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The breakup of shearless invariant tori with winding number �= �11+�� / �12+�� �in continued
fraction representation� of the standard nontwist map is studied numerically using Greene’s residue
criterion. Tori of this winding number can assume the shape of meanders �folded-over invariant tori
which are not graphs over the x axis in �x ,y� phase space�, whose breakup is the first point of focus
here. Secondly, multiple shearless orbits of this winding number can exist, leading to a new type of
breakup scenario. Results are discussed within the framework of the renormalization group for
area-preserving maps. Regularity of the critical tori is also investigated. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2338026�
n recent years nontwist maps, area-preserving maps that
iolate the twist condition locally in phase space, have
een the subject of several studies in physics and math-
matics. These maps appear naturally in a variety of
hysical models. An important problem is the under-
tanding of the breakup of invariant tori, which corre-
pond to transport barriers in the physical model. We
onduct a detailed study of the breakup of two types of
nvariant tori that have not been analyzed before.

. INTRODUCTION

We consider the standard nontwist map �SNM� M as
ntroduced in Ref. 1,

xn+1 = xn + a�1 − yn+1
2 � ,

�1�
yn+1 = yn − b sin�2�xn� ,

here �x ,y��T�R are phase space coordinates and a ,b
R are parameters. This map is area-preserving and violates

he twist condition, �xn+1�xn ,yn� /�yn�0, along a curve in
hase space. Although the SNM is not generic due to its
ymmetries, it captures the essential features of nontwist sys-
ems with a local, approximately quadratic extremum of the
inding number profile.

Nontwist maps are low-dimensional models of many
hysical systems, as described in Refs. 2–4. Of particular
nterest from a physics perspective is the breakup of invari-

nt tori �which we alternatively call invariant curves�, con-
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sisting of quasiperiodic orbits with irrational winding num-
ber �see the Appendix�, that often correspond to transport
barriers in the physical system.

One important characteristic of nontwist maps is the
existence of multiple orbit chains of the same winding
number. For the SNM, in particular, the symmetry S�x ,y�
= �x+1/2 ,−y� guarantees that whenever an orbit chain of a
certain winding number exists, a second chain with the same
winding number can be found.

Changing the map parameters a and b causes bifurca-
tions of periodic orbit chains with the same winding number.
Orbits can undergo stochastic layer reconnection �“separa-
trix” reconnection�,5 or they can collide and annihilate. A
detailed review of these bifurcations, as well as a discussion
of earlier studies of reconnection-collision phenomena in
theory and experiments, can be found in Ref. 2.

When two quasiperiodic orbits collide, the winding num-
ber profile shows a local extremum and the orbit at collision
is referred to as the shearless curve. In previous studies of the
SNM only the shearless curves invariant under the full sym-
metry group G of the SNM �composed of the symmetry S as
well as the involutions I1 and I2�6 have been considered.
However, after an odd-period orbit collision �as seen in Fig.
1�b��, in addition to the central extremum �here a minimum�
in the winding number profile, other shearless curves �here
marked by the two outer peaks� may exist. Figure 1�a� also
exhibits peaks, but since the plateau and spike are associated
with an elliptic point and the invariant manifolds of hyper-

bolic points, respectively, rather than quasiperiodic orbits,
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hey do not qualify as shearless curves. From now on, we
ill refer to the G invariant curve as the “central shearless

urve” and to others as “outer shearless curves.” Since the
reakup of outer shearless curves has not been studied so far,
his will be the focus of our investigation in Sec. IV.

Another consequence of the violation of the twist condi-
ion is the occurrence of meanders, quasiperiodic orbits that
re “folded over,” i.e., not graphs y�x�. Whereas Birkhoff’s
heorem states that such curves cannot exist in twist maps,
hey can occur in nontwist maps. In the SNM, meanders
ppear between �in parameter space� the reconnection and
ollision of odd-period orbits.7 Figure 1�a� shows an ex-
mple, whereas in Fig. 1�b�, the meander has changed to a
raph again. As seen in Fig. 1�a�, the region in which mean-
ers are found corresponds to a recess in the winding number
rofile. However, the converse is not true: Fig. 1�b� shows an
xample where meanders are absent, but still a recess in the
inding number profile is observed.

