,K =pxydxdy Figure 2 shows a
sequence of states relaxing into Kirchoff's ellipse. We have
and the equations for the contour are generated by inserting),ccessfully applied this algorithm to a variety of V-states
the following compact form for the Hamiltonian into this and other known rotating equilibrium contour dynamics so-
bracket, lutions. These results will be reported elsewhere.

H :jg dcré; do’ o -1, IV. FLUCTUATION SPECTRA

We now turn to our last applicaticf*rfi’,the calculation of

the spectrum of electron phase space density fluctuations of a
plasma and vorticity fluctuations about shear flow. This is
qone by a novel method that parallels conventional calcula-
af|ons using the partition function in statistical physics and the
Hamiltonian formulation. Expressions for the electric field
fluctuations in a Maxwellian plasma agree with known re-
sults. New results are obtained for non-Maxwellian equilib-
B. Dirac brackets and simulated annealing ria and vorticity fluctuations. The latter results have been

_ ) o compared to fluid experimental results, which we briefly dis-
Given any Poisson bracket and Hamiltonian one can,,ss pelow.

construct a dynamics that relaxes to critical equilibrium Fluctuation spectra in plasmas can be calculated by

points of the system. This can be done with 8imulated 50y means that are treated in standard plasma physics text-
annealing(SA) bracket, which in finite dimensions has the ,qq1s  For example, one can follow Klimontovich and

wheref andi’ are unit vectors tangent to the contougép)

satisfiesV'2¢(p) =G(p), where the functiop=|x-x’| andG

is the Green’s function of the two-dimensional Laplacian.
It is easy to show that this bracket has the area function

2I':=¢(XY,~-YX,)do as a Casimir invariant, i.e{I',F}=0

for all functionalsF.

form smooth &functions located on particles, construct the
. ot _, (j(yg BBGKY hierarchy from Liouville’s equation, follow
[f.9lsa=[f,2']2',0] = EJ J P (1) Thompsofi’ and RostokéP and treat dressed test particles,

or one can approximate thi-body partition function. In

That this bracket generates relaxation dynamics follows fronfluids, statistical mechanics of fluctuations have been treated
dH/dt=[H,H]s,=0. This means we have asymptotic stabil- by Onsagef® Lee° and others using point vorticies, Fourier
ity by Lyapunov’s theorem, the idea behind the H-theoremmodes, or amplitudes at lattice sites as degrees of freedom
relaxation of the Boltzmann equation to thermal equilibrium.(see, e.g., Refs. 21 and 9MWe differ from all these ap-

Attempts to calculate V-states usig0) in an infinite-  proaches in that we do statistical mechanics using eigen-
dimensional version of11) with the rotating frame Hamil- modes associated with the continuous spectfvan Ka-
tonian H+ QL resulted in failure. Probably this is because mpen modesas degrees of freedom.
there are many equilibria and different parts of the initial Our calculation is modeled after early statistical me-
conditions can lie in the basins of attraction of different equi-chanical treatments of the lattice vibrations of a simple solid.
libria. To rectify this we construct Rirac bracketwhich can  We suppose the existence of stable dynamical equilibrium
be used to constrain the system. states for our plasma and fluid systems, which are analogous

En route to his theory of quantization, which requiredto the stationary lattice of the solid. Our equilibria are chosen
generalizing the Legendre transformation to cases that wergp that they support a complete continuous spectrum of
degenerate, Dirac discovered a way to construct degenerageable eigenmodes. Because plasmas can exist for long times
Poisson brackets that satisfy the two conditions of Sec. Il Fin equilibrium states that are out of thermal equilibrium,
while building in invariance of pairs of functions. The pairs these distribution functions need not be Maxwellian. Simi-
then satisfy the same condition as Casimir invariants, i.elarly, shear flow equilibria are chosen to have Rayleigh stable
[Cy 2, f]=0 for all functionsf. Dirac’s theory was built on profiles. In experiments, such profiles can be selected by the
canonical Poisson brackets, and in the case of a single pagompetition between forcing and damping. The oscillations

