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A nonlinear multiwave model that describes the interaction of an electron beam, plasma waves, and
electromagnetic waves in a cold plasma is derived and studied. The derivation, which is based on
slow amplitude and phase change approximations, begins with the electromagnetic Lagrangian
coupled to an electron beam, a background plasma, and electrostatic and electromagnetic waves.
The model obtained is finite dimensional, and allows for efficient computational and analytical
study. Numerical computations demonstrate that with the inclusion of an electromagnetic wave with
the plasma wave, the beam-plasma instability is suppressed. If two electromagnetic waves that
satisfy a beat-wave matching condition are included, the plasma wave is seen to be amplified
provided the beat-wave amplitude exceeds a certain threshold. © 2005 American Institute of
Physics. �DOI: 10.1063/1.1950127�

I. INTRODUCTION

The main purpose of this paper is to construct a simpli-
fied model for relativistic wave-particle interactions. Wave-
particle interactions are of basic importance in plasma phys-
ics and are universal phenomena in space and laboratory
plasmas. Of particular interest is the application to both
plasma-based accelerators and laser wakefield accelerators,
and the present work provides a theoretical method for mod-
eling features of both kinds of accelerator schemes. The
model describes beam excited plasma waves in both the lin-
ear and the nonlinear stages, with the inclusion of the effect
of electromagnetic waves �the laser� in the system. The
model generalizes the so-called single wave model1–3 by si-
multaneously including relativistic effects, multiple waves,
both plasma �electrostatic� and electromagnetic, and three
spatial dimensions.

The derivation proceeds from the relativistic action prin-
ciple for particles coupled to Maxwell’s equations, and the
reduction procedure developed results in model equations
that inherit Lagrangian and Hamiltonian structure. Thus, the
second purpose of this paper is to demonstrate how to sys-
tematically do such derivations. Action principles and their
uses in plasma physics have previously been discussed in,
e.g., Refs. 4–9 in a variety of contexts. In our context, the
partial differential equations that describe a continuous
beam-plasma system are reduced to a finite degree-of-
freedom system. This new system conserves energy and the
total momentum of particles and waves �both plasma and
electromagnetic�, which is a measure of self-consistency. The
model allows for computational efficiency and, with addi-
tional simplifications, for analytical treatment.

Although the model can be used to study the interaction
of beam particles, plasma waves, and external electromag-
netic waves in a general context of laser-plasma interaction,
the third purpose of the paper is to analyze some simplified
cases. Given that the beam particles have velocity nearly
equal to the plasma wave phase velocity �resonant particles�,
the model describes an efficient means of energy transfer

between the electromagnetic �laser� waves and the plasma
wave. This example suggests that this energy transfer can be
used in plasma-based accelerators to further increase the en-
ergy of the accelerated particles. Even with small intensity of
the laser pulse, a considerable amount of energy can be
transferred; for our initial conditions the plasma wave has an
increase in amplitude of about 6%. Numerical studies using
the model show that before such a transfer can occur, the
electromagnetic wave amplitudes must exceed a certain
threshold.

The structure of the paper is as follows. Section II is
dedicated to the derivation of the model, which is a signifi-
cant generalization of the nonrelativistic model of Ref. 10.
Here the basic approximations and ideas that underlie the
derivation are described. Limitations are discussed and justi-
fication of the approximations used are given. Also, in this
section the Hamiltonian form and conservation laws are de-
scribed. In Sec. III, we study a simplification of the model in
which one plasma and one or two electromagnetic waves are
retained. With one electromagnetic wave there is no resonant
interaction, but the electromagnetic wave behaves as an ex-
ternal force acting on the beam-plasma system that leads to
suppression of the beam-plasma instability. With two electro-
magnetic waves energy transfer between the plasma and the
electromagnetic waves occurs when a matching condition is
satisfied, provided the electromagnetic waves have ampli-
tudes that are larger than a certain threshold. In Sec. IV we
conclude.

II. DERIVATION

We begin by assuming the presence of a background
plasma with dynamics that responds linearly and nonrelativ-
istically to the presence of waves. The ions of the back-
ground plasma are assumed to be immobile. These are good
approximations because the resonant particles are assumed to
constitute a very small fraction of the total plasma, and their
velocities are assumed to be much larger than the thermal
velocity of the background plasma. Both plasma waves and

PHYSICS OF PLASMAS 12, 072108 �2005�

1070-664X/2005/12�7�/072108/9/$22.50 © 2005 American Institute of Physics12, 072108-1

Downloaded 01 Sep 2005 to 128.83.179.53. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1063/1.1950127


electromagnetic waves are allowed, with the latter having a
frequency of oscillation of the order of a few times the
plasma frequency. This is the justification for the neglect of
the ions. The external electric fields are assumed small
enough so that nonlinear effects in the background plasma
can be neglected. This will be shown to be the case when we
consider particular parameter ranges.