In Sec. III we study the breakup of a central shearless
eander in detail. There is numerical evidence that all in-

ariant tori become meanders locally at breakup �see, e.g.,
ig. 13 in Ref. 4�, but it is not known how close to the
reakup the transition occurs. Here we start out with a global
eander �see Fig. 1�a�� that is nested between two outer

hearless tori. Although such meanders have been observed
n Refs. 2 and 8, their breakup has not been studied previ-
usly. Moreover, the winding number of this central shear-
ess meander is a local minimum in the winding number
rofile, while all the other ones studied previously occur at a
aximum. It is natural to investigate whether their breakup

s governed by the same renormalization fixed point that was
riginally discovered in Refs. 4 and 9. Our results provide an
ffirmative answer to this question and give additional evi-
ence for the universality of the breakup process of central
hearless invariant tori. They also support the idea that the
esidue values at breakup are the same for all central shear-

ess tori with noble winding numbers in the same map. Fi-
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nally, this investigation serves as test case for our improved
numerical methods10 and provides the basis for the compari-
son with the �unexpected� results for the breakup of the outer
tori.

The paper is organized as follows: In Sec. II we review
previous results about the SNM relevant to this investigation.
Section II A contains a brief discussion of the parameter
space of the SNM, in particular the details of where the
scenarios studied in this paper occur. Section II B contains an
account of how Greene’s residue criterion is used for detect-
ing the breakup of critical invariant tori. In Sec. III we
discuss the results for the breakup of the central shearless
meander of winding number �= �11+�� / �12+��
= �0,1 ,11,1 ,1 , . . . � �in continued fraction representation�,
while in Sec. IV we consider the breakup of the outer shear-
less tori of the same winding number. Questions of regularity
of these critical tori and a comparison with previous results
are addressed in Sec. V. Finally, Sec. VI contains our con-
clusion and a discussion of open questions. Basic definitions
are given in the Appendix.

II. BACKGROUND

A. Parameter space overview

In order to identify the parameter regions where the bi-
furcations described in Sec. I occur, various parameter space
curves can be computed �usually numerically�. Collisions of
periodic orbits are described by the bifurcation curves11 in-
troduced in Ref. 4 and generalized in Ref. 2. Reconnections
do not occur precisely on parameter space curves �see, e.g.,
Ref. 12�, but within a finite range of parameters; however,
the range is usually small enough that the method of Ref. 13
�implemented in Ref. 14� yields curves that represent a good
approximation of the reconnection thresholds for odd-period
orbits. For even-period orbits, reconnection coincides with

FIG. 1. Phase space �left� and winding
number profile along x=0.5 �right� of
two stages of the odd-period �stan-
dard� reconnection sequence. The y
ranges of all plots are identical. Pa-
rameters were chosen �a� slightly be-
fore collision and �b� slightly after col-
lision of two major odd-period orbit
chains �winding number marked by
dashed lines�.
the collision of hyperbolic orbits.
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By numerically computing the branching points at which
ifurcation curves for various higher periodic orbits split up
nto several branches below a major odd-period orbit colli-
ion, one obtains a good estimate of the parameter region for
hich multiple orbit chains exist. For an extensive discus-

ion of these curves and their computation, see Ref. 2.
An overview of parameter space with thresholds for sev-

ral examples of low-period orbits is shown in Fig. 2. Higher
rbit branching points, bifurcation curves, and approximate
econnection thresholds are shown for the odd-period orbits
/3 and 1/1. Meanders occur between reconnection and col-

ision; a recess in winding number profile is encountered in
he region limited by branching points and bifurcation curve.
or even-period orbits with winding number 1/2, 5 /6, and
1/12, only bifurcation curves are shown, since even-period
rbits do not induce branching and reconnections coincide
ith collisions. Of the corresponding winding numbers, no
rbits exist above the highest �in b� bifurcation curve and
wo orbit chains are found below the lowest one; in between
arious numbers of orbits exist on each symmetry line. In
ddition, the figure also contains the ragged breakup bound-
ry, introduced in Ref. 15, above which the central shearless
rbits have become chaotic.16 We further indicate points �by
riangles� for which the breakup of the central shearless
urve has been studied in detail in the past �see Refs. 3, 4,
nd 17–19� as well as the two points investigated in this

IG. 2. Parameter space overview of SNM, with higher orbit branching po
dd-period orbits 2 /3 and 1/1. Bifurcation curves for even-period orbits 1
ndicated. New points are marked by two circles. �� denotes outer shearles
aper: The central meander from Sec. III is shown as a solid

wnloaded 13 Oct 2006 to 132.180.16.89. Redistribution subject to AIP
circle ���, the outer shearless curves from Sec. IV as an
empty circle ���. Note that all breakup points for central
shearless tori are located on the breakup boundary, whereas
the outer shearless curves break up at smaller parameter
values.

