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Abstract

The spectrum of electron phase space density fluctuations of a plasma is calculated by a novel method that parallels
conventional calculations of the partition function in statistical physics. Expressions for the electric field fluctuations
and the closely related form factor agree with existing results. The method clears up ambiguities about equipartition
and provides a new expression for the spectrum of electrostatic phase space density fluctuations about stable non-Maxwell-
ian equilibria.
� 2007 Published by Elsevier B.V.
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1. Introduction

Several approaches can be taken for calculating the electrostatic fluctuation spectrum of a homogeneous
plasma. In the Klimontovich approach [1,2] a one-point phase space density, concentrated on the phase space
positions of N point particles, is smoothed by ensemble averaging and then the resulting hierarchy is trun-
cated. Alternatively, one can begin with an N-point Liouville equation and construct and truncate the
BBGKY hierarchy (see e.g. [3,4]), or one can follow a third approach which is to consider the superposition
of dressed test particles (see e.g. [5–8]). Lastly, a direct statistical mechanical approach can be taken where one
constructs and coarse grains the partition function for N point particles interacting through the Coulomb
potential (see e.g. Chapter VIII of [4]). In this paper we present a new method that is based on the partition
function, where van Kampen modes [4,9] are taken to be the basic degrees of freedom, and, consequently,
transient (nonwave) dynamics is included.

Our approach parallels the specific heat calculations of Maxwell, Einstein, and others. For example, Ein-
stein calculated the specific heat of a solid (later refined by Debye) by supposing it to be an equilibrium lattice
configuration of point masses connected by springs. He then considered the statistical mechanics of the linear
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vibrations about the equilibrium configuration. He quantized the energy associated with the vibrational
degrees of freedom and calculated a resulting discrete sum that appears in the partition function, whence
he obtained the specific heat. In the classical limit his result agreed with the Dulong–Petit relation, which
accounts for kBT for each degree of freedom. Our approach is philosophically the same: we begin with a
homogeneous stable equilibrium solution of the Vlasov–Poisson system, which is analogous to Einstein’s lat-
tice, and then calculate the classical partition function where the basic degrees of freedom are the normal
modes of the plasma, which are analogous to the lattice vibrations.

Below in Section 2 we review some basics about partition functions and their use. This is followed in Sec-
tion 3 by a review of features of the Vlasov–Poisson system and its Hamiltonian formulation that are needed
for subsequent calculations. Section 4 contains the main part of the paper, where we evaluate the functional
integral that represents the partition function and thereby obtain expressions for fluctuation spectra. In Sec-
tion 4 it is also shown that the results satisfy equipartition when viewed properly and expressions for form
factors are obtained. Because the problem we are considering is a classic one of plasma physics, effort has been
spent comparing our approach and results with previous work. This is discussed in Section 5 along with an
interpretation of our results and mention of future work.

2. Partition functions

Classical partition function calculations lead to the evaluation of the following integral:

Z ¼
Z

dle�bE;

where b ¼ 1=kBT . Evidently, two things are required to evaluate this integral: an expression for the energy, E,
and a notion of invariant measure, dl. Both are provided by the Hamiltonian form of classical physics, where
the energy is given by the Hamiltonian and, according to Boltzmann and Gibbs [10], the appropriate measure
is given in terms of canonical variables, dl ¼

Q
dqdp. In practice, one evaluates the integral by diagonalizing

the Hamiltonian by a canonical transformation and then calculates the resulting product of Gaussian inte-
grals. This gives the well-known equipartition theorem, which states that the average value of the energy
has a contribution of 1

2
kBT for each quantity appearing as a square in the energy. Thus, for a gas that has

no interaction potential energy the average energy is half that of a solid.
Our calculation is significantly more difficult than that described above because the ‘vibrations’ are governed

by the linearized Vlasov equation which is a field theory. Thus we must evaluate the functional integral:

Z ¼
Z

DpDqe�bH ; ð1Þ

and this requires the Hamiltonian, H, the canonical field variables, ðq; pÞ, and a means for calculating the func-
tional integral. This calculation is hampered by the fact that the basic variable in Vlasov theory, the phase
space density f, does not constitute a set of canonical variables, and the fact that the linear normal modes
of interest, the van Kampen modes, have a continuous eigenvalue spectrum and associated singular eigenfunc-
tions. Two advances make this calculation possible – techniques to canonize and to diagonalize. In [11] it was
shown how the Vlasov equation is a Hamiltonian theory in terms of noncanonical variables, and in [12] (re-
fined and extended in [13–15]) it was shown how to make sense out of the energy associated with van Kampen
modes and how to diagonalize this energy by constructing an integral transform that is a generalization of the
Hilbert transform. The diagonalization procedure turns (1) into a Gaussian functional integral that is rudi-
mentary to evaluate.

3. Review of Vlasov system and Hamiltonian structure

Now turn to a review of the basic equtions of the Vlasov system, its noncanonical Hamiltonian structure,
and the map to normal coordinates.
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3.1. Vlasov dynamics

We consider a plasma with immobile ions and electron dynamics governed by the Vlasov–Poisson system.

of
ot
þ v

of
ox
þ e

m
o/½x; t; f �

ox
of
ov
¼ 0;

o2/
ox2
¼ 4p e

Z
dvf ðx; v; tÞ � qB

� �
; ð2Þ

where f ðx; v; tÞ is the phase space density, / is the electrostatic potential, and qB is a uniform neutralizing
background charge density. Here we have integrated out all but the longitudinal variables, reducing the prob-
lem to one dimension. In one dimension the energy is given by

H ¼ m
2

Z Z
dxdvv2f þ 1

8p

Z
dx

o/
ox

� �2

; ð3Þ

a quantity that is conserved by the system (2).
Because we are considering the statistical mechanics of linear vibrations, we assume a periodic spatial

domain and expand the phase space density as f ðx; v; tÞ ¼ f0ðvÞ þ df , with df ¼ 1
2

P
kfkðv; tÞeikx and the equi-

librium f0ðvÞ assumed to be linearly stable. Moreover, we assume f0 is a monotonically decreasing function of
v2, a sufficient but not a necessary condition for stability. This includes the special case of a Maxwellian, but
allows for more general distributions. The linear dynamics of fk is governed by

ofk

ot
þ ikvfk þ ik/k

e
m

of0

ov
¼ 0; k2/k ¼ �4pe

Z
dvfkðv; tÞ; ð4Þ

where the linear electrostatic potential is expanded as d/ ¼ 1
2

P
k/kðtÞeikx. The energy of the linearized system,

the Kruskal–Obermann energy [16], is given by

H L ¼ �
m
2

Z Z
dvdxv

ðdf Þ2

f 00
þ 1

8p

Z
dx

od/
ox

� �2

; ð5Þ

where f 00 ¼ df0=dv. In Fourier space HL becomes

H L ¼
X
k;k0

Z Z
dvdv0fkðvÞOk;k0 ðvjv0Þfk0 ðv0Þ; ð6Þ

where O ¼ dk;�k0 ½�dðv� v0Þm=ð2f 00Þ þ 2pe2=k2�.
The linear system (4) has been solved by three methods: the original Laplace Transform technique used by

Landau (1946) and others; the expansion in terms of normal modes initiated by van Kampen (1955); and the
introduction of a special integral transform in velocity space initiated in Ref. [12] that was refined in Refs. [13–
15]. We use this last method, which is reviewed in the Hamiltonian context below where it is seen to be inti-
mately related to van Kampen modes and amounts to a transformation to normal mode coordinates.

3.2. Hamiltonian structure

The Hamiltonian structure of the Vlasov–Poisson system in terms of noncanonical Poisson brackets was
introduced in Ref. [11]. An extensive discussion of why the Poisson bracket is noncanonical and how this
relates to conventional Lagrangian and Hamiltonian formulations can be found in [12,15,17,18]. Here we give
the needed expressions.