A. Derivation of the relativistic model

The action principle for the system is a field theoretic
generalization of Hamilton’s principle �see, e.g., Ref. 9� S
=�Ldt, where Lagrangian L for the system of fields, back-
ground plasma, and relativistic beam particles is given by

L =� d3x�1

2
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Here v and n are the Eulerian velocity field and particle
density of the background plasma, respectively, � and A are
the scalar and vector potentials associated with the NL elec-
trostatic and NT electromagnetic waves, respectively, N is the
number of beam particles, j is the current, � is the charge
density, and −e is the electron charge. Quantities with a sub-
script refer to particles whereas those without refer to the
background plasma. The Coulomb gauge � ·A=0 is as-
sumed.

Using fluid theory, the linear response of the background
plasma is given by
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where jL and jT are the longitudinal and transverse parts of
the current. The first three equations of Eq. �2� follow di-
rectly from Maxwell equations upon splitting the current into
irrotational and solenoidal parts and using the Coulomb
gauge �see, e.g., Ref. 11�. Substituting the above relations
into the Lagrangian �1� is inexact because it amounts to the
neglect of the fields due to the beam particles. We return to
the justification for this and other approximations at the end
of this section.

Suppose that the electrostatic and vector potentials are
represented by three-dimensional Fourier series as

��r,t� = 
kL�0

�fkL
eikL·r + fkL

* e−ikL·r� , �3�

A�r,t� = 
k�0

�akeik·r + ak
*e−ik·r� , �4�

where the asterisk superscript denotes the complex conju-
gate. The sums kL�0 and k�0 range over half of the cor-
responding wave vector spaces, and we have
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,
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with �Lx,y,z and �x,y,z positive integers. Here Lx ,Ly ,Lz deter-
mine the size of the plasma, or the periodicity length; for
example, they can be taken to be equal to the maximal wave-
length of the electrostatic wave. The sums exclude the zero
components, since they do not contribute to the equations of
motion.

Although we have chosen a Fourier representation, the
procedure is flexible enough to accommodate the use of a
different set of basis functions depending on the geometry of
the specific problem. For example, a plasma channel formed
by an intense laser pulse has a cylindrical shape, so decom-
position of the fields in a cylindrical geometry would be
more appropriate. Also, one could build pulse shapes with
many or few dynamic parameters that more realistically de-
scribe what is typically seen in experiments.

With the Fourier representation, the Coulomb gauge con-
dition reads k ·ak=0. We assume the amplitudes fkL

and ak

contain slow and fast time scales, and consequently the de-
rivatives will be given by

ḟkL
= − i�kL

fkL
+ ḟ�kL

,

�6�
ȧk = − i�kak + ȧ�k.

Here the underline notation means differentiation with
respect to the slow time scale, i.e., if fkL

�t�=FkL
�t�e−i�kL

t,
with FkL

�t� representing the slow time dependence, then

ḟ�kL
�t�= ḞkL

�t�e−i�kL
t. The second derivatives assume the form
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where the second derivatives with respect to the slow time
scale are neglected, according to the slow variation assump-
tion; in particular, it is assumed that

� f̈kL
� � �kL

� ḟkL
� � �kL

2 �fkL
� ,

�äk� � �k�ȧk� � �k
2�ak� .

Now Eqs. �2�–�7� are substituted into Eq. �1�. The cold
plasma dispersion relations, �kL

2 =�p
2 for electrostatic and

�k
2 =�p

2 +k2c2 for electromagnetic waves, and the formulas
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for the derivatives, Eqs. �6� and �7�, are used. The integration
is performed over a domain with periodic boundary condi-
tions. Upon integrating the squares, terms that contain differ-
ent wave vectors in the exponential ei�k±k��·r average to zero,
and so do terms in which the wave vectors double, e±2ik·r.
Only terms with equal wave vectors but opposite sign of the
exponent survive, and for them the integration reduces to
multiplication by the volume of integration. Use is made of
the Coulomb gauge condition to reduce the vector products
to scalar products. Details of the calculations are given in
Appendix A, where the Lagrangian �1� is shown to take the
following form:
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* · ȧk� .