The winding number investigated here was chosen such
that the central shearless curve is a meander, i.e., the point �
is located between the 1/1 reconnection and collision thresh-
olds, and that multiple orbit chains and hence multiple shear-
less curves can occur, i.e., the point � is located to the right
of the 1/1 branching threshold. This can be ensured by pick-
ing a winding number close to a periodic orbit, here 11/12,
whose bifurcation curve both branches due to a nearby major
odd-period orbit, and has one branch crossing a collision
threshold of this major odd-period orbit before crossing the
breakup boundary.

B. Greene’s residue criterion

Whereas the breakup boundary in Fig. 2 provides a
rough estimate of the parameter values at which central
shearless tori break, a significantly more precise tool for
studying the breakup of a particular torus with given winding
number is provided by Greene’s residue criterion, originally
introduced in the context of twist maps.20 This method relies
on the numerical observation that the breakup of an invariant
torus with irrational winding number � is determined by the

bifurcation �collision� curves, and approximate reconnection thresholds for
/6, and 11/12 and the breakup boundary for the central shearless tori are
ve, all others are central ones.�
ints,
/2, 5
s cur
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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tability of nearby periodic orbits. Some aspects of the va-
idity of this criterion have been proven for nontwist maps.21

To study the breakup, one considers a sequence of peri-
dic orbits with winding numbers mi /ni converging to �,
imi→�mi /ni=�. The sequence converging the fastest, and
ence the most commonly used one, consists of the conver-
ents of the continued fraction expansion of �, i.e., mi /ni

�a0 ,a1 , . . . ,ai�, where

� = �a0,a1,a2, . . . � = a0 +
1

a1 +
1

a2 + . . .

. �2�

he stability of the corresponding orbits can be expressed
hrough their residues, Ri= �2−Tr�DMni�� /4, where Tr is the
race and DMni is the linearization of the ni times iterated
ap about the periodic orbit: An orbit is elliptic for 0�Ri

1, parabolic for Ri=0 and Ri=1, and hyperbolic otherwise.
he convergence or divergence of the residue sequence as-
ociated with the chosen periodic orbit sequence then deter-
ines whether the torus exists or not, respectively:

limi→��Ri�=0 if the torus of winding number � exists,
limi→��Ri�=� if the torus of winding number � is
destroyed.

t the breakup itself, various scenarios can be encountered,
epending on the class of maps and invariant torus under
onsideration.

For twist systems, this criterion has been used to study
he breakup of noble invariant tori in the standard �twist�
ap, i.e., orbits with winding numbers that have a continued

raction expansion tail of 1’s �see, e.g., Refs. 20, 22, and 23�.
t was found that at the point of breakup the sequence of
esidues converges to either �R���0.25 or a three-cycle con-
aining 0.25¼ as one of its elements.

In the standard nontwist map, the residue criterion was
rst used in Ref. 4 to study the breakup of the central shear-

ess torus of inverse golden mean 1/�= ��5−1� /2
�0,1 ,1 ,1 , . . . � winding number. There it was discovered

hat the residue sequence converges to a six-cycle.24 Similar
tudies were conducted for noble central shearless tori of
inding numbers �=1/�2 �Refs. 3 and 17� and �
�0,2 ,2 ,1 ,1 ,1 , . . . � �Ref. 19�, and the same six-cycle was

ound. The parameter values at which these shearless tori
reak, i.e., at which six-cycles of residues are encountered,
re marked by triangles in Fig. 2. In this paper, we study the
oble winding number �= �0,1 ,11,1 ,1 ,1 , . . . �, where the
arge number 11 in the second convergent had to be chosen
o ensure that the breakup occurs in a region in parameter
pace where both meanders and multiple shearless tori are
ossible, as described in Sec. II A.

In addition to nontrivial residue convergence behavior,
nvariant tori at breakup exhibit scale invariance under spe-
ific phase space rescalings. All these results suggest that
ertain characteristics of the breakup of noble invariant tori
re universal, i.e., the same within a large class of area-
reserving maps. To interpret the results, a renormalization
roup framework based on the residue criterion has been

eveloped �see, e.g., Refs. 3, 9, 18, and 23�.

wnloaded 13 Oct 2006 to 132.180.16.89. Redistribution subject to AIP
III. BREAKUP OF THE �= „11+�… / „12+�… CENTRAL
SHEARLESS MEANDER

A. Search for critical parameter values

In order to study a shearless irrational orbit, one needs to
locate parameter values on its bifurcation curve. This can be
achieved numerically by approximating them by parameter
values on the bifurcation curves of nearby periodic orbits,
usually of orbits with winding numbers that are the contin-
ued fraction convergents of �. For �= �11+�� / �12+��
�0.920 748 351 059 159 504, the convergents up to the
highest numerically accessible one in our studies are shown
in Table I.