The main item of the formalism is the noncanonical Poisson bracket, which has the form

fF ;Gg ¼
Z

dxdv
dF
df

J
dG
df

;

where F ;G are functionals, dF =df is the functional or variational derivative, and J is the cosymplectic oper-
ator that must endow fF ;Gg with antisymmetry and the Jacobi identity. For the Vlasov–Poisson system
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fF ;Gg ¼
Z

dxdvf
dF
df

;
dG
df

� �
; ð7Þ

the cosymplectic operator is given by J� ¼ ½f ; �� ¼ 1
m

of
ox

o
ov � �

of
ov

o
ox �

� �
, and in terms of (7) the Vlasov–Poisson

system can be written as

of
ot
¼ ff ;Hg ¼ ½E; f �;

where E ¼ mv2=2þ e/ ¼ dH=df .
The bracket formulation for the linear dynamics is obtained by expanding the above in the smallness of

df =f0. This yields the noncanonical Poisson bracket

fF ;GgL ¼
Z

dxdvf0

dF
ddf

;
dG
ddf

� �
; ð8Þ

which with the Kruskal and Oberman energy of (5) gives the representation of the linearized Vlasov–Poisson
system as

odf
ot
¼ fdf ;H LgL;

which can be demonstrated by straightforward manipulation.

3.3. Canonization and diagonalization

The bracket of (8) does not have the usual canonical form in terms of generalized coordinates and
momenta, but this is easy to obtain in terms of the Fourier transformed variable. Using the chain rule, (8)
becomes

fF ;GgL ¼
X1
k¼1

ik
m

Z
dvf 00

dF
dfk

dG
df�k

� dG
dfk

dF
df�k

� �
: ð9Þ

(See [17] for a tutorial on calculations such as this.) To canonize we define

qkðv; tÞ ¼ fk and pkðv; tÞ ¼
mf�k

ikf 00
; ð10Þ

where k > 0. In terms of these variables (9) takes the usual canonical form:

fF ;GgL ¼
X1
k¼1

Z
dv

dF
dqk

dG
dpk

� dG
dqk

dF
dpk

� �
:

From (6) it is clear that the Hamiltonian HL can easily be written in terms of the variables ðqk; pkÞ. How-
ever, because the electrostatic contribution to HL (the second term of O) possesses two integrals over v, HL is
not diagonal, and this complicates the evaluation of (1). The task of diagonalization is significantly more dif-
ficult than that of cannonization. The details were worked out in [12–15] and are most easily explained in the
present context in terms of a mixed variable generating functional, which we do here.

Diagonalization is achieved by transforming from the variables ðqkðv; tÞ; pkðv; tÞÞ to a new set of variables
ðQkðu; tÞ; P kðu; tÞÞ. We find it convenient to introduce an intermediate set of variables ðQ0kðu; tÞ; P 0kðu; tÞÞ where
the new coordinate Q0k is obtained from the old by a transformation Gk given by

qkðv; tÞ ¼ Gk½Q0k� ¼ �Rðk; vÞQ0kðv; tÞ þ �Iðk; vÞQ0k: ð11Þ

Here �I ¼ �px2
pf 00=k2, the Hilbert transform of a function g is �g ¼ P=p

R
dugðuÞ=ðu� vÞ, with P indicating

Cauchy principal value, and �R ¼ 1þ �I . Note, j�j2 ¼ �2
I þ �2

R 6¼ 0 because the equilibrium is stable. It can be
shown that this transformation is invertible (on appropriate Banach spaces; see [15]). Eq. (11) is the coordinate
part of the canonical transformation generated by the type-two mixed variable generating functional
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F½qk; P
0
k� ¼

X1
k¼1

Z
duP 0kG

�1
k ½qk�; ð12Þ

which follows from Q0k ¼ dF=dP 0k. The momentum part of the canonical transformation is obtained from
pk ¼ dF=dqk, which gives pkðv; tÞ ¼ ðG�1

k Þ
y½P 0k�, where G�1

k is given by

Q0kðu; tÞ ¼ G�1
k ½qk� ¼

�Rðk; uÞ
j�j2ðk; uÞ

qkðu; tÞ �
�Iðk; uÞ
j�j2ðk; uÞ

H ½qk�: ð13Þ

Now, the diagonalizing coordinates are given by the simple transformation

Qk ¼
1ffiffiffi
2
p ðQ0k � iP 0kÞ and P k ¼

1ffiffiffi
2
p ðP 0k � iQ0kÞ; ð14Þ

in terms of which the Hamiltonian for the linearized system becomes

H L ¼
1

2

X1
k¼1

Z
du kuðQ2

k þ P 2
kÞ: ð15Þ

Observe that HL is the Hamiltonian for a sum over a continuum of simple harmonic oscillators indexed by the
discrete label k and the continuum label u, with the frequency of a given oscillator being ku.