�8�

The time scales implicit in Eq. �8� require further discus-
sion. In the single-wave model, Refs. 1 and 2, the slow time
scale in the system is obtained by a Galilean transformation
to a frame moving with the initial beam velocity, or by a
particular choice of variables. However, here this is not done
because instead of a Galilean transformation, a Lorentz
transformation should be used and that would involve trans-
formation of the fields as well. It is preferable that the fields
be the ones in the laboratory �stationary� frame. All quanti-
ties in this Lagrangian contain both the fast time scale, on the
order of the electron plasma period, and the slow time scale,
on which we assumed the amplitudes and phases of the
waves vary. To obtain a quantity that varies on the slow time
scale, we simply take instead of fkL

and ak, �fkL
� and �ak�.

A different way for averaging the Lagrangian over the
fast time scale and retaining only the slow time scale has
been followed by several authors.12–14 It results in retaining
only terms for which the resonant condition

v0 · kL − �p = 0 �9�

is satisfied. Indeed, the terms with fkL
contain a time depen-

dence of the form ei�v0·kL−�p�t. If the phase velocity of the
longitudinal wave equals that of the beam electrons, �p /kL

=v0, averaging over the time scale determined by �p and
retaining the next-order small corrections �remember we
have terms in the Lagrangian that contain small derivatives
of amplitudes, and are therefore small compared to the rest
of the terms� will result in only terms of zero- and first order
in �n /nb�1/3, a quantity that is proportional to the ratio of the
fast and slow time scales. Now consider the electromagnetic
terms for which the fast time dependence has the form
ei�v0·k−�k�t. In this case the resonant condition �9� cannot be
satisfied, because the phase velocity of the electromagnetic

wave is always greater than the speed of light �recall that
�k

2 =�p
2 +k2c2�. However, terms with electromagnetic waves

can still produce slowly varying quantities. For example, if
more than one electromagnetic wave is present then their
frequencies can be chosen such that the resultant beat wave
fulfills the necessary resonant condition. This case will be
considered in Sec. III.

To continue, it is convenient to write all variables in
dimensionless form. We use formula �5� to define the dimen-
sionless coordinates and longitudinal wave vectors as kL ·r j

=�L ·� j, and similarly for the transverse wave vectors, k ·r j

=� ·� j. The time scale is given by 1/�p and the length scale
by the maximal longitudinal wavelength, i.e., we choose Lx

=Ly =Lz=2� / �kLmin
�. We define the dimensionless parameter

	=�p /c�kLmin
�, which is nearly the relativistic 	, because the

phase velocity of the plasma wave is nearly equal to the
beam velocity and consequently is a measure of the impor-
tance of relativistic effects. The dimensionless electrostatic
potential and vector potentials are given by

fkL
=

mc2s�L
f�L

e
, ak =

mc2s�a�

e
. �10�

Greek letter subscripts are used to denote dimensionless vari-
ables and the dimensionless coefficients s�L

and s� are given
by

s�L
= �	2nb/2Nn�L

2, s� = �nb/2Nn��, �11�

where ��=�k /�p= �1+�2 /	2�1/2. Rescaling by mc2 and V,
the dimensionless Lagrangian is obtained:
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Observe that the field variables are either multiplied by small
coefficients or contain a small slow time scale derivative.
The small coefficients in front of the electrostatic variables
depend on the ratio of beam and background plasma densi-
ties and on 	, whereas those in front of the electromagnetic
variables depend, in addition, on the inverse of the large
number ��. It follows that the coupling of fields and par-
ticles is stronger for fast particles and for denser beams. The
coupling between electromagnetic waves and particles is
stronger for smaller frequency ratios ��.

As shown in Ref. 1, the single-wave model �without
electromagnetic waves� is valid only when the condition
�nb /n��1 is satisfied; we require a relativistic version of this
condition for our model:

072108-3 A relativistic beam-plasma system… Phys. Plasmas 12, 072108 �2005�

Downloaded 01 Sep 2005 to 128.83.179.53. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



�nb/n� � 1/
1/2. �13�

In addition, when electromagnetic waves are present in the
system, the nonlinear response of the background plasma can
be neglected if

a0 � 
 eA

mc2
 � 1. �14�

To see this, consider the linear response of the plasma, which
yields a velocity that is linear in the electric field, vk

�1�

��ie /�kme�Ek; the nonlinear response is quadratic with re-
spect to the fields, vk

�2���e2 /2m2�k
3�Ek

2 �see Ref. 15�. Upon
using ET= �1/c��A /�t= ��k /c�A, the condition that the linear
velocity be much larger than the nonlinear �quadratic� veloc-
ity, vk

�1��vk
�2�, yields Eq. �14�. The quantity on the left-hand

side of Eq. �14� is the so-called normalized vector potential.
In experiments on wakefield acceleration, a powerful laser
pulse can have a normalized vector potential of the order
unity or even larger. Our model would not be expected to be
applicable to such experiments.