C, 2, his bracket has the following form: that occur on top of these equilibria are treated analogously

1 to the solid lattice vibrations that are assumed to be weakly

[f.9lep= ﬁ([CLCZ][fag] -[f,C4l9,C;] interacting and the partition function is evaluated. From the
112

partition function the fluctuation spectra are obtained.
+[9,C4][f,Cal). (12)

We have showi? that one can construct good brackets
with Dirac’s construction out of Poisson brackets that need Einstein and Debye calculated the specific heat of a solid
not be canonical. To obtain practicable Poisson brackets fdoy treating it as a collection of N8 quantized simple har-

A. Partition functions
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FIG. 2. (Color online Relaxation onto Kirchoff’s ellipse.

monic oscillators. They summed the partition function ex-From (13) it is seen that there are two requirements needed
plicitly and then used it to obtain an expression that reproto define this object: a conserved eneEfy,q) and a notion
duced the Dulong—Petit relation in the classical lin@,  of measure, which is provided by phase space volume. Both
=3Nkg. Thus they obtained the well-known equipartition re- requirement are assured when the dynamics of the systems is
sult for a solid that the average energy contains akglll,  pamiltonian: the Hamiltonian defines the energy of a state,
per degree of freedom, whefl, is the temperature of the and a well-defined notion of measure arises from Liouville’s

heat bath. .
. . ... theorem on the preservation of phase space volume under the
For classical systems the expression for the partltlondynamics

function is given by the following:
g Y g Partition functions are easily evaluated for stable Hamil-
tonian systems that are quadratic forms in the phase space

N
_ -BE ,
Z—Je qu' dp:. (13 variables,H=2(pMp/2+gGp+qVq/2), by using canonical
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transformations to diagonalize and then perform the resulting The linear theories of the two systems are Hamiltonian
Gaussian integrals. The canonical transformation results iwith the Poisson bracket
any of the following normal forms:

N N N {F,G}L:ffo[%,g}dx v, (17)
H= 2 wl(QF+P?)2 =2 iwQP, = 2 o A2 (14)

and the linear Vlasov theory has

The equipartition theorem then states that for each quantity m v(5f)2

(up to the frequencies;) that appears as a square in the HL:_EJ f Y

Hamiltonian, there occurslgT,/2 contribution to the aver- oo

aged energy of the system interacting with a heat bath.  the Kruskal and Oberm&henergy, as Hamiltonian. It is easy
We effect an analog of the calculation above for the Vla-to verify that the linear Vlasov theory can be written as

sov and Euler systems. In doing so we must evaluate the

partition function for a field theory and this amounts to a — ={6f,H.}..

functional integral of the form at

dvdx+ 1 f (8¢py)?dx, (18)
877 n

. The situation is similar for the shear flow problem, but we
Z:f e AHlaripgDp, (15  refer the reader to Ref. 96 for details.

whereq(z) andp(z) are fields labeled by. Functional inte-
grals were introduced by Wiertérand used in Feynman’s
path integral formulation of quantum mechanics. They are In order to calculate the functional integral @f5) we
not always mathematically well-defined objects, but whentransform the bracket ofl7) into canonical form and then
the Hamiltonian is a quadratic function one can consistentlffind a canonical transformation to variables in whidh is
do calculations by discretizing and reducing the calculatiordiagonal. Expandingf(x,v,t)==___f,(v,t)e** and writing
to a sequence of ordinary integrals. Fortunately, this is th€17) and(18) in terms of the variabld, yields

case we wish to do.