The calculation leading to (15) rests on the following two identities:

G�1½vf � ¼ uG�1½f � � �I

pj�j2
Z

dvf and G�1½�I � ¼
�I

j�j2
; ð16Þ

which are based on properties of the Hilbert transform. These were first proven in [12] and later with greater
rigor in [15]. We take them as given and direct the reader to these references for their proofs.

In terms of the canonical variables ðqk; pkÞ the first term of HL is given by

A ¼ �m
2

X
k

Z
dvv
jfkj2

f 00
¼ �

X1
k¼1

ik
Z

dvvqkpk: ð17Þ

Upon inserting pkðv; tÞ ¼ ðG�1
k Þ
y½P 0k� into (17), flipping the ‘�’, and making use of the identity of (16), we obtain

A ¼ �
X1
k¼1

ik
Z

duP 0k uG�1
k ½qk� �

�I

j�j2
1

p

Z
dvfk

 !
: ð18Þ

The second term of HL is

B ¼
X1
k¼1

4pe2

k2

Z
dvfk

Z
duf�k ¼

X1
k¼1

ik
Z

dvfk
1

p

Z
dupk�I ; ð19Þ

into which we insert pkðv; tÞ ¼ ðG�1
k Þ
y½P 0k� in the last term, flip the ‘�’, and make use of the second identity of

(16), to obtain

B ¼ �
X1
k¼1

ik
Z

dvfk
1

p

Z
duP 0kG

�1
k ½�I � ¼ �

X1
k¼1

ik
Z

dvfk
1

p

Z
duP 0k

�I

j�j2
: ð20Þ

Adding (18) and (20) gives

H L ¼ �
X1
k¼1

ik
Z

duuP 0kG
�1
k ½qk� ¼ �

X1
k¼1

ik
Z

duuP 0kQ0k: ð21Þ

Finally, inserting the transformation of (14) into (21) produces (15).
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4. Calculating the functional integral spectra

Having achieved diagonal form, we can evaluate Z and use it to obtain averages. In this section we first
obtain electric field fluctuation spectra or equivalently charge density fluctuation spectra, and the concomitant
form factors. Following this we obtain phase space density fluctuation spectra.

4.1. Electric field spectra

We evaluate (1) by writing it in terms of the canonical coordinates ðQk; P kÞ: these canonical variables are
inserted into HL, the resulting expression is used for H, and the measure DpDq is taken to be

Q
kDqkDpk.

The continuum labels of Qk and Pk are discretized on uj ¼ jDu, for j ¼ �N ; . . . ;N , where Du ¼ v�=N , and then
the limits v�, N !1 are taken (see e.g. [19] and references therein). The ensemble average of a quantity O is
given by hOi ¼

R
DQDPOe�bH=Z. In terms of the above discretization,

hOi ¼ lim
N!1
v�!1

1

Z

Y
k¼1

YN
j¼�N

Z
dP kðujÞdQkðujÞOe�bHL : ð22Þ

After a straightforward calculation we obtain

hEkðuÞE�k0 ðu0Þi ¼
16kBT

V
�I

uj�j2
dk;k0dðu� u0Þ: ð23Þ

where V is the volume of the system and the units are chosen to compare with the usual expression for the
dielectric energy (cf. [12]). The details of this calculation are given below in Section 4.1.1, which is followed
by a discussion of the forumla of (23) in Sections 4.1.2 and 4.1.3.