Condition �14� is necessary for neglecting the nonlinear
response of the background plasma on the short plasma os-
cillation time scale. There are additional restrictions that ap-
ply when slower time scale effects are considered. For ex-
ample, since we consider only long laser pulses, the
ponderomotive force on the background plasma may be sig-
nificant. In our model this force is neglected. If we consider
pulses with spot radii much greater than the plasma wave-
length then the transverse ponderomotive force will be neg-
ligible. If the laser pulse rises very slowly then the longitu-
dinal ponderomotive force will be likewise small. Pulses that
rise over several plasma wavelengths have been considered
in the context of accelerators in the self-modulated
regime.16,17 The longitudinal ponderomotive force then
causes a modulation of the laser pulse on the plasma oscil-
lation time scale. This instability can be very fast growing if
the pulse exceeds the critical power for relativistic optical
guiding. For pulse powers below this critical power, the in-
stability grows on the same time scale as that for forward
Raman scattering.17,18 If the pulse is very long �longer than
10–20 plasma wavelengths�, the Raman instability can se-
verely distort the pulse.19 The processes considered in the
present work grow faster than forward Raman scattering,
provided the normalized vector potential is small enough. To
see this, we compare the growth rate of the forward Raman
scattering with that of the beam-plasma instability. The
former has a growth rate 
forward=a0�p

2 /2�2� �cf. Ref. 20�,
while the latter has a growth rate 
beam= ��3/2�
��nb /n�1/3��p /
� �cf. Ref. 2�. The requirement that 
forward

�
beam yields the condition

a0 �
�6




�

�p
	nb

n
�1/3

. �15�

Another instability, backward Raman scattering, grows
faster than forward Raman scattering. However, this instabil-
ity saturates at very low levels �cf. Ref. 21�, and thus we
have excluded it from our model.

Summarizing, our model applies to broad and relatively
long laser pulses with slow rise times and with power less
than the critical power for relativistic optical self-guiding.
Conditions �13�–�15�, also need to be satisfied. We should
note that not all simulations presented here satisfy the valid-
ity conditions just described. The reason we have chosen
such particular initial conditions is that the phenomena under
consideration are more clearly pronounced and thus better
illustrate the presentation.

Given the Lagrangian formulation presented in this sec-
tion, we can obtain the associated Hamiltonian formulation
and conservation laws. We do this next in the following sec-
tion.

B. Hamiltonian form and conservation laws

The Hamiltonian of the system is found from the
Lagrangian �12� by Legendre transform. The canonical mo-
mentum is given by

� j = �L/��̇ j =
	2�̇ j

�1 − 	2�̇ j
2

− 	 
��0

s��a�ei�·�j + a�
* e−i�·�j� .

�16�

For convenience, we introduce the notations

aj� = 
��0
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* e−i�·�j� ,
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��0

is��a��ei�·�j − a��
* e−i�·�j�� , �17�

f,j = 
�L�0

is�L
�f�L

ei�L·�j − f�L

* e−i�L·�j��L, � = 1,2,3.

Notice that the vectorial nature of a,j� and f,j comes from �
and �L, respectively. From Eq. �16�

�̇ j =
1

	

� j/	 + a j

�1 + �� j/	 + a j�2
, �18�

and using Eqs. �16� and �18� for the particle variables, the
Hamiltonian is found to be
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j=1
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2
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+ 
�L�0

�f�L
f�L

* � + 
��0

���a� · a�
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with Poisson brackets

��i�,� j��� = ij���,

�20�

�f�L
, f�L�

* � =
1

i
�L�L�

, �a��,a����
* � =

1

i
������,

where �=1,2 ,3. Notice that the brackets for the field vari-
ables differ from the canonical brackets only by a factor of
1 / i. The calculation for the Legendre transform of the field
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part of the Hamiltonian is done in Appendix B.
The equations of motion that follow from Eq. �19� are

�̇ j =
1

	

� j/	 + a j

�1 + �� j/	 + a j�2
,

�̇ j = −
�� j�/	 + aj��a,j�

�1 + �� j/	 + a j�2
+ f,j ,

�21�

ḟ�L
= − if�L

+ 
j=1

N

is�L
e−i�L·�j ,

ȧ� = − i��a� − 
j=1

N

is�e−i�·�j
� j/	 + a j

�1 + �� j/	 + a j�2
,

and two equations that are complex conjugates of the last
two. Summation over the repeated index � in the second
equation of Eqs. �21� is assumed. In addition to Eqs. �21�, the
gauge condition � ·a�=0 must be added.