For given parameters �a ,b�, any of these periodic orbits
�if they exist� can be found along symmetry lines via a one-
dimensional root search, as explained, e.g., in Ref. 4. Per-
forming this search for a range of parameters, usually vary-
ing b while keeping a constant, results in the relation y�b�,
i.e., the location�s� of the periodic orbit along a given sym-
metry line �see the Appendix�.

In this plot, orbit collisions are found where two y�b�
branches meet, i.e., at the extrema of b�y�. Especially for
higher period orbits, multiple collisions can be observed, but
in this section we focus only on the ones approximating the
central shearless curve, deferring the primary outer ones �i.e.,
the only additional collisions found for the lowest, 11/12,
orbit� to Sec. IV. In contrast to previous publications, in
which central collisions appear as maxima in b�y�, here, in
the meander regime, they are associated with minima.

The parameter values b�n��a� of these central collisions,
found by extremum searches, converge to b��a� �located on
the bifurcation curve of ��. Now Greene’s residue criterion,
as described in Sec. II B, can be used to determine whether at
�a ,b��a��, the shearless curve still exists or not: At parameter
values a and the best known approximation to b��a�, the
residues of all periodic orbits of convergents that have not
collided, here the orbits �n� with even n, are computed. Their
limiting behavior for n→� reveals the status of the torus. By

TABLE I. Continued fraction convergents for �= �11+�� / �12+��, where
�n�= �0,a0 , . . . ,an+2� �following the notation of Refs. 3 and 4�.

n �n� n �n� n �n�

0 1/1 13 2707/2940 26 1410348/1531741
1 11/12 14 4380/4757 27 2281991/2478409
2 12/13 15 7087/7697 28 3692339/4010150
3 23/25 16 11467/12454 29 5974330/6488559
4 35/38 17 18554/20151 30 9666669/10498709
5 58/63 18 30021/32605 31 15640999/16987268
6 93/101 19 48575/52756 32 25307668/27485977
7 151/164 20 78596/85361 33 40948667/44473245
8 244/265 21 127171/138117 34 66256335/71959222
9 395/429 22 205767/223478 35 107205002/116432467

10 639/694 23 332938/361595 36 173461337/188391689
11 1034/1123 24 538705/585073 37 280666339/304824156
12 1673/1817 25 871643/946668 38 454127676/493215845
repeating the procedure for various values of a, with alter-
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ating residue convergence to 0 and �, the parameter values
f the shearless torus breakup, �ac ,b��ac��, can be deter-
ined to high precision.

Due to numerical limitations, the highest orbit collision
sed here to approximate b��a� is b�33��a�. However, as first
hown in Ref. 4, a better approximation can be obtained by
bserving �in hindsight� that close to the critical breakup
alue, the b�n��a� obey a scaling law

b�n� = b� + B�n��1
−n, �3�

here B�n� is empirically found to be periodic in n with
eriod 12 as n→�. As b� is unknown, the scaling is most
eadily observed by plotting

ln�b�n+1� − b�n�� = B̃�n� − n ln �1, �4�

here B̃�n�=ln�B�n+1� /�1−B�n�� is also periodic in n with
eriod 12. This is shown in Fig. 3, where for clarity only the
ffsets of ln�b�n+1�−b�n�� about the average slope are shown.
he b�n� values used here were obtained from orbits colliding
n the s1 symmetry line,25 although the same behavior is
bserved on the s2 symmetry line. For s3 and s4, a similar
lot is found, however, the 12-cycles are shifted by n±6. The
lope was calculated from the last 24 difference values by
veraging the last 12 slopes �ln�b�n+13�−b�n+12��−ln�b�n+1�
b�n��� /12, with n=8, . . . ,20. The result is log �1

0.984 96±0.000 36, or

�1 = 2.678 ± 0.001. �5�

he periodicity of B̃�n� enables us to obtain a better approxi-
ation, b* �i.e., closer to b� than b�33�� from lower b�n� val-

es, using the extrapolation

* = b�32� +
b�32� − b�20�

�b�21� − b�20�� − �b�33� − b�32��
� �b�33� − b�32�� �6�

or the best shearless b��a� approximation at which to apply

IG. 3. 12 cycle of b�n� differences in approximating the critical central
hearless �= �11+�� / �12+�� meander at ac=1.064 534 289 3 on s1.
reene’s residue criterion.

wnloaded 13 Oct 2006 to 132.180.16.89. Redistribution subject to AIP
B. Residue six-cycle at breakup

Searching along �a ,b*�a�� for the transition between
residue convergence to 0 and �, we obtain as the critical
parameters for the shearless meander breakup:

�ac,bc� = �1.064 534 289 3,0.209 408 148 327 230 359� . �7�

At these parameters, only orbits with n even in Table I exist,
two for each n, denoted as “up” and “down” for larger and
smaller y values on a symmetry line, respectively. Plotting
the residues of these orbits, one observes the six-cycles in
Fig. 4, here shown for the up and down orbits on s1.