4.1.1. The calculation
With the discretization described above, the calculation of (23) proceeds as follows: the Hamiltonian

becomes

HL ¼
1

2

Y
k¼1

Z
du kuðP 2

k þ Q2
kÞ ¼

1

2
lim

v�!1
N!1

Du
Y
k¼1

XN

j¼�N

kujðP 2
kj þ Q2

kjÞ; ð24Þ

where Qkj ¼ QkðujÞ and P kj ¼ P kðujÞ. Since the energy density vanishes at u = 0, the discretized dynamics cor-
responding to j = 0 is trivial. Thus we exclude j = 0 from the functional integral. Using the above, the partition
function becomes

Z ¼ lim
v�!1
N!1

Y
k¼1

Y0
N
j¼�N

Z
dP kje

�bDukujP 2
kj=2

Z
dQkje

�bDukujQ2
kj=2

¼ lim
lv�!1
N!1

Y
k¼1

Y0
N
j¼�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

kujDub

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

kujDub

s
¼ lim

v�!1
N!1

Y
k¼1

2p
kDub

� �2NY0
N
j¼�N

1

uj
; ð25Þ

where primes denote j = 0 is excluded from the product. Now uj ¼ jDu and

Y0
N
j¼1

1

uj
¼ 1

DuN N !
¼ N

v�

� �N
1

N !
ð26Þ

leading to

Z ¼ lim
v�!1
N!1

2p
kb

� �2N N
v �

� �4N
1

N !2
: ð27Þ

For this discretization, depending on the order in which the limits are taken, we obtain either Z = 0 or Z ¼ 1.
(We regularize these expressions by first taking the limit v� ! 1, followed by N !1.) We may still perform
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the usual formal manipulations to obtain ensemble averages by postponing the limits until the final step of the
calculation.

En route to (23) we calculate the following ensemble average

hQkðuÞQk0 ðu0Þi ¼ lim
v�!1
N!1

1

Z

Y
‘6¼k
‘6¼k0

Y0
j 6¼m
j 6¼m0

Z
dP ‘jdQ‘je

�bDu‘uj P 2
‘jþQ2

‘j

� �
=2 �

Z
dP kmdQkmQkme�bDukum P 2

kmþQ2
kmð Þ=2

�
Z

dP k0m0dQk0m0Qk0m0e
�bDuk0um0 ðP 2

k0m0 þQ2
k0m0 Þ=2 ð28Þ

where m and m 0 are chosen such that, in the continuum limit, um ¼ u and um0 ¼ u0. Unless m ¼ m0 and k ¼ k0,
the above vanishes. Thus we have

hQkðuÞQk0 ðu0Þi ¼ dkk0dmm0 lim
v�!1
N!1

1

Z

Z
dP kmdQkmQ2

kme�bDukum P 2
kmþQ2

kmð Þ=2 �
Y
‘ 6¼k

Y0
j 6¼m

Z
dP ‘jdQ‘je

�bDuðP 2
‘jþQ2

‘jÞ=2:

ð29Þ

Upon canceling integrals in the numerator with those of Z in the denominator, we obtain the ratio,Z
dQkmQ2

kme�bDukumQ2
km=2

Z
dQkme�bDukumQ2

km=2

¼ 1

kumDub
; ð30Þ

whence we obtain hQkðuÞQk0 ðu0Þi ¼ lim dkk0dmm0=kumDub. Now limv�!1
N!1
ðdmm0=DuÞ ¼ dðu� u0Þ gives the compact

expression

hQkðuÞQk0 ðu0Þi ¼
kBT
ku

dk;k0dðu� u0Þ: ð31Þ

The expected UV catastrophe results upon summing and integrating over the arguments.
Paralleling the above calculation leads to hP kðuÞP k0 ðu0Þi ¼ kBT =ðkuÞdk;k0dðu� u0Þ and hQkðuÞP k0 ðu0Þi ¼ 0,

which together with (14), imply

�ikhuQ0kðuÞP 0k0 ðu0Þi ¼ kBT dk;k0dðu� u0Þ:

Now we know qk is equal to fk, but what are the physical meanings of the Q0k and P 0k? These are the coordinates
in which the linear dynamics is decoupled. In particular Q0k can be shown to be proportional to the electric
field, Ekðu; tÞ (k > 0), associated with a van Kampen mode. In [12] it was shown the energy density for stable
electrostatic oscillations is given by

V
16

j�j2

�I
ujEkðuÞj2 ¼ �ikuQ0kðuÞP 0kðuÞ

(see Eq. (27) of [15]). Thus we obtain (23). Note we have written this expression in units to compare with the
usual expression for the dielectric energy

ED ¼
V

16p
oðx�RÞ

ox
jEkj2;

a common but generally incorrect expression for the energy density of stable electrostatic oscillations described
by the Vlasov equation (see [12]).