Note, the momentum equation has two terms. The first is
a ponderomotivelike force due to the electromagnetic field,
and the second describes the electrostatic interaction with the
beam particles. It also shows that the particles are coupled to
both, the electrostatic and the electromagnetic fields. Each of
the field equations has two terms on the right-hand side. The
first term is just the wave oscillation �varying on the fast time
scale�, whereas the second term describes the coupling of the
plasma to the beam particles through the waves. The latter
involves the small coefficients s�L

and s� and is responsible
for the slowly changing amplitudes assumed at the beginning
of the derivation.

It is easy to see that the total momentum of the system of
particles and waves is conserved:

P = 
j=1

N

� j + 
�L�0

�L�f�L
�2 + 

��0
��a��2 = const. �22�

It is also obvious that the total energy composed of both the
fields and the particles is a conserved quantity; this follows
automatically because the Hamiltonian �19� does not have
explicit time dependence.

The system of Eqs. �21� is highly nonlinear, and integra-
bility is unlikely even for a single particle with one longitu-
dinal wave and one transverse wave. However, the system
with one particle and one longitudinal wave is integrable �see
Ref. 3�, but this is not so for one particle and one transverse
wave. In the nonrelativistic limit, the chaotic behavior was
noted in Ref. 10. Linear analysis can be done in the absence
of electromagnetic waves and in one spatial dimension �see,
e.g., Ref. 3�. Further investigation is based on numerical so-
lution, and this is done in the following section.

III. FEW WAVE MODELS

In this section, we use numerical simulation to investi-
gate the influence of electromagnetic waves on the beam-
plasma system. We show that the presence of one external
electromagnetic wave stabilizes the beam-plasma instability.
When two external electromagnetic waves are present simul-

taneously, beat-wave resonance is observed. This is used to
suggest that particles may be accelerated via the transfer of
energy from the electromagnetic waves, since the relativistic
particles and the beat wave can have matching velocities and
thus can satisfy a resonance condition. Transfer of energy
from the external electromagnetic waves to the plasma wave
�through the beam particles� is observed only when a certain
value of the initial vector potential, a certain threshold, is
exceeded.

The numerical simulations are done with fourth-order
Runge-Kutta method with an adaptive time step. The time
step is controlled by the greater of the absolute error, which
is the C2 norm of the vector made up from all dependent
variables and the relative error of the electrostatic field am-
plitude �this was chosen since the electrostatic field initial
condition is a very small perturbation�. The runs are done
with accuracies usually of the order of 10−5–10−6. The dif-
ference in runs using two different accuracies is extremely
small and only shows up at very long times. As expected, the
system exhibits chaotic nature �see also Refs. 10 and 22�.

A. One electrostatic wave and one electromagnetic
wave

First, consider the beam-plasma system with one electro-
magnetic wave, and with dependence in one spatial dimen-
sion; i.e., all variables are assumed to depend on one spatial
coordinate z and time. For our computer runs we take N
=100 particles, �L= �0,0 ,�L�, �= �0,0 ,�� with �L=1, �
=2,3 , . . ., and nb /n=0.001. The dimensionless coefficients
�11� have the order of magnitude values of s��2.2
�10−3�	 /� and s�L

�2.2�10−3	 /�L. For an estimate of
how large the normalized vector potential a0=s�a� �see Eq.
�10�� is for these values of the parameters, let us take �
=kzLz /2�=5 and 	=�p /c�kLmin

�=2��pLz /c=0.1. Then for
�a��=50, a0=0.016; for �a��=400, a0=0.12. It is also clear
that for larger 	, a0 has a larger value. For example, if 	
=0.96 and �=3, for �a��=20, a0=0.025, and for �a��=200,
a0=0.25.

In Fig. 1, numerical solutions with one electrostatic
wave and one electromagnetic wave are given for several
different values of the transverse amplitude. It is seen that a
larger amplitude of the electromagnetic wave causes a bit
larger saturation amplitude for the electrostatic wave; how-

FIG. 1. �Color online�. Simulation results with one electrostatic wave, one
electromagnetic wave, and 100 particles with parameters �=5, 	=0.1, and
nb /n=10−3.
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ever, at the same time there is a tendency to destroy the
regularity of the oscillation. Notice also that for �a��=200,
there is a significant delay of the onset of instability. In Fig.
2, the electromagnetic wave has even larger amplitude. As a
result, a stabilizing effect is observed: the delay in the
growth of the electrostatic wave is very significant, and the
amplitude of saturation of the electrostatic wave is more than
an order of magnitude smaller than that for �a��=0.