The same cycles are found for the other symmetry lines,
with up and down orbits interchanged and shifted by �n�
→ �n+6�, as summarized in Table II. Since these cycles are
the same as the ones observed in Refs. 3 and 4 �up to an

FIG. 4. Residue six-cycles for orbits s1 at meander breakup. Cycles for
orbits on s2 are the same, with up and down interchanged. Cycles on s3 are
shifted by three, with up and down interchanged. Cycles on s4 are shifted by
three.

TABLE II. Period-six convergence pattern of residues near criticality on
different symmetry lines �following the notation of Ref. 3�. Symmetry prop-
erties of the SNM further imply C6=C3, D1=C4, D2=C2, D4=C1, D5=C2,
D6=D3.

�n� Ru1=Rd2 Ru2=Rd1 Ru3=Rd4 Ru4=Rd3

�8�, �20�, �32� C1 D1 C4 D4

�10�, �22�, �34� C2 D2 C5 D5

�12�, �24�, �36� C3 D3 C6 D6

�2�, �14�, �26� C4 D4 C1 D1

�4�, �16�, �28� C5 D5 C2 D2

�6�, �18�, �30� C6 D6 C3 D3
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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nterchange of up and down orbits and a shift of �n�→ �n
7��, we only quote the final results. The details of this par-

icular residue convergence study can be found in Ref. 10.
he labels Ci and Di here were assigned to reflect this cor-

espondence:

C1 = − 0.6090 ± 0.0046, C2 = − 1.2901 ± 0.0007,

C4 = 1.5945 ± 0.0022, C5 = 2.3434 ± 0.0018,

C6 = 2.5919 ± 0.0023, D6 = − 2.6365 ± 0.0007.

Note that the residues do not show evidence of the rela-
ion C6�−D6 that was suggested by the numerics of Ref. 4.

. Phase space scaling invariance
nd renormalization results

The phase space at the critical parameter values for the
eander breakup is shown in Fig. 5. As in previous studies,

he shearless meander at breakup is scale invariant under
pecific rescalings of phase space

This is readily seen by zooming in at a certain point
sing different levels of magnification: For example, we
oom in on the intersection �xs ,ys� of the shearless meander
ith the s3 symmetry line, and transform to symmetry line

oordinates �Ref. 9�, in which the s3 symmetry line becomes
straight line,

x� = x −
a

2
�1 − y2�, y� = y − ys. �8�

ere, ys=0.597 908 581 54 was obtained by applying the
ame scaling as in Eq. �6� for b�n� values to the y�n� locations
f the �22�, �24�, �34�, and �36� periodic orbits on s3, once for
he respective up orbits and once for the down orbits, and
veraging over both results.

Figure 6 shows two levels of magnification of the mean-
er in these coordinates, each along with the up and down
eriodic orbits of one of its convergents. The plotted region
as chosen to allow a direct comparison with Fig. 1 of Ref.
and Fig. 7 of Ref. 3. Although the two plots deviate slightly

IG. 5. Phase space at the �= �11+�� / �12+�� meander breakup, ac

1.064 534 289 3 and bc=0.209 408 148 327 230 359. Also shown are the
ymmetry lines s1, s2, s3, and s4.
rom each other towards the edges of the plotted regions

wnloaded 13 Oct 2006 to 132.180.16.89. Redistribution subject to AIP
�because in contrast to Ref. 3 the x� and y� ranges are larger
here, i.e., scales at which the meander is still influenced
mostly by lower convergents�, they correspond exactly
around the origin.

FIG. 6. Two levels of magnification, in symmetry line coordinates �x� ,y��,
of the �= �11+�� / �12+�� central shearless meander at breakup. Also shown
are the nearby up and down orbits of the �12�th �top� and �24�th �bottom�
continued fraction convergents.