4.1.2. Equipartition

An expression similar to that of (23) appeared in the previous calculations [1,3,5–8] referred to above in
Section 1. In fact, it can be argued that (23) is actually what is meant by the statistical part of the fluctua-
tion–dissipation theorem, but we will not pursue this here. For the case of Maxwellian equilibria where the
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Maxwellian temperature is equal to the heat bath temperature, our expression is identical to that of previous
authors (first given by Thompson[5,6]). We discuss this agreement further in Section 5.

In [1–8] it is noted that the right hand side of (23) approaches 1
2
kBT in the limit kkD � 1, which suggests a

failure of the equipartition theorem when this limit is not taken. This arises because of the factor involving �.
However, one should not expect Ek to be in equipartition because it is not a canonical variable. In statistical
mechanics, equipartition is a property defined in terms of the canonical variables in which the Hamiltonian is
diagonal. For each quadratic term in the Hamiltonian one obtains a contribution of kBT=2 to the expectation
value of the energy. Thus, the statement of equipartition in the present plasma physics context is (31), and (23)
is entirely consistent with equipartition for all values of k. Our approach that uses the Hamiltonian formula-
tion of Vlasov theory makes this clear.

4.1.3. Form factor
Using (23), we can compute both the dynamic and static form factors. The dynamic form factor, Sðk;xÞ, is

defined (e.g. [3]) in terms of the density fluctuations, qkðxÞ, by hqkðxÞq�kðx0Þi ¼ 4p2dðx� x0ÞSðk;xÞ. Because
hqkðxÞq�kðx0Þi is proportional to (23); this fact and some algebra yields the well-known result

Sðk;xÞ ¼ � N
px

k2

k2
D

Im
1

�ðk;xÞ

� �
; ð32Þ

where N is the total number of particles. Thus our result is consistent in this respect with previous results.
The static form factor, SðkÞ, is defined by the sum-rule

R
dxSðk;xÞ ¼ NSðkÞ, hence

SðkÞ ¼ k2

k2
D

Im
1

�ðk;xÞ

� �
ð0Þ: ð33Þ

Without loss of generality we choose a frame where f0 has a maximum at v ¼ 0, thus �Ið0Þ ¼ 0. We define
�Rð0Þ ¼ 1þ k2

h=k2, where kh is a measure of the width of f0. (For a Maxwellian equilibrium, kh ¼ kD.) Using,
�Ið0Þ ¼ �Rð0Þ � 1, we obtain

SðkÞ ¼ k2

k2 þ k2
h

ð34Þ

which is the standard expression that describes both self-correlation and Debye shielding (see e.g. [3]).

4.2. Phase space fluctuation spectra

Since G is a linear functional, Ek is linearly related to fk and this fact can be exploited to obtain phase space
fluctuation spectra. The basic point is that the ensemble average can be taken inside the functional. Thus (23)
can be used to obtain hfkðvÞf �k0 ðv0Þi by mapping back from ðQk; P kÞ to ðqk; pkÞ and writing the result in terms of
fk. Accounting for the scalings in the definitions of the various variables this amounts to

hfkðvÞf �k0 ðv0Þi ¼
kk0

16p2e2
hGk½Ek�ðvÞGk0 ½E�k0 �ðv0Þi; ð35Þ

whence we obtain

hfkðvÞf �k0 ðv0Þi ¼ dk;k0
k2

p2e2V b
�Iðk; vÞ

v
dðv� v0Þ � 1

p
�Rðk; 0Þ
j�ðk; 0Þj2

�Iðk; v0Þ�Iðk; vÞ
vv0

( )
: ð36Þ

This is a rigorous calculation, the details of which are presented below. We note that this general result is not
in [1–8], although the special case where the equilibrium is Maxwellian appears in [1].