C. Canonization and diagonalization

=ik 5F 8G  8G oF
{F.GlL=> — fé(-————)dv (19
I er M) "\ ofof ofy of
B. Two Hamiltonian systems
The Vlasov system of interest is defined in Sec. Il G. Toand
be definite we give the 2D Euler equation below: m v 1
Ho=-22X j S IfdZdv + ==X K f?
Jw 27 Jr o 87y
E+[¢,w]:0, (16)
=. f A ’ "o (v")dvdo' . 20
where herd i, ]:= oy~ 0, and the streamfunction and E JH JH K0 Ao (0]0") o (0)dodlo (20

vorticity are related by/=A"w or in the case of quasigeo-
strophy another integral relation. Details are given in Refs. 93 and 94 for Vlasov and in Ref.
We consider linear fluctuations about the following class96 for shear flow. _ _
of stable equilibria for the two systems. For Vlasov we sup- ~ Equation(19) is not quite of canonical form. However,
pose the phase space density is given by a Maxwelfign, by definingg.=mf/(ikf,) andp,=f_, the Poisson bracket is
~exp(-mv?/2kgTy) or any stable homogeneous form, canonized, i.e., it becomes
fo(v;T1,T,,...), wWhere we note that the temperature is o
. o oF 6G &G oF
merely a parameter that describes the equilibrium state. In  {F,G}, = > —— — —— |dv.
our second form we allow for the possibility of more than a k=1 r \ O OP STl IPx
single parameter. By Gardner’s theorem we can be assured of Because of the electrostatic energy termHbf the en-

stability if this functlon'|s a monoton!c fu'nct|on.gf. Be- ergy is not a diagonal quadratic form. This is achieved by
cause plasmas can reside for a long time in equilibrium Statel?sing the type-2 mixed variable generating functional
away from Maxwellian, we can distinguish between the

equilibrium temperaturd, and the bath temperature of the -

fluctuationsT,. In the case of shear flow, we suppose the f[q,P]:Z G(v)G[P(v)dv (21)
equilibrium is a flow along a finite channel with a cross k=LK

stream variationtJ(y;a;,a,,...). By Rayleigh’s criterion we to effect the canonical coordinate char(gep) < (Q,P) ac-
are assured of stability ifU’#0. Setting f=fg(v)  cording to

+6f(x,v,t) and linearizing we obtain linearized Vlasov 5Hq,P]
theory for plasma oscillations, the system investigated by p(v) = — =G[P,](v),
Landau, van Kampen, and others. We follow Refs. 93 and 94 o(v)
and solve it as one would solve a Hamiltonian system, albeit 571a,P]
an infinite-dimensional one. The situation is similar for the a. 1
u) = =G uy. 22
shear flow problem. QW OP(u) ad(w 22
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The essential ingredient ¢21) is the integral transform
G defined by

f(v) = Glg](v) := &(v)9(v) + &) H[g](v),
=1+H[¢](v), with

(23)

where €(v)=-mw;f3(v)/K?* and ex(v)
‘H[g] being the Hilbert transform

P
gl == [ Sy
R

Phys. Plasmas 12, 058102 (2005)

|
}_

1 &(0) &@)e)
The analogous result for the shear flow problem is given by

k2

(F)f ") = S v &)

v

v')

7T|€(0)|2 v’ (26)

(@Yo (y)) = Seduy) Sy —y) +oly,y)}.  (27)

whereu andv, are determined by the equilibrium shear flow

with P denoting the Cauchy principal value. The mathemat-profile. The details of this calculation are too lengthy to
ics of this transform is discussed in Ref. 94. The transformapresent here.

tion generated byF is designed to diagonalize the Hamil-

tonian, i.e., it becomes
H, = E i (U)Q(U)P(u)du
R
=2 | oAy, (24)
k=1 R

where w,(u) =ku. Equation(24) represents a generalization
to infinite dimensions of two well-known normal forms of
Hamiltonian dynamicgcf. (14)]. Now we are in a position to
obtain fluctuation spectra.

D. Fluctuation spectra

The ensemble average of a quantidyis given in terms
of Z according to{O)=DgDp O e P/ Z. We leave the

We have compared the res(®7) with particle tracking
(PIV) and hot film probe measurements of the pumped rotat-
ing tank experiment of Swinney’s laboratofy.g., Ref. 97,
with surprising agreement. The details will be presented else-
where, but note that the functignis independent of. Thus,
near the liney=y’ the §-function term dominates and we
expect the vorticity spectrum to be independenkoivhich
implies the velocity spectrum should varyka$. Indeed, this
is surprisingly close to what is seen.
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