FIG. 7. y values in phase space of the 11/12, 12/13, 23/25, and 35/38

outer orbits on the s1 symmetry line as a function of b, at a=0.975 446 1.
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For a quantitative analysis, we compute the scaling fac-
ors � and 	 such that the meander in the vicinity of its
ntersection with s3 is invariant under �x� ,y��

��12x� ,	12y�� �following the notation of Refs. 3 and 9�.
gain, these are found from the limiting behavior of conver-
ent periodic orbits: Denoted by �x̂n,±� , ŷn,±� � the symmetry
ine coordinates of the point on the up �
� or down ��� orbit
f the �n�th convergent that is located closest to �0,0�, we
ompute

�n,±
12 = � x̂n,±�

x̂n+12,±�
�, 	n,±

12 = � ŷn,±�

ŷn+12,±�
� . �9�

veraging the six values �18±
12 , �20±

12 , and �22±
12 , we find �12

321.65±0.070, i.e., �=1.61789±0.00003 �with the error
eing the standard deviation of the mean�. Similarly, for 	,
e obtain 	12=431.29±0.19, i.e., 	=1.65792±0.00006.
hese are the scaling factors used in Fig. 6. Within numerical
ccuracy, they coincide with the values found in Refs. 3
nd 9.

As shown in Ref. 9, to interpret the scaling invariance of
he shearless meander itself and its convergents under �n�

�n+12� one can introduce a renormalization picture, with
renormalization group operator R� acting on the space of
aps with shearless curve at winding number � �see Refs. 9,

8, and 23�. Operating with R�11+��/�12+�� infinitely many
imes on the standard nontwist map at criticality of the shear-
ess meander studied here limits to a map that is a period-12
xed point of the renormalization group operator.

In the vicinity of the fixed point, two unstable eigenval-
es �1 and �2 can be computed to characterize the fixed
oint. As shown in Ref. 9, these are given by �i=

12�1/�i,
here

1 = lim
n→�

	b�n+12� − bc

b�n� − bc

, �2 = lim

n→�
	ac�n+12� − ac

ac�n� − ac

 , �10�

here ac�n� is the a value along the bifurcation curve of the
n�th convergent, rather than along the shearless curve, at
hich the sequence of convergent residues exhibits non-

rivial limiting behavior �i.e., converges neither to 0 nor ��.
sing n=21, we obtain the eigenvalues

�1 � 2.680, �2 � 1.584, �11�

hich are, within a small numerical error, the same values
hat were found for the 1/�2 shearless curve in Ref. 3, and,
ith a slightly larger error, for 1 /� in Ref. 9.26

In summary, from the renormalization perspective, the
ritical behavior of the central shearless meander is governed
y this nontwist fixed point, which appears to be identical to
hose found in Refs. 3, 4, and 9.

V. BREAKUP OF THE �= „11+�… / „12+�… OUTER
HEARLESS TORI

. Search for critical parameter values

The procedure for finding the critical parameter values
or the breakup of outer tori is the same as that described in
ec. III A. The relations y�b�, at fixed a, for each of these

rbits from Table I are found along symmetry lines. The
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collision parameters b�n� are again extrema of b�y�, only now
the outer maxima are used, as illustrated in Fig. 7 for the
lowest four convergents. The b�n� of the outer shearless orbits
are marked by solid circles �•�.27 As in the central meander
case, the best approximation to b��a� �here b�34�� is used for
applying Greene’s residue criterion. Finally, varying a to find
the transition between residue convergence to 0 and � results
in the parameter values �aco, bco�.

Even though the b�n��a� seem to follow the same scaling
law, Eq. �3�, as the ones approximating the central shearless
meander, the data do not show sufficient evidence for a pe-
riodicity of B�n�. Using the numerical value for �1 from Eq.
�5� to allow for a direct comparison, and again plotting the
offsets of the logarithmic b�n� differences about this average
slope, Fig. 8 is obtained.28 Without an apparent periodicity, a
better approximation to b� than b�34�, similar to the extrapo-
lation in Eq. �6�, cannot be found.

B. Residues at breakup

As before, we search along �a ,b�34��a�� for the transition
between residue convergence to 0 and �. However, unlike
before, where the critical parameters could be determined

FIG. 8. b�n� differences in approximating the critical shearless �= �11
+�� / �12+�� outer orbits at aco=0.975 756 446 1 on the s1 �above� and s4

�below� symmetry lines.
very accurately by observing significant deviations from the
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esidue six-cycle for small changes in parameters, here the
etermination of the exact point of breakup is slightly less
ccurate. Because no clear cycle pattern is apparent, the only

IG. 9. Residue behavior for orbits on s1 to s4 at the breakup of �= �11+
aco ,bco� are indicated by the bold line. Residues for five parameter value
arameter values with aaco in steps of 10−10 by dotted lines.
riterion to rely on is the residue convergence to 0 and �,

wnloaded 13 Oct 2006 to 132.180.16.89. Redistribution subject to AIP
which, however, leaves a transition range where the conver-
gence of numerical data is inconclusive. With this in mind,
our “best guess” for the critical parameters for the outer

2+�� outer shearless tori. Residues for assumed breakup parameter values
a�aco in steps of 10−10 are indicated by thin lines and residues for five
�� / �1
s with
shearless tori breakup is:
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aco,bco� = �0.975 756 446 1,0.187 871 747 625 938 8� , �12�

here the last digit in aco and several of the last digits in bco

re merely conjectured to be the values that produce the
best transitional behavior” in the residue plots in Fig. 9. For
better view of the accuracy of these critical parameters, all
arameters used are listed in Table III.