4.2.1. The calculation

Our calculation of hfkðvÞf �k0 ðv0Þi uses the fact that the two G’s of (35) can be slipped out of the average, h i,
together with several Hilbert transform identities (see [12–15]), which we record below:
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1

u� u0
¼ pdðu� u0Þ; dðu� u0Þ ¼ � 1

p
1

u� u0
ð37Þ

/ðuÞ
u� u0

¼
�/ðuÞ � �/ðu0Þ

u� u0
þ p/ðuÞdðu� u0Þ; /w ¼ �/wþ /�wþ �/�w: ð38Þ

Defining gðuÞ by hEkðuÞE�kcðu0Þi ¼ 16dkk0dðu� u0ÞgðuÞ=ðV bÞ, then wðu0; vÞ ¼ G½gðuÞdðu� u0Þ�ðvÞ and
F ðv; v0Þ ¼ G½wðu0; vÞ�ðv0Þ is the essential part of (36). Note, for the calculation we suppress the dependence
on k and write a ¼ �I and b ¼ �R, so gðuÞ ¼ fðuÞ=u where f ¼ a=ða2 þ b2Þ. Now

wðu0; vÞ ¼ aðvÞ
p

gðu0Þ
u0 � v

þ bðvÞgðvÞdðv� u0Þ ð39Þ

giving

F ðv; v0Þ ¼ aðv0Þ � bðvÞ
p

1

v0 � v
þ aðvÞ

p

�gðv0Þ � �gðvÞ
v0 � v

þ pgðvÞdðv� v0Þ
	 


þ bðv0Þ aðvÞ
p

gðv0Þ
v0 � v

þ bðvÞgðvÞdðv� v0Þ
	 


: ð40Þ

Rearranging, we have

F ðv; v0Þ ¼ dðv� v0ÞgðvÞ½a2ðvÞ þ b2ðvÞ� þ 1

p
aðvÞ

v0 � v
½bðv0Þgðv0Þ þ aðv0Þ�gðv0Þ� � 1

p
aðv0Þ
v0 � v

½bðvÞgðvÞ þ aðvÞ�gðvÞ�:

ð41Þ

Now (41) can be rewritten using

�gðvÞ ¼
�fð0Þ � �fðvÞ

v
¼ vð0Þ � vðvÞ

v
: ð42Þ

Using avþ bf ¼ 0, we obtain

F ðv; v0Þ ¼ dðv� v0Þ aðvÞ
v
� 1

p
vð0Þ aðv

0ÞaðvÞ
vv0

ð43Þ

whence finally we obtain (36).

5. Comparisons and discussion

Our approach is perhaps most akin to that of classical N-particle statistical mechanics of an electron gas
neutralized by a positive charge background (see e.g. [4]), where the classical partition function is constructed
for N interacting electrons. Calculation of the partition function in the N-particle approach is difficult because
of the Coulomb interaction. Consequently, the partition function is expanded and coarse grained, and even-
tually written as a product of one-particle partition functions. En route, a diagonalization of a discrete Ham-
iltonian is effected. Thus the N-particle approach, like ours, involves diagonalization within a Hamiltonian
context. The N-particle dynamics is most basic in plasma physics, but the partition function obtained after
approximation is not that for any known dynamics. In contrast, the linearized dynamics of our approach
is limiting, but our partition function calculations are exact. The N-particle approach produces the static form
factor of (34) with kh ¼ kD, the Maxwellian special case of our result (33).

The Liouville, Klimontovich, and test particle approaches contain discrete particle dynamics in some form,
which is then smoothed and truncated, in all cases leading to more or less the same answers. Equations like
(23) appear in these calculations, and fluctuation information needed for calculation of the Lenard–Balescu
collision operator is calculated. However, none except Klimontovich explicitly obtain an expression for
hfkðvÞf �k0 ðv0Þi. If we insert a Maxwellian distribution function into our result (36), it reduces to his expression
(cf. Eq. (10.38) of [1]).