This behavior can be explained by analogy with the
forced mathematical pendulum. The pendulum’s unstable up-
right equilibrium point becomes stable when an external pe-
riodic force of a certain frequency is applied.23 This suggests
an important idea: to good approximation, the electromag-
netic waves can be considered as an external force on the
system of beam particles and electrostatic waves, and their
amplitudes can be assumed to be constant. This idea will be
used in a future work to draw some analytical conclusions
about the system of Eqs. �21�. In particular, this system will
be further simplified to a one-and-a-half degrees of freedom
system using the so-called macroparticle model of Ref. 3.
This simplified system will be studied via the surfaces of
section method and it will be shown that the portions of the
curves in Figs. 6 and 7 below the threshold correspond to
island deformation, whereas the threshold itself signifies is-
land breaking. Transfer of energy is possible when phase
space mixing occurs �Ref. 22�.

B. Two electromagnetic and one electrostatic waves

A single electromagnetic wave has a phase velocity
greater than the speed of light, and therefore cannot be used
to resonantly drive the beam particles. On the other hand, if
two waves are present, their frequencies and wave vectors
can be chosen to satisfy

�k+kL
− �k = �p. �23�

Such a matching condition can be used to obtain resonant
driving of the plasma wave �and the beam particles�. To see
if this holds for the system of Eqs. �21�, we expand the above
matching condition for �L /��1 and use the definition of
	=�p /kLc to obtain

�2 + � −
	2

2�1 − 	�
= 0. �24�

This quadratic equation, if solved for 	 with given values of
�, gives values for the matching condition. For example, if
�=1, the solution yields a value 	=0.83. The electromag-
netic waves must have higher frequency than the electrostatic
wave in order to propagate in the plasma. Therefore, if �
�1, the above value of 	 is a lower bound on the beam
velocity for which the matching condition �23� can be satis-
fied. Table I gives values of 	 as a function of � defined by
Eq. �24�. To test for beat-wave resonance, we choose differ-
ent values of � and fix 	 to equal some of the values in Table
I. We expect to observe a resonant curve similar to that of a
forced pendulum.23

The plots in Fig. 3 show how the amplitude of the
plasma wave is affected by the presence of two electromag-
netic waves with equal amplitudes, but different wave vec-
tors. Only waves with �=3 and �=4 satisfy the matching
condition, and we see that the electrostatic wave then has the
largest saturation amplitude. The rest of the curves are
slightly off resonance, but still have a much stronger influ-
ence than a single electromagnetic wave, as shown in Fig. 1.

TABLE I. Solutions of Eq. �24�, relating 	 to various values of given �.

� 1 2 3 4 5

	 0.828 0.928 0.961 0.976 0.984

FIG. 3. �Color online�. Electrostatic wave in the presence of two electro-
magnetic waves with �a��=200, 	=0.961, and nb /n=10−3.

FIG. 4. Resonance curve for 	=0.961, �a��=200, and nb /n=10−3.

FIG. 2. Simulation results with one electrostatic wave and one electromag-
netic wave with �=5, 	=0.1, and nb /n=10−3. For larger amplitude of the
electromagnetic wave a stabilizing influence on the electrostatic wave is
seen.
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In Fig. 4, we show the resonant curve, i.e., the saturation
amplitude as a function of the electromagnetic waves’ wave
vector ��k /�p���. A clearly pronounced resonance is seen.
In Fig. 5, we see that the electromagnetic waves with �
=3,4 have the largest oscillation of their amplitudes. Note
that we have plotted the electromagnetic wave amplitudes
�a�� /�N to make the plotted quantity independent of the
number of beam particles. Since N=100, the scale on the
graph shows 1/10th of the actual value of �a��.

Next we study the change in the electrostatic wave satu-
ration amplitude for small amplitudes of the electromagnetic
waves. Figures 6 and 7 show this dependence. The two elec-
tromagnetic waves satisfy the matching condition �23�.
When the electromagnetic wave amplitudes are small, the
electrostatic wave responds with a large phase shift, but with
no significant change in its saturation amplitude �see Fig. 8�.
Only above the values of �a� ��20 for nb /n=10−3 and �a��
�100 for nb /n=10−5 does the electrostatic wave saturation
amplitude increase steadily. Such a threshold is equivalent to
an effective “loss” or “damping.” In our Hamiltonian model
there is no loss of energy in the system. However, recall that
the electromagnetic and the electrostatic waves only interact
with the beam particles and not with each other. The electro-
magnetic waves transfer momentum to the beam particles,
thus heating the beam. However, a certain minimal value of
the heating is required before the beam particles can transfer
any energy to the electrostatic wave. This minimal value is
determined by comparing the rates of heating by the electro-
magnetic waves and rate of transferring beam energy to the
electrostatic wave. When the heating rate exceeds the rate of

transfer of beam energy, the electrostatic wave gains energy
from both the beam and the electromagnetic waves. The situ-
ation where a threshold exists in a system without energy
loss is similar to that of plasma parametric instabilities in
inhomogeneous medium: there is no loss of energy in the
system, but a threshold for instability can arise from spatial
inhomogeneities. If the region of instability is of the order of
a plasma wavelength, and the electromagnetic wave period is
close to the plasma wave period, energy can escape from the
unstable region into the stable region on a time scale of a
plasma period, and thus can provide an effective “loss”
mechanism. This loss results in the existence of a threshold
for the electromagnetic wave amplitude, below which a
plasma wave cannot be excited �see Ref. 24�.