In this case, the only �pairs of� existing periodic orbits
n� of Table I are the ones with odd n. Since the outer shear-
ess orbits �each considered separately� are not S invariant, a
esidue correspondence scheme as in Table II does not exist.
herefore residues for both orbits on all four symmetry lines
re shown in Fig. 9.

In contrast to all previous studies of breakups of central
hearless tori with noble winding number, for the outer, non-
-invariant tori, no six-cycles occur. Whether the residues
onverge to higher period cycles remains an open question,
ince within the limited number of 19 data points that could
e obtained numerically with sufficient accuracy �up to �n�
�37� with only odd �n� existing� no such cycle could be
learly identified, but certainly not ruled out either. What can
e established, however, is that the outer shearless tori rep-
esent the first example where a breakup type different from
residue six-cycle is observed in the standard nontwist map.

. Phase space at breakup

The phase space at the critical parameter values for the
reakup of the outer shearless tori is shown in Fig. 10. In
ontrast to the case of the central meander no scaling invari-
nce was found.

. REGULARITY OF CRITICAL INVARIANT TORI

In this section, we describe the regularity of the shearless
nvariant tori at breakup. This method was recently intro-
uced in Ref. 29 as another tool for classifying critical in-
ariant tori in area-preserving maps. The role of regularity as
n indicator for membership in a particular universality class
f the renormalization is presently under investigation.

The shearless irrational orbits can be described by a
unction called the “hull function.” For an invariant torus of
otation number �, this is given by the map K :T→T�R
uch that M �K���=K��+��, and the range of K is the invari-

nt torus under consideration. We choose the lift K̃ :R

ABLE III. Numerical values of the critical parameters �a�34� ,b�34�� in the
icinity of the shearless outer tori breakup, with the conjectured critical
arameters shown in Italics.

a�34� b�34�

0.9757564459 0.1878717467093720
0.9757564460 0.1878717471676554
0.9757564461 0.1878717476259388
0.9757564462 0.1878717480842221
0.9757564463 0.1878717485425054
R�R of the map K to satisfy

wnloaded 13 Oct 2006 to 132.180.16.89. Redistribution subject to AIP
K̃�� + 1� = K̃��� + �1,0� , �13�

which corresponds to the lift M̃ of the SNM satisfying M̃�x
+1,y�=M̃�x ,y�+ �1,0�. Equation �13� also implies that the

functions K̃x���−� and K̃y��� are periodic. These functions
for the critical central and outer meanders are shown in
Fig. 11.

We studied these functions using techniques from har-
monic analysis developed in Refs. 29 and 30. In particular,

Fig. 12 shows the plot of log� �� /�t��e−t�−d2/d�2
K����L� ver-

sus log t, calculated using 225 Fourier coefficients of K���.

FIG. 10. Phase space of the �= �11+�� / �12+�� outer shearless tori at
breakup, where aco=0.975 756 446 1 and bco=0.187 871 747 625 938 8.
The symmetry lines s1 to s4 are shown.

FIG. 11. The hull functions Kx���−� �left� and Ky��� �right� for the critical

central and outer meanders.
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We see that these functions saturate the bounds given in

ef. 31, Chap. 5, Lemma 5: ��� /�t��e−t�−d2/d�2
K����L�

Ct�−�, where � is the Holder exponent of K. This allows
s to calculate the regularity of these hull functions from the
lope of lines in Fig. 12 and the results are presented in Table
V. We conclude that the regularity of the central shearless

IG. 12. The plot of log� �� /�t��e−t�−d2/d�2
K����L� vs log t for the hull

unctions.
orus is 0.68±0.02 while that of the outer torus is 0.72±0.05.

wnloaded 13 Oct 2006 to 132.180.16.89. Redistribution subject to AIP
This agrees very well with the regularity of other shear-
less noble tori studied in Ref. 29.