One may wonder how Vlasov theory, being ostensibly collisionless, can produce results about correlations
in agreement with the above calculations. Essentially this is possible because the Vlasov equation is identical to
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the Klimontovich equation, and thus contains the correct dynamics on small velocity scales. The distinction
between the two equations amounts to a choice of initial conditions. Physically it is the interaction with the
heat bath that communicates the interaction in the plasma, and the heat bath does not distinguish between
Vlasov and Klimontovich theory. (Recall, in Einstein’s calculation the Hamiltonian is the sum over indepen-
dent linear oscillators.) That Vlasov theory can correctly produce correlations is not a new idea, for it was used
in [5] and has also been used to obtain Lenard–Balescu type collision operators (see e.g. [20,21]). However, for
this to work it is essential that the linear operator equation be solved exactly. Calculations involving expan-
sions that lead to Landau damping eliminate the essential transient effects. Landau damping sets in on the time
scale sL :¼ maxfve=k; vic=kg (e.g. [4]), where ve and vic are velocities characteristic of the equilbrium and initial
condition, respectively. So, theories with approximations leading to Landau damping do not contain transient
effects, which are continually generated by jostling by the bath, that occur on a time scale less that sL. Thus,
these theories are incomplete and this will show up in the statistics.

Our generalization to non-Maxwellian equilibria is important because hot plasmas can exist in states dif-
ferent from thermodynamic equilibrium for substantial lengths of time. The temperature associated with these
equilibrium states need not be the same as the heat bath temperature T ¼ 1=ðkBbÞ that characterizes the fluc-
tuations. The thermal nature of the heat bath arises from the large number of degrees of freedom that couple
to the plasma, which can be distinct from the temperature associated with a prepared equilibrium state. It is
important to recognize that the equilibrium temperature in our calculation is merely a parameter that
describes the equilibrium state f0, about which the linear dynamics occurs. Non-Maxwellian equilibria could
be described by general equilibria of the form f0ðv; T 1; T 2 . . .Þ with many parameters, and these parameters are
distinct from the bath temperature T.

In the case where f0 is not Maxwellian our expression (23) does not agree with that of [5,8], two places
where a nonequilibrium expressions has been given. It is difficult to judge the result of [5,8] because in [5]
the result is only stated (probably based on an understanding of the Nyquist noise theorem), while there
are difficulties with the nonequilibrium derivation of [8] that uses an expansion in terms of the charge. On
course a meaningful asymptotic expansion requires a dimensionless parameter, and in the equilibrium case this
amounts to the plasma parameter. The plasma parameter requires the introduction of a temperature and in
the equilibrium case this is supplied by the Maxwellian temperature. However, in the nonequilibrium calcu-
lations of [8], no such temperature is available and one wonders what exactly is the dimensionless parameter.
Thus, at present it is unclear why the results differ. One possibility is the linearity of our approach.

The approach presented in this paper is of general applicability. It is straightforward to include multiple
species, and the essential ingredients, the Hamiltonian structure and the diagonalizing integral transform, exist
for electromagnetic fluctuations [14]. In fluid mechanics, functional integral calculations of partition functions
for homogeneous turbulence have existed since the work of Onsager [22] and Lee [23] (see also [24–29]). The
methods described here can be used to describe the fluctuations about inhomogeneous fluid states such as
those that occur in shear flow and Rossby (or Drift) wave dynamics, because the diagonalizing transform
has been worked out [30,31]. For the case of shear flow the calculations have been performed and it has been
shown that the resulting formulas explain dominant features of experiments [35]. Approximate fluid and
plasma systems, such as the single wave model (e.g. [34]) and vorticity defect dynamics [33] are also amenable.
Basically, for any stable equilibrium of a general class of Hamiltonian systems with a continuous spectrum [32]
an analogous calculation can be performed.

An important limitation of our approach is the use of linear dynamics; consequently large fluctuations are
not properly described. One can view the calculation presented here as a first step in a perturbation calculation
and continue this avenue by proceeding to higher order. Alternatively, nonlinearity can be included by other
means, as it was for the shear flow problem in [29,35]. The relationship between the present approach and the
approach of that work will be described elsewhere.
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