It is important to emphasize that under the conditions
described at the end of Sec. II A, the nonlinear interactions
between the waves and the background plasma are weak.
Therefore, the only means of coupling of electromagnetic
waves with each other and with electrostatic waves is by
means of the beam particles. The waves and particles must
satisfy the matching condition �23�. In our model the reso-
nant particles are the beam particles. The simulations in Fig.
8 for beam-plasma density ratio 10−3 show amplification of
about 6%. The amplification is expected to be higher for
denser electron beams, because condition �15� would allow
larger amplitudes a0 whereas from Fig. 9 we see that the
threshold for amplification stays almost constant and does

FIG. 5. �Color online�. The change in the electromagnetic waves. The larg-
est change is for the waves with �1,2=3 ,4 that satisfy the matching condi-
tion �24� for 	=0.961, �a��=200, and nb /n=10−3.

FIG. 6. Threshold of instability of the electrostatic wave in the presence of
two electromagnetic waves with �1,2=3 ,4; 	=0.961; and nb /n=10−3.

FIG. 7. Threshold of instability of the electrostatic wave in the presence of
two electromagnetic waves with �1,2=3 ,4; 	=0.961; and nb /n=10−5.

FIG. 8. �Color online�. Resonant amplification and phase shift of an elec-
trostatic wave in the presence of two electromagnetic waves with �a��
=5,80, and �1=3, �2=4. The curve with �a��=50, �1=3, �2=5 does not
satisfy the resonance condition �24� for 	=0.961, and is seen not to cause
any transfer of energy �amplification� to the electrostatic wave. In this figure
nb /n=10−3.
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not exceed the value of a0=0.024. In Fig. 8, �a��=80 corre-
sponds to a0=0.1 and formula �15� requires that it be less
than 0.2. We see that the presence of a small beat wave has a
significant effect on the instability process.

IV. CONCLUSIONS

We have presented a general method for reducing a com-
plicated relativistic system of nonlinear field equations that
describe beam electrons, plasma waves, and transverse elec-
tromagnetic waves to a finite-dimensional Hamiltonian sys-
tem. The Hamiltonian structure makes clear the conserva-
tions laws and the interaction terms of the N beam particles,
the NL plasma waves, and the NT transverse waves. The non-
linearity of the wave-particle interactions and the nonlinear
beam particle orbits are kept, but the nonlinearity of the ther-
mal background plasma is dropped.

We emphasize that the derivation procedure is flexible
and can be adapted to accommodate general geometries and
various pulse shapes, in better agreement with experimental
conditions. Also, inclusion of additional physical effects,
such as the ponderomotive force on the background plasma
or the direct nonlinear coupling of the electrostatic and elec-
tromagnetic waves, can be done in a systematic way. The
derived model describes physics of high-energy accelerators,
features of laboratory and space plasmas, and laser-plasma
interaction. Specific adaptation of the derivation procedure
can be used to describe many phenomena, such as the accel-
eration of electrons by whistler waves in magnetospheric
plasmas, a future calculation that we envision.
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APPENDIX A: DETAILS OF THE DERIVATION

In this appendix we present the part of the derivation that
only contains the vector potentials. First, consider the term in
the Lagrangian �1� containing �v�2. Using formulas �2�, �4�,
�6�, and �7�, and taking into account that jL is perpendicular
to jT �only jT contains the vector potential A�, we have

� d3x
1

2
mn�v�2 =

c2

8��p
2 � d3x
�2A −

1

c2

�2A

�t2 
2

=
c2

8��p
2 � d3x


k�0
	�k

2

c2 − k2��akeik·r

+ ak
*e−ik·r� +

1

c2 �2i�k�ȧ�keik·r − ȧ�k
*e−ik·r�

− �ä�keik·r + ä�k
*e−ik·r��
2

�
Vc2

8��p
2 

k�0
�2	�p

2

c2 �2

�ak�2

− 4i
�p

2

c2

�k

c2 �ak · ȧ�k
* − ȧ�k · ak

*�� , �A1�

where V=LxLyLz=Lx
3 is the volume of the system. Here we

have neglected second-order time derivatives of ak, as well
as products of first-order time derivatives; the dispersion re-
lation for electromagnetic waves has also been used. For the
integration of the rest of the terms containing A, note that the
current term in the Lagrangian may be transformed so that it
equals twice the field term with a negative sign. Therefore,
for the rest of the calculation we need to evaluate as follows:

−
1

8�c2 � d3x
 �A

�t

2

=� d3x

k�0

�− i�k�akeik·r

− ak
*e−ik·r� + ȧ�keik·r + ȧ�k

*e−ik·r�
2

� −
V

8�c2 
k�0

�2�k
2�ak�2

− 2i�k�ak · ȧ�k
* − ak

* · ȧ�k�� �A2�

and

1

8�
� d3x� � � A�2 =

1

8�
� d3x 

k�0
��ik � ak�eik·r

− �ik � ak
*�e−ik·r�2

=
V

8�

k�0

2k2�ak�2. �A3�

In the last step the Coulomb gauge condition, k ·ak=0, was
used. Adding Eqs. �A1�–�A3�, we see that upon using the
dispersion relation for electromagnetic waves, all terms with
�ak�2 cancel and the remaining terms combine into

V

4i�

k�0

�k

c2 �ak · ȧ�k
* − ȧk · ak

*� . �A4�

By an analogous calculation for the terms involving the
electrostatic potential, one can show that upon using the cold
plasma dispersion relation for electrostatic waves, terms with
�fkL

�2 cancel out and the remaining terms, after performing
the integration over the spatial variables, are

FIG. 9. Threshold for amplification of the plasma wave vs the logarithm
�base 10� of the plasma-electron beam density ratio.
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V

4i�


kL�0

kL
2

�p
�fkL

ḟ�kL

* − ḟ�kL
fkL

* � . �A5�

To include Eqs. �A4� and �A5� into the Lagrangian �1�,
we make use of formulas �6� to express ȧ�k and ḟ�kL

in terms

of ak, ȧk, fkL
, and ḟkL

.

APPENDIX B: ACTION PRINCIPLE FOR THE WAVES

Consider an action principle of the form

S =� dt�Ai�q�q̇i − V�q�� , �B1�

where we have used the repeated index summation conven-
tion and q denotes an even number of generalized coordi-
nates. We would like to find the Hamiltonian equations and
the Poisson bracket for this action. Let us vary the action
�B1� with respect to all coordinates

S =� dt	 �Ai

�qj
qjq̇i + Ai�q�q̇i −

�V

�qi
qi�

=� dt	 �Ai

�qj
qjq̇i −

d

dt
�Ai�q��qi −

�V

�qi
qi�

=� dt�	 �Aj

�qi
−

�Ai

�qj
�q̇j −

�V

�qi
�qi = 0. �B2�

If we require that the variation of S vanishes for every choice
of qi then we obtain the equations of motion

− �ijq̇j =
�V

�qi
, �B3�

where we have defined

�ij = 	 �Ai

�qj
−

�Aj

�qi
� . �B4�

If now suppose that the matrix � is invertible, we can define
the matrix J by

Jij = �− �ij�−1. �B5�

We see that the matrix J is antisymmetric and has an even
rank. Therefore, it can play the role of a Poisson bracket,
whereas the Hamilton equations may be written as

q̇i = Jij
�V

�qi
. �B6�

We can see that such system may be considered as Hamil-
tonian, where half of the coordinates play the role of gener-
alized coordinates whereas the other half are the generalized
momenta. Thus V is the Hamiltonian of the system and J is
the Poisson bracket.

We apply this approach to the field part of the Lagrang-
ian �12� to find the field part of the Hamiltonian, as well as

the Poisson brackets that yield the equations of motion for
the fields. The variables fkL

and ak play the role of general-
ized coordinates, and their complex conjugate, fkL

* and ak
*,

are their conjugate momenta. Therefore, if we take the part
of the Lagrangian which contains the fields �for example, let
us consider only the vector potentials�

La =
1

2i

��0

�a� · ȧ�
* − a�

* · ȧ�� − V�a�

=
1

2i

��0


�=1

3

�− a��
* ȧ�� + a��ȧ��

* � − V�a� . �B7�

Take q1=a�1, q2=a�1
* , A1=−a�1

* , A2=a�1, etc. It is easy to
see that the matrix � is block diagonal with a block for each
pair of field variables a�� ,a��

* . According to formula �B4�
each block has the form

��� =
1

2i
	0 − 2

2 0
� . �B8�

Since the matrix −��� is just the �2 Pauli matrix, its inverse
is itself and the Poisson bracket is determined by the cosym-
plectic form

J�� = 	0 − i

i 0
� . �B9�
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