VI. CONCLUSION

In this paper we presented the breakup of two types of
shearless invariant tori with noble winding number that had
not been studied previously: a central meander and an outer
torus. The breakup of the central meander showed within
numerical accuracy the same critical residues, scaling param-
eters, and eigenvalues of the renormalization group operator
as the central shearless invariant tori previously studied.
From a renormalization group point of view this was to be
expected: all nontwist maps with a critical shearless torus of
noble winding number are expected to be equivalent under
renormalization to the map with the critical shearless golden
mean torus, independent of being a meander or not.

In this light, the result of the outer torus breakup is sur-
prising. Although the winding number is noble, no critical
residue pattern could be established within the numerically
accessible range. This suggests that the number theoretic
properties of the winding number might not be enough for
the classification of different breakup scenarios.

We do not believe that the result is due to a lack of
precision in locating the critical point in parameter space,
and therefore can be explained by the influence of the twist
renormalization fixed point. That influence was studied in
Ref. 32 for the 1/� torus and in Ref. 3 for 1 /�2. The result of
those studies was that if one is close to, but not quite at the
breakup in parameter space, the residue sequence for the
lower order convergents exhibits signs of the six-cycle, but
the residues of the higher order convergents limit to �depend-
ing on the symmetry line� either the MacKay twist fixed
point or the MacKay twist three-cycle.22 The residue behav-
ior we find here for the critical outer shearless tori appears to
be completely different.

A potential explanation is that symmetry properties of
the shearless torus �here: S invariant versus not S invariant�
affect the breakup, which could indicate that we found a new
universality class of the renormalization group operator for

TABLE IV. The regularities of hull functions Kx���−� �top� and Ky��� �bot-
tom�, found using the slopes of lines in Fig. 12.

� Central torus Outer torus

2 0.670±0.002 0.691±0.004
3 0.669±0.004 0.683±0.005
4 0.670±0.004 0.685±0.006
5 0.671±0.004 0.665±0.006

Kx��� 0.67±0.01 0.69±0.01

� Central torus Outer torus

2 0.692±0.003 0.756±0.003
3 0.696±0.003 0.757±0.003
4 0.693±0.003 0.769±0.004
5 0.694±0.004 0.757±0.004

Ky��� 0.69±0.01 0.76±0.01
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rea-preserving maps. To clarify this point, we plan on study-
ng a different nontwist map that has an involution decom-
osition, but no spatial S symmetry.

Another possibility is that after an appropriate coordi-
ate change, one that makes the outer torus symmetric, the
NM with critical outer torus is equivalent under renormal-

zation to the fixed point with critical shearless golden mean
orus.

We note that, even though we do not observe any scaling
nvariance for the outer shearless torus, its regularity is seen
o be the same as that of all the other shearless tori studied so
ar. It remains to be seen whether this fact has any bearing on
he universality class of the problem.
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PPENDIX: BASIC DEFINITIONS

For reference, we list a few basic definitions used
hroughout the main text:

An orbit of an area-preserving map M is a sequence of
oints ��xi ,yi�i=−�

� such that M�xi ,yi�= �xi+1 ,yi+1�. The wind-
ng number � of an orbit is defined as the limit �
limi→��xi / i�, when it exists. Here the x coordinate is
lifted” from T to R. A periodic orbit of period n is an orbit

Mn�xi ,yi�= �xi+m ,yi�, "i, where m is an integer. Periodic
rbits have rational winding numbers �=m /n. An invariant
orus is a one-dimensional set C, a curve, that is invariant
nder the map, C=M�C�. Of particular importance are the
nvariant tori that are homeomorphic to a circle and wind
round the x domain because, in two-dimensional maps, they
ct as transport barriers. Orbits belonging to such a torus
enerically have irrational winding number.

A map M is called reversible if it can be decomposed as
M = I1 � I2 with Ii

2=1. The fixed point sets of Ii are one-
imensional sets, called the symmetry lines of the map. For
he SNM the symmetry lines are s1= ��x ,y� �x=0, s2

��x ,y� �x=1/2, s3= ��x ,y� �x=a�1−y2� /2, and s4

��x ,y� �x=a�1−y2� /2+1/2.
The m /n bifurcation curve b=�m/n,i�a� is the set of

a ,b� values for which the m /n up and down periodic orbits
n the symmetry line si are at the point of collision. The
ain property of this curve is that for �a ,b� values below
=�m/n,i�a�, the r /s periodic orbits with r /s�m /n exist.
hus, m /n is the maximum winding number for parameter
alues along the m /n bifurcation curve. As detailed in Ref. 2,
n certain parameter regions multiple orbits of winding num-
er m /n, and therefore multiple bifurcation curves of the
ame winding number, can exist